University of Limerick Institutional Repository

Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003–2019: A global scoping review

DSpace Repository

Show simple item record

dc.contributor.author Chique, C.
dc.contributor.author Hynds, P.
dc.contributor.author Burke, L.P.
dc.contributor.author Morris, D.
dc.contributor.author Ryan, Michael P.
dc.contributor.author O'Dywer, J.
dc.date.accessioned 2021-02-10T15:17:59Z
dc.date.available 2021-02-10T15:17:59Z
dc.date.issued 2021
dc.identifier.uri http://hdl.handle.net/10344/9767
dc.description peer-reviewed en_US
dc.description.abstract Verocytotoxin-producing E. coli (VTEC) are important agents of diarrhoeal disease in humans globally. As a noted waterborne disease, emphasis has been given to the study VTEC in surface waters, readily susceptible to microbial contamination. Conversely, the status of VTEC in potable groundwater sources, generally regarded as a “safe” drinking-water supply remains largely understudied. As such, this investigation presents the first scoping review seeking to determine the global prevalence of VTEC in groundwater supply sources intended for human consumption. Twenty-three peer-reviewed studies were identified and included for data extraction. Groundwater sample and supply detection rates (estimated 0.6 and 1.3%, respectively) indicate VTEC is infrequently present in domestic groundwater sources. However, where generic (fecal indicator) E. coli are present, the VTEC to E. coli ratio was found to be 9.9%, representing a latent health concern for groundwater consumers. Geographically, extracted data indicates higher VTEC detection rates in urban (5.4%) and peri–urban (4.9%) environments than in rural areas (0.9%); however, this finding is confounded by the predominance of research studies in lower income regions. Climate trends indicate local environments classified as ‘temperate’ (14/554; 2.5%) and ‘cold’ (8/392; 2%) accounted for a majority of supply sources with VTEC present, with similar detection rates encountered among supplies sampled during periods typically characterized by ‘high’ precipitation (15/649; 2.3%). Proposed prevalence figures may find application in preventive risk-based catchment and groundwater quality management including development of Quantitative Microbial Risk Assessments (QMRA). Notwithstanding, to an extent, a large geographical disparity in available investigations, lack of standardized reporting, and bias in source selection, restrict the transferability of research findings. Overall, the mechanisms responsible for VTEC transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between hydrogeological and public health research. Key recommendations and guidelines are provided for prospective studies directed at increasingly integrative and multi-disciplinary research. en_US
dc.language.iso eng en_US
dc.publisher Elsevier en_US
dc.relation.ispartofseries Water Research;188, 116496
dc.subject groundwater sources en_US
dc.title Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003–2019: A global scoping review en_US
dc.type info:eu-repo/semantics/article en_US
dc.type.supercollection all_ul_research en_US
dc.type.supercollection ul_published_reviewed en_US
dc.identifier.doi 10.1016/j.watres.2020.116496
dc.rights.accessrights info:eu-repo/semantics/openAccess en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULIR


Browse

My Account

Statistics