University of Limerick Institutional Repository

New analytical and semi-analytical solutions for static deflection of composite beams

DSpace Repository

Show simple item record

dc.contributor.advisor Weaver, Paul M.
dc.contributor.author Doeva, Olga
dc.date.accessioned 2021-11-04T09:54:04Z
dc.date.available 2021-11-04T09:54:04Z
dc.date.issued 2021
dc.identifier.uri http://hdl.handle.net/10344/10741
dc.description peer-reviewed en_US
dc.description.abstract Anisotropic composite structures are widely used in aerospace, marine, civil, and biomedical areas of engineering due to their advantages, including excellent specific strength, resistance to fatigue and damage tolerance behaviour. Multiple crucial slender structural components of aircraft, automobiles, buildings designed to withstand various loads are modelled as composite beams, thus it is very important to understand the structural behaviour of composite beams and to investigate the mechanism that causes their static deflection. In this thesis mathematical models describing static deflection of composite beams and composite beams resting on elastic foundations are investigated using both analytical and semi-analytical methods based on Euler-Bernoulli and Timoshenko beam theories. These models for the static deflection of composite beams, presented by a system of coupled ordinary differential equations with corresponding boundary conditions, are rigorously derived. The nature of the governing equations depends on the particular problem. For example, the homogeneity of equations is affected by the type of applied loads, while the coefficients of the governing equations are determined by constant or variable stiffness properties of the beam and elastic foundation. In order to obtain closed-form analytical solutions for the problem, coupled governing equations are rewritten in a compact matrix form enabling direct integration to uncouple unknown variables. Closed-form solutions are presented by formulae computationally more efficient compared to commonly used numerical methods such as finite difference or finite element methods, providing deep insight into the mechanism and physics of the static displacement of beams, and quantifying the role and importance of model parameters. Subsequently, semi-analytical techniques, namely the variational iteration method and the homotopy analysis method, are used to predict the static behaviour of composite beams. The presented analytical models are fast and computationally efficient which can be utilised during the preliminary design stages. The derived results can be utilised as benchmark solutions to assess the accuracy and convergence of various analytical and numerical methods. en_US
dc.language.iso eng en_US
dc.publisher University of Limerick en_US
dc.subject composite beams en_US
dc.subject aerospace en_US
dc.subject marine en_US
dc.subject engineering en_US
dc.title New analytical and semi-analytical solutions for static deflection of composite beams en_US
dc.type info:eu-repo/semantics/doctoralThesis en_US
dc.type.supercollection all_ul_research en_US
dc.type.supercollection ul_published_reviewed en_US
dc.type.supercollection ul_theses_dissertations en_US
dc.contributor.sponsor SFI en_US
dc.rights.accessrights info:eu-repo/semantics/openAccess en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULIR


Browse

My Account

Statistics