University of Limerick Institutional Repository

Stability for the Calderon’s problem for a class of anisotropic conductivities via an ad hoc misfit functional

DSpace Repository

Show simple item record

dc.contributor.author Foschiatti, Sonia
dc.contributor.author Gaburro, Romina
dc.contributor.author Sincich, Eva
dc.date.accessioned 2022-01-19T14:25:53Z
dc.date.available 2022-01-19T14:25:53Z
dc.date.issued 2021
dc.identifier.citation S. Foschiatti, R. Gaburro and E. Sincich (2021) 'Stability for the Calderón's problem for a class of anisotropic conductivities via an ad-hoc misfit functional (accepted)'. Inverse Problems, . en_US
dc.identifier.uri http://hdl.handle.net/10344/10933
dc.description peer-reviewed en_US
dc.description.abstract We address the stability issue in Calderon’s problem for a special class of anisotropic conductivities of the form σ = γA in a Lipschitz domain Ω ⊂ Rn, n ≥ 3, where A is a known Lipschitz continuous matrix-valued function and γ is the unknown piecewise affine scalar function on a given partition of Ω. We define an ad hoc misfit functional encoding our data and establish stability estimates for this class of anisotropic conductivity in terms of both the misfit functional and the more commonly used local Dirichlet-to-Neumann map. en_US
dc.language.iso eng en_US
dc.publisher IOP Publishing en_US
dc.relation.ispartofseries Inverse Problems;37 (12)
dc.subject Calderon’s problem en_US
dc.subject anisotropic conductivity en_US
dc.subject stability en_US
dc.subject misfit functional en_US
dc.title Stability for the Calderon’s problem for a class of anisotropic conductivities via an ad hoc misfit functional en_US
dc.type info:eu-repo/semantics/article en_US
dc.type.supercollection all_ul_research en_US
dc.type.supercollection ul_published_reviewed en_US
dc.date.updated 2022-01-19T14:11:34Z
dc.description.version PUBLISHED
dc.identifier.doi 10.1088/1361-6420/ac349c
dc.relation.projectid 201758MTR2-007 en_US
dc.rights.accessrights info:eu-repo/semantics/openAccess en_US
dc.internal.rssid 3021640
dc.internal.copyrightchecked Yes
dc.identifier.journaltitle Inverse Problems
dc.description.status peer-reviewed


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULIR


Browse

My Account

Statistics