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Abstract 

 
Nanoporous Gold (NPG) is a material of emerging interest for immobilization of 

biomolecules and especially enzymes. NPG materials provide a high surface area onto 

which biomolecules can either be directly physisorbed, covalently linked after first 

modifying the NPG with a self-assembled monolayer (SAM) or entrapped in a polymer 

matrix. The immobilization of enzymes while using NPG substrate material is being 

pursued for applications in sensors, assays, supported synthesis, catalysis and biofuel 

cells. NPG materials can be prepared by using many different approaches. However, the 

most common method used is the dealloying of a low carat gold alloy containing 

between 20-50 atomic % gold in a strong acid (70% HNO3), which oxidizes the least 

noble metal, removing it from the alloy. The rapid rearrangement of the gold atoms at 

the solid/liquid interface leaves behind the characteristic surface morphology. The 

resultant structure consists of interconnected ligaments and pores with typical widths 

between 5-200 nm. The surface area of these materials can be up to 500 times higher 

than their geometric area. 

Surface addressability of NPG is crucial for functionalization and surface 

modification for the use in sensors, biosensors and biofuel cells. Full addressability of 

the surface area of NPG was observed with small molecules such as sulphuric acid. The 

surfaces could also be modified using bulky anthraquinone functional groups attached 

on activated diazonium salts throughout the whole structure. Surface modification of 

NPG has been achieved using a variety of strategies, such as through SAM formation of 

thiol compounds, electro-reduction of in situ synthesized diazonium compounds and the 

drop-casting or electro-polymerization of osmium redox polymers and hydrogels. 

Surface functionalized NPG could be used for a variety of applications. Bulky 

negatively charged sulfonate groups could therefore attract positively charged free trace 

metal ions (such as Cu2+) in solutions for direct detection at the electrode surface. The 

sensor displayed a detection range from 0.2 to at least 25 µM which is within the legal 

concentration limit of 20.5 µM (1300 ppb) in drinking water (United States, EPA). The 

sensitivity and limit of detection (LOD) were found to be 8.18 µA cm-2 µM-1 and 18.9 

nM (~1.2 ppb) respectively. The BDS surface functionalization was also capable of 

blocking biofouling material from the electrode surface, making it possible to measure 

in complex media such as artificial human serum. Fructose dehydrogenase (FDH) could 

be covalently attached to carboxylic acid terminated diazonium compounds for the 

precise detection of D-fructose concentrations in a range of natural sweeteners and 
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beverages. The sensor was able to give accurate readings within 5 seconds with a linear 

range of 0.05 - 0.3 mM D- fructose concentration, a sensitivity of 3.7 Ñ 0.2 ɛA cm-2 

mM-1 and a LOD of 1.2 ɛM. When combining anodic enzymes, such as glucose 

dehydrogenase (GDH) and FDH, with cathodic enzymes such as bilirubin oxidase 

(BOD), enzymatic biofuel cells with considerable power outputs can be obtained. 

GDH/MvBOD EFCs generated power densities of up to 17.5 and 7.0 ɛW cm-2 in PBS 

and artificial serum, respectively, at an OCV of ~0.45 V (vs Ag/AgCl) with a 

concentration of 5 mM D-glucose. These EFCs retained over 60% of their initial power 

density after 8 hours of continuous operation. FDH/BpBOD EFCs generated power 

densities of up to 13 µW cm-2 at an operating potential of 0.18 V vs Ag/AgCl at a 

concentration of 10 mM D-fructose. The half-life was found to be ca. 19 h. 
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1.1. Proteins in electrochemistry 

1.1.1 Introduction 

Proteins are biological molecules that can be found in all cells of living 

creatures. These molecules are the most abundant biological molecules and occur in 

great variety and with very specific functions. Proteins can act as structural elements, 

signal receptors, transporters that can carry specific substances in and out of a cell, or 

most interestingly, as catalytic active species, are perhaps the most versatile of all 

biomolecules [1]. These biomolecules consist of polymers of amino acids. Amino acids 

are molecules which possess a central carbon atom, an amino group, a carboxylate and 

an R group (R groups differ from each amino acid due to hydrophobic and hydrophilic 

effects). Twenty amino acids occur naturally and form proteins via the formation of 

peptide bonds between the amino (N) and carboxyl (C) groups (Figure 1.1 A-B) 

forming primary and secondary structures [2]. Primary structures constitute a linear 

sequence of amino acid in the polypeptide chain. Secondary structures (alpha helix and 

beta sheets) are formed by defined hydrogen bonds between the peptide groups 

throughout the main chain of the structure (Figure 1.1 B).  

More complex forms occur via the formation of tertiary (Figure 1.1 C) and 

quaternary (Figure 1.1 D) structures. Tertiary structures are formed by the folding of 

alpha-helixes and pleating of beta sheets into consolidated three-dimensional structures.  

 
Figure 1.1: schematic representation of possible organizations of protein structures 

with (A) primary structure, (B) secondary structure, (C) tertiary structure and (D) 

quaternary structure, copied from reference [2]. 

A B 

C 

D 
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Figure 1.2: schematic representation a reaction (A) without catalyst and (B) with an 

enzyme catalyst, modified from reference [1]. 

Quaternary structures are delineated by multiple subunits of tertiary structures. The 

protein structure is stabilized by disulfide bonds, hydrogen bonds, ionic bonds as well as 

Van der Waals and hydrophobic interactions [2]. The final protein structures depend on 

the amino acid sequences and the interactions among the amino acids [2]. 

Proteins that possess the ability to either accept or donate electrons, resulting in 

an increase or decrease in the oxidation state [3] are also referred to as redox proteins. 

They consist of a redox center which usually is surrounded by a polypeptide structure. 

The specific properties of the protein define its function and ultimately its potential 

application for electrochemical sensors, fuel cells or biomedical devices [4]. Redox 

proteins and enzymes can basically be ascribed as more complex and fragile three-

dimensional proteins [5], which facilitate [2] the ability to catalyze biological reactions. 

In general a reaction occurs by a substrate S reacting to a product P that possess a lower 

free energy ground state G (as seen in Figure 1.2 A). The difference in the free energy 

æG'0 is available when the reaction occurs. In order to trigger the reaction a transition 

energy state has to be overcome which requires introducing activation energy into the 

system (as seen in Figure 1.2 A). The general reaction mechanism can be seen in 

equation 1.1 [1]. 

 E + S      ES      EP      E + P (1.1) 

In some cases the transition state presents a high energy barrier. This problem in 

cells is overcome by the ability of enzymes to lower the activation energy as seen in 

Figure 1.2 B. The mechanism (as demonstrated in equation 1.1 [1]) involves two 

transition states (ES) and (EP). This demonstrates the advantage of enzymes in 

biological systems. The exploitation of this effect has resulted in a range of applications 
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of enzymes in industries such as biofuels and biological detergents, brewing and dairy 

industry, food processing and in the pharmaceutical industry as selective biocatalyst [6]. 

Stabilization of enzymes is crucial for the preparation of durable biosensors and 

biofuel cells. Protein engineering is one of the most frequently used approaches to 

improve stability and activity of proteins/enzymes. Protein engineering can be 

performed by [5]: 

(1) Directed evolution [7]: where usually a library of random mutants with 

particular properties are constituted, attributes of interest are defined, the 

mutants of particular interest are selected and afterwards this process is 

repeated until the enzyme engineer is satisfied with the specific properties of 

the mutated enzyme. 

(2) Site-directed mutagenesis [8]: in contrast to the random mutation of 

directed evolution, site-directed mutagenesis applies a more organized 

approach to alter the specific properties of the mutated enzymes, such as 

activity, stability or thermal compatibility. Here the protein structure is 

examined extensively and individual sites of interest are targeted for 

mutagenesis. It is important to note that this method requires a deep 

knowledge on the structure of the protein. The site mutagenesis is then 

evaluated for effectiveness to the desired new attributes of the proteins. 

(3) Peptide chain extension [9]: As the name indicates this method uses the 

lengthening of either nitrogen or carbon terminated polypeptide chains of the 

enzyme which is usually used to improve the stability of the enzyme.  

Understanding biological electron transfer in these macromolecular structures is 

somewhat complex. A wide range of theoretical and experimental studies have been 

performed to develop a better understanding of biological electron transfer. In general 

the electron transfer rate constant is measured between electronically localized donor 

and acceptor states of the protein [10]. 

Numerous materials are reported to be suitable supports for the immobilization 

of enzymes. Carbon [11] (glassy carbon [12], carbon nanotubes [13], carbon cloth [14]), 

Au [15], Ag [16], Pt [17], Bi [18], Hg [19], Al [20] and alumina oxide [21] are among 

the most common used supports for enzyme immobilization. Lin et al. also showed that 

cyanuric chloride is an adaptable surface activating reagent for the immobilization of 

enzymes on glassy carbon, pyrographite and  metal oxides such as TiO2, In2O3 and 

SnO2 [22]. 
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1.1.2 Enzymes stabilization and immobilization 

Enzymes are macromolecular structures that are quite sensitive to temperature, 

pH and concentration effects that can initiate denaturation processes. Denaturation of 

enzymes can be understood as a process of unfolding of the enzymeôs tertiary or 

quaternary structure. This usually leads to a disordering of the polypeptide chains, 

where the key components of the structure are not able to continue their participation in 

active functions of the protein [23]. Numerous methods and strategies have been 

developed and applied to enhance the stability of enzymes and avoid denaturation. 

Enzyme immobilization and enzyme stabilization are the two most important 

components of increasing the lifetime of these catalytic proteins, which also make them 

interesting in bioelectrochemical studies. Even though the mechanisms involved in 

immobilization and stabilization may differ substantial from one another, they are still 

related, as both involve either changing the specific configuration of the proteins or the 

application of binding/trapping of the protein. Enzyme stabilization can be ascribed as a 

method of enhancing the active catalytic lifetime of the protein, while enzyme 

immobilization involves techniques to chemically or physically bind the protein to a 

defined surface. Enzyme immobilization can therefore be defined as a method of 

enzyme stabilization. Stabilization methods involve immobilization, chemical 

modification, addition of additives and protein engineering (previously described in 

section 1.1.1 above) [5]. Chemical modification is one of most common technique to 

achieve better enzyme stabilization. The most common used representative in terms of 

chemical modification is the adding of cross-linking reagents to the protein solution. 

These crosslinking additives induce intramolecular crosslinking of the peptide chains 

between the individual proteins, forming connected agglomerate structures (as seen in 

Figure 1.3). Glutaraldehyde has a long history in the use as cross-linking reagent for 

protein [24]. Originally used by crystallographers for the determination of crystal 

structures of proteins, they are also used in protein stabilization [25]. The carbonyl 

groups of the glutaraldehyde can react with free amine and hydroxyl groups of the 

protein, resulting in a crosslinked network. Dimethyl suberimidate, disuccinimidyl 

tartrate (DMS) and 1-ethyl-3-(3-dimethylaminopropryl) carbodiimide (EDC) are also 

reported to be effective crosslinking reagents [5]. Water soluble polymers, such as poly 

ethylene glycol (PEG), are also often used as crosslinking reagents for enzymes as 

discussed by Veronese et al. [27]. Veronese describes these PEGylating reagents as 

molecules with N- or C-terminated end groups that react with the individually desired 

amino acid of the protein [27]. 
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Figure 1.3: Schematic representation of common enzyme immobilization methods in 

bioelectrochemistry, modified from reference [26]. 

Another commonly used method for enzyme stabilization is the use of additives. 

Usually additives fall into 4 general categories. These can be delineated as small 

molecules (trehalose [28]), surfactants, polymers (PEG [27]), proteins (BSA [29], 

human albumin [30]) and micelles [31], respectively [5]. Upon dehydration, trehalose 

sugar produces a gel that is capable of protecting the protein structure from external 

influences [5]. Due to the fact that proteins tend to denature at interfaces, surfactants can 

be introduced. Surfactants can establish stabilization of the protein as they introduce 

competition at the electrode interface [5]. If enzymes are confronted with harsh 

environments such as extremes of temperature, large shifts in pH or to organic solvents, 

micelles can be used as stabilization agents. In aqueous solutions micelles typically 

form aggregates with hydrophilic head groups at the interface while the hydrophobic 

tails points toward the center of the aggregate. Micelles can protect proteins by binding 

to the protein with the hydrophobic and hydrophilic reacting with their respective 

counterpart. This form of layer formation on the protein can provide protection to 

foreign influences [5]. 

Enzyme immobilization is another approach that can be used to stabilize and 

utilize the native catalytic activity of the protein structures. Cao very vividly considered 

enzyme immobilization to be a form of art, as much as it can be considered to be 

science [32]. Enzyme immobilization can be broken down into three main sections as 

displayed in Figure 1.3. These immobilization techniques are: binding onto support 

material, entrapment and cross linking (described in section 1.1.2) of the proteins.  
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We generally distinguish between three different mechanisms involved when 

proteins are bound to a support material. This can be due to physical forces, such as 

adsorption, hydrophobic and van der Waals interactions, ionic interactions, or chemical 

bindings, such as covalent attachments or cross linking [33]. Adsorption is basically 

caused through intermolecular forces resulting in the accumulation of proteins on the 

solid interface [5]. However, binding by physisorption is generally very weak and may 

result in random orientations of the enzymes on the surface, which might not be 

desirable. Therefore adsorption may not be very suitable in real life application. Ionic 

binding presents more stable systems. Chemical bonding however results in the most 

stable forms of immobilized enzymes, when supported on a stabile substrate material. 

The major drawback of this approach is that the protein structure can be altered, which 

may affect its catalytic properties. Covalent attachment of enzyme is often performed 

via the terminal functional group of self-assembled monolayers (SAMs) on a support 

material. However, through the covalent attachment of an enzyme to a SAM the activity 

can be dramatically decreased. The methods used are comprehensively discussed in 

section 1.2. Solid substrates can be a range of materials. Besides obvious conductive 

metal substrates, organic polymers (such as Eupergit® C [34]), biopolymers 

(polysaccharides such as cellulose, starch, agarose and chitosan [35]), hydrogels 

(polyvinyl alcohol [36]) and inorganic supports (mesoporous silicas [37]) are among the 

most common used supports [33]. 

Once proteins are immobilized on supports the question of electron transfer 

arises. We differentiate between two major electron transfer mechanisms, direct electron 

transfer (DET) or mediated electron transfer (MET). 

1.1.3 Direct electron transfer 

The mechanism involved to achieve electron transfer from an enzyme to an 

electrode mainly depends on the distance the electrons have to overcome as seen in 

equation 1.2, where k is the electron transfer constant, ʰ ƛǎ ŀ Ŏƻƴǎǘŀƴǘ ŘƛǊŜŎǘƭȅ dependent on the medium the electrons have to travel through, r is the distance  

 

 Ὧ  Ὡ ᶻ Ὡ ϳ  (1.2) 

between electron acceptor and donor, ɲG is the Gibbs energy of activation, R is the gas 

constant and T represents the temperature. In a system with same medium, temperature 
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and reaction the only variable affecting the electron transfer rate is therefore the 

distance between the electron donor and acceptor [38]. 

The most desired electron transfer mechanism between a protein and an 

electrode is DET, due to its simplicity. The simplified schematic scheme can be seen in 

Figure 1.5 A. When DET occurs, the tightly bound cofactor of the active site inside the 

redox protein can directly deliver electrons to and from the electrode [39]. The simplest 

approach of DET is if the electroactive area of the enzyme simply comes in contact with 

the electrode and is therefore capable of delivering the electrons directly [41] (Figure 

1.4 C). This mechanism however occurs rarely due to the fact that the electroactive sites 

of the enzyme are usually buried within the enzyme structure. This ñdirectò electron 

transfer is subject to significant constraints and is dependent on the distance between the 

redox active site and the electrode together with the orientation of the active site to the 

support material. This can schematically be seen in Figure 1.4. If the active site of the 

enzyme faces away from the electroactive area (Figure 1.4 A) no electron transfer can 

be observed, while if the redox center is close to the electroactive area or even touches it 

(Figure 1.4 B) DET can be achieved [40]. 

For DET, without direct contact of the redox center to the electrode, two 

different mechanisms can occur. The mechanism involved is highly dependent on the 

properties of the proteins used. A tunneling mechanism is often involved. Usually 

complex bridging molecules, exhibiting different functional groups enables electrons to 

tunnel through the energy barrier to establish ET. Tunneling is the consequence of 

higher potential energy acting on the electron in the space between the reacting pair than 

the energy of the electron in its localized site as demonstrated by R.A. Marcus et al. 
  

 
Figure 1.4: Schematic illustration of the effect of orientation of an immobilized enzyme 

at an electroactive substrate with (A) hindered ET and (B) tunneling of electrons from 

the active center to the electrode and (C) DET of electrons to the electrode, modified 

from reference [40]. 
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Figure 1.5: Schematic illustrating of the mechanism involved in (A) direct electron 

transfer (DET) and (B) mediated electron transfer (MET) between an enzyme active site 

and an electrode in the oxidation of a substrate, modified from reference [44]. 

[42]. The electron transfer of the redox protein to the electrode is not only dependent on 

the difference in potential between them, and the distance between the electroactive 

surface and the redox center, but also on the rigidity of the structure [39,43]. DET via 

tunneling can become difficult when the distance between the prosthetic group of the 

enzyme and the electrode surface is long, due to the shielding that is provided by the 

protein shell. 

Another process that induces DET is the superexchanging of electrons. 

Superexchange of electrons is a mechanism that is often observed for structures that 

possess a long distance to the support surface, where DET via direct tunneling of the 

active site to the electrode surface becomes less likely [39]. Superexchanging involves 

relay molecules in the protein structure that are within tunneling distance to one another 

and to the electrode surface that are able to internally shuttle electrons. 

Another method to force orientation on the enzymes is to immobilize the 

enzymes to the surface and therefore reducing the distance of the redox active area of 

the enzyme from the electrode. ET responses from redox centers that are further away 

than 2 nm from the electroactive area can be expressed as negligible [39]. If it not 

possible to constrain the redox center close to the electroactive surface, DET will not be 

feasible. However it is important to note that the immobilization of enzyme can also 

result in blocking of the access to the active site of either the co-substrate or the 

substrate which will also results in no measurable catalytic activity, due to mass 
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transport issues. Also, denaturation of the enzyme can be observed, leading to 

diminished catalytic activities and therefore lower currents [39]. 

This demonstrates the need to design optimal electrode configurations to ensure 

that the ET distance between an immobilized redox protein and a suitable electrode 

surface is made as short as possible but with favorable orientation [39]. If it is not 

possible to generate these conditions, alternative strategies have to be explored such as 

the introduction of mediators that are capable of shuttling generated electrons from the 

active site of the enzyme to the electrode surface, i.e. MET. 

1.1.4 Mediated electron transfer 

Alternative electrode shuttling mechanisms are necessary for redox proteins that 

do not exhibit the above mentioned features. Mediated electron transfer (MET) is a 

common alternative to DET in bioelectrochemistry. Typically a co-substrate or an 

electrochemically active species, such as redox mediators, are used to shuttle electrons 

between the active site of a redox protein and the electrode surface. The schematic 

representation of the MET mechanism is displayed in Figure 1.5 B. During the 

shuttling process of the electrons between the active site and the electrode, the mediator 

is cycled between its oxidized and reduced forms [45]. Mediators can have high 

diversity in structure, redox potentials and specific properties. Therefore, MET can 

generally be performed using two different classifications, homogenous- and 

heterogeneous mediated transfer. In homogenous mediated systems the mediator and 

the enzyme are free in solution. They diffuse freely through the medium, while after 

electron transfer the free mediator interacts with the electrode [39]. In contrast, in 

heterogeneous mediated systems either the mediator or the enzyme is immobilized on 

the electrode surface and the electron transfer is established between them. This usually 

is achieved by adding the mediator to a bulk solution, with the goal to reach an 

immobilized enzyme, or by immobilizing the mediator onto the electrode in a solution 

that contains free enzyme [47]. 

The requirement for the use of MET becomes obvious when the physical 

properties of enzymes are observed (Figure 1.5). The dimensions of enzymes are in the 

range of 7-20 nm [46] and the redox centers can be buried deep within the protein 

matrices. These structural properties result in the spatial separation of the biocatalytic 

redox sites from the electrode, which results in hindered electrical contact of the enzyme 

with the conductive substrate. This results in diminished or disabled energy harvesting 
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Figure 1.6: Schematic representation of heterogeneous MET strategies with (A) 
application of a diffusional electron transfer mediator, (B) introduction of redox-relay 
units to the protein associated with the electrode, (C) immobilization of the enzyme in a 
redox polymer associated with the electrode, (D) reconstitution of an apo-enzyme on a 
relay-cofactor unit linked to the electrode, modified from reference [46]. 

from the biocatalytic reaction, thus demonstrating the necessity for MET. MET can 

generally be performed using a wide range of approaches. A summary of the most 

common strategies is displayed in Figure 1.6. The easiest way to achieve MET is by 

introducing diffusional electron mediators that transport electrons between the redox 

center of the enzyme and the electrode, as displayed in Figure 1.6 A [46]. Another 

strategy is to affix redox mediating relays to the enzyme structure (on the periphery as 

well as inner protein sites) which can effectively shorten the electron transfer distance 

leading to MET between the biocatalytic redox centers and the electrode (Figure 1.6 B) 

[46]. This approach however can alter the structure of the enzyme as the relays are 

usually covalently bound to the enzyme, which may result in significantly decreased 

catalytic activity. A very commonly used technique is the immobilization of the redox 

enzymes in electroactive polymer matrices [48] or redox active hydrogels [15] that 

transports electrons between the enzyme active sites and the electrodes. This transport is 

made possible by flexible charge carrying redox-active segments within the polymer 

matrices (Figure 1.6 C). Heller and coworkers have extensively studied the electrical 









































































http://www.dict.cc/englisch-deutsch/necessarily.html








































































































































































































































https://www.dict.cc/englisch-deutsch/negligible.html






http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://www.electroanalysis.wiley-vch.de


http://orcid.org/0000-0003-2042-556X
http://orcid.org/0000-0003-2042-556X
http://orcid.org/0000-0003-2042-556X
http://dx.doi.org/10.1002/celc.201600842


www.chemelectrochem.org


www.chemelectrochem.org


www.chemelectrochem.org


www.chemelectrochem.org


www.chemelectrochem.org


www.chemelectrochem.org


www.chemelectrochem.org




http://dx.doi.org/10.1002/cplu.201600455
https://doi.org/10.1002/cplu.v82.4


http://www.chempluschem.org


http://www.chempluschem.org


http://www.chempluschem.org


http://www.chempluschem.org


http://www.chempluschem.org


http://www.chempluschem.org


http://dx.doi.org/10.1039/B711564B
http://dx.doi.org/10.1039/B711564B
http://dx.doi.org/10.1039/B711564B
http://dx.doi.org/10.1039/a803314e
http://dx.doi.org/10.1039/a803314e
http://dx.doi.org/10.1039/a803314e
http://dx.doi.org/10.1016/j.electacta.2012.02.087
http://dx.doi.org/10.1016/j.electacta.2012.02.087
http://dx.doi.org/10.1016/j.electacta.2012.02.087
http://dx.doi.org/10.1002/fuce.200800115
http://dx.doi.org/10.1002/fuce.200800115
http://dx.doi.org/10.1002/fuce.200800115
http://dx.doi.org/10.1007/s00018-014-1828-4
http://dx.doi.org/10.1007/s00018-014-1828-4
http://dx.doi.org/10.1007/s00018-014-1828-4
http://dx.doi.org/10.1016/j.bios.2009.07.015
http://dx.doi.org/10.1016/j.bios.2009.07.015
http://dx.doi.org/10.1016/j.bios.2009.07.015
http://dx.doi.org/10.1016/j.bios.2009.07.015
http://dx.doi.org/10.1002/cphc.201000216
http://dx.doi.org/10.1002/cphc.201000216
http://dx.doi.org/10.1002/cphc.201000216
http://dx.doi.org/10.1002/cphc.201000216
http://dx.doi.org/10.1007/s00216-012-6657-4
http://dx.doi.org/10.1007/s00216-012-6657-4
http://dx.doi.org/10.1007/s00216-012-6657-4
http://dx.doi.org/10.1016/j.jpowsour.2016.05.133
http://dx.doi.org/10.1016/j.jpowsour.2016.05.133
http://dx.doi.org/10.1016/j.jpowsour.2016.05.133
http://dx.doi.org/10.1016/j.jpowsour.2016.05.133
http://dx.doi.org/10.1039/b708013c
http://dx.doi.org/10.1039/b708013c
http://dx.doi.org/10.1039/b708013c
http://dx.doi.org/10.1016/j.addr.2016.05.014
http://dx.doi.org/10.1016/j.addr.2016.05.014
http://dx.doi.org/10.1016/j.addr.2016.05.014
http://dx.doi.org/10.1016/j.addr.2016.05.014
http://dx.doi.org/10.1039/C5NR06625E
http://dx.doi.org/10.1039/C5NR06625E
http://dx.doi.org/10.1039/C5NR06625E
http://dx.doi.org/10.1039/C5NR06625E
http://dx.doi.org/10.1016/j.jconrel.2015.12.039
http://dx.doi.org/10.1016/j.jconrel.2015.12.039
http://dx.doi.org/10.1016/j.jconrel.2015.12.039
http://dx.doi.org/10.1016/j.jconrel.2015.12.039
http://dx.doi.org/10.1021/cr068076m
http://dx.doi.org/10.1021/cr068076m
http://dx.doi.org/10.1021/cr068076m
http://dx.doi.org/10.1021/nl060162e
http://dx.doi.org/10.1021/nl060162e
http://dx.doi.org/10.1021/nl060162e
http://dx.doi.org/10.1016/j.tiv.2006.10.007
http://dx.doi.org/10.1016/j.tiv.2006.10.007
http://dx.doi.org/10.1016/j.tiv.2006.10.007
http://dx.doi.org/10.1016/j.tiv.2006.10.007
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1038/35068529
http://dx.doi.org/10.1021/la202945s
http://dx.doi.org/10.1021/la202945s
http://dx.doi.org/10.1021/la202945s
http://dx.doi.org/10.1016/j.bioelechem.2015.12.008
http://dx.doi.org/10.1016/j.bioelechem.2015.12.008
http://dx.doi.org/10.1016/j.bioelechem.2015.12.008
http://dx.doi.org/10.1371/journal.pone.0024207
http://dx.doi.org/10.1371/journal.pone.0024207
http://dx.doi.org/10.1021/jp805600k
http://dx.doi.org/10.1021/jp805600k
http://dx.doi.org/10.1021/jp805600k
http://dx.doi.org/10.1021/jp805600k
http://dx.doi.org/10.1016/j.micromeso.2012.05.017
http://dx.doi.org/10.1016/j.micromeso.2012.05.017
http://dx.doi.org/10.1016/j.micromeso.2012.05.017
http://dx.doi.org/10.1002/anie.200705238
http://dx.doi.org/10.1002/anie.200705238
http://dx.doi.org/10.1002/anie.200705238
http://dx.doi.org/10.1002/anie.200705238
http://dx.doi.org/10.1002/ange.200705238
http://dx.doi.org/10.1002/ange.200705238
http://dx.doi.org/10.1002/ange.200705238
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.1186/1475-2859-10-106
http://dx.doi.org/10.1016/0141-0229(95)00170-0
http://dx.doi.org/10.1016/0141-0229(95)00170-0
http://dx.doi.org/10.1016/0141-0229(95)00170-0
http://dx.doi.org/10.1007/s10529-008-9749-7
http://dx.doi.org/10.1007/s10529-008-9749-7
http://dx.doi.org/10.1007/s10529-008-9749-7
http://dx.doi.org/10.1007/s10529-008-9749-7
http://dx.doi.org/10.1016/j.elecom.2011.12.007
http://dx.doi.org/10.1016/j.elecom.2011.12.007
http://dx.doi.org/10.1016/j.elecom.2011.12.007
http://dx.doi.org/10.1016/j.bbabio.2006.08.008
http://dx.doi.org/10.1016/j.bbabio.2006.08.008
http://dx.doi.org/10.1016/j.bbabio.2006.08.008
http://dx.doi.org/10.1016/j.bbabio.2006.08.008
http://dx.doi.org/10.1039/c0cp00018c
http://dx.doi.org/10.1039/c0cp00018c
http://dx.doi.org/10.1039/c0cp00018c
http://dx.doi.org/10.1039/c0cp00018c
http://dx.doi.org/10.1016/S0956-5663(01)00277-9
http://dx.doi.org/10.1016/S0956-5663(01)00277-9
http://dx.doi.org/10.1016/S0956-5663(01)00277-9
http://dx.doi.org/10.1021/ja003276f
http://dx.doi.org/10.1021/ja003276f
http://dx.doi.org/10.1021/ja003276f
http://dx.doi.org/10.1016/S0022-0728(03)00076-7
http://dx.doi.org/10.1016/S0022-0728(03)00076-7
http://dx.doi.org/10.1016/S0022-0728(03)00076-7
http://dx.doi.org/10.1002/elan.200704124
http://dx.doi.org/10.1002/elan.200704124
http://dx.doi.org/10.1002/elan.200704124
http://dx.doi.org/10.1002/elan.201600249
http://dx.doi.org/10.1002/elan.201600249
http://dx.doi.org/10.1002/elan.201600249
http://dx.doi.org/10.1002/elan.201600249
http://dx.doi.org/10.1016/j.bioelechem.2013.07.001
http://dx.doi.org/10.1016/j.bioelechem.2013.07.001
http://dx.doi.org/10.1016/j.bioelechem.2013.07.001
http://dx.doi.org/10.1016/j.electacta.2016.01.101
http://dx.doi.org/10.1016/j.electacta.2016.01.101
http://dx.doi.org/10.1016/j.electacta.2016.01.101
http://dx.doi.org/10.1016/j.electacta.2016.01.101
http://dx.doi.org/10.1016/j.elecom.2006.03.008
http://dx.doi.org/10.1016/j.elecom.2006.03.008
http://dx.doi.org/10.1016/j.elecom.2006.03.008
http://dx.doi.org/10.1002/elan.200403010
http://dx.doi.org/10.1002/elan.200403010
http://dx.doi.org/10.1002/elan.200403010
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1016/S0022-0728(02)01043-4
http://dx.doi.org/10.1021/la402432q
http://dx.doi.org/10.1021/la402432q
http://dx.doi.org/10.1021/la402432q
http://dx.doi.org/10.1021/la402432q
http://dx.doi.org/10.1016/j.electacta.2011.12.132
http://dx.doi.org/10.1016/j.electacta.2011.12.132
http://dx.doi.org/10.1016/j.electacta.2011.12.132
http://dx.doi.org/10.1039/C1AN15537G
http://dx.doi.org/10.1039/C1AN15537G
http://dx.doi.org/10.1039/C1AN15537G
http://dx.doi.org/10.1016/j.bios.2011.10.020
http://dx.doi.org/10.1016/j.bios.2011.10.020
http://dx.doi.org/10.1016/j.bios.2011.10.020
http://dx.doi.org/10.1039/C5CC04888E
http://dx.doi.org/10.1039/C5CC04888E
http://dx.doi.org/10.1039/C5CC04888E
http://dx.doi.org/10.1016/j.bios.2008.04.006
http://dx.doi.org/10.1016/j.bios.2008.04.006
http://dx.doi.org/10.1016/j.bios.2008.04.006
http://dx.doi.org/10.1016/j.bios.2008.04.006
http://dx.doi.org/10.1021/cs501940g
http://dx.doi.org/10.1021/cs501940g
http://dx.doi.org/10.1021/cs501940g
http://dx.doi.org/10.1021/ma00222a008
http://dx.doi.org/10.1021/ma00222a008
http://dx.doi.org/10.1021/ma00222a008
http://dx.doi.org/10.1021/ac202647z
http://dx.doi.org/10.1021/ac202647z
http://dx.doi.org/10.1021/ac202647z
http://dx.doi.org/10.1021/ac202647z
http://www.chempluschem.org

