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ABSTRACT: This investigation is conducted to study the
integration of the artificial intelligence (AI) method with
computational fluid dynamics (CFD). The case study is hydro-
dynamic and heat-transfer analyses of water flow in a metal foam
tube under a constant wall heat flux (i.e., 55 kW/m2). The adaptive
network-based fuzzy inference system (ANFIS) is an AI method. A
3D CFD model is established in ANSYS-FLUENT software. The
velocity of the fluid in the x-direction (Ux) is considered as an
output of the ANFIS. The x, y, and z coordinates of the node’s
location are added to the ANFIS step-by-step to achieve the best
intelligence. The number and type of membership functions
(MFs) are changed in each step. The training process is done by
the CFD results on the tube cross-sections at different lengths (i.e.,
z = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9), while all data (including z = 0.5) are selected for the testing process. The results showed
that the ANFIS reaches the best intelligence with all three inputs, five MFs, and “gbellmf”-type MF. At this condition, the regression
number is close to 1.

1. INTRODUCTION
Open-cell metal froths were discovered within thermal transfer
as a result of their solid mixing proportion and high porosity.1
The heat sinks in metal froths were investigated by Zhao et al.2
Also, the methane-hydrogen chemical reactions over the
catalytic surfaces capped with metal froths were discussed by
Dhamrat et al.3 The upgraded tubes are metal foam-occupied
that are widely tested. The numerical and experimental
investigations on the single-phase convection-heat-transfer
behavior of metal foam-occupied channels possessing various
structures have been done by several studies.4�7 Variables such
as the porosity of metal froths, channel geometry, and pore
density affecting the thermal transport and fluid flow were
extensively studied.1,8,9

Currently, ANNs (artificial neural networks),10�13 ANFIS
(adaptive network-based fuzzy inference system),13�26 and
intelligence algorithms such as ant colony and differential
algorithms27 were gradually common for simulating engineering
problems with a significant decrease in the calculation time.
Nevertheless, their use in energy-related studies and flow and
heat procedures is restricted. It was proved that ANFIS is a
robust method as it includes the ANN’s greater abilities and the
neuro-fuzzy architectures.28�30

ANFIS’s architecture is a combination of artificial neural and
fuzzy logic network methods. This model can learn complicated
associations in terms of the experimental or input computational
pattern data. In the present work, the ANFIS model involves
three inputs (x-direction, y-direction, and z-direction) and three

membership functions (MFs) for each input. The distribution
functions are then anticipated utilizing the first-order Sugeno
fuzzy model.31

The CFD modeling is an applicable tool for the prediction of
fluid flow characteristics. CFD models have their own expenses,
specifically in complex cases (i.e., turbulent flow, two-phase
flows, complex geometries, dense meshes, 3D analysis, and so
on). Recently, some research works have shown the effect of
artificial intelligence (AI) algorithms on facilitating the CFD
modeling. Artificial intelligence algorithms can do the machine
learning (ML). In this way, the AI algorithms capture the general
pattern of the output based on different inputs. Once the best
intelligence is obtained, there is no need for the CFD to solve the
complicated governing equations anymore, and the AI
algorithms predict the output corresponding to any values of
new input on the domain.

Although the ANFIS has already been employed by a few
studies in combination with the CFD,13,19,32�34 there are still
many unknown aspects to be unlocked. For example, there is no
investigation regarding the effect of ANFIS parameters such as
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the number of iterations, number of data, percentage of trained
data, number of inputs, number of MFs, types of MFs, and so
forth on the best intelligence. The other studies in the literature
simply used ANFIS15,17,18,20,28,35�37 in combination with CFD
tools. They did not do any sensitivity tests. To the authors’ best
knowledge, this is the first time the ANFIS is considered for the
prediction of velocity of water flow in a porous medium. In
addition, the sensitivity test was made for the first time for
finding the proper values of input number, MF, and the type of
MF at the best intelligence. The main aim of this study is to
discover the ability of the ANFIS to contribute to the CFD for
velocity prediction of the incompressible flow, such as water, in
porous media. Therefore, in this study, the efficiency of artificial
intelligence (AI) in cooperation with CFD prediction is
investigated. For this purpose, water flow inside an aluminum
metal foam tube warming up through the wall is simulated by the
ANSYS-FLUENT CFD package. This modeling does not
involve a simple use of the CFD package. All fluid and porous
medium parameters are adjusted properly based on the papers in
the literature. The temperature-dependent thermophysical
properties of water are added to the CFD model by a user-
defined code (UDF) written in the C programing language. The
porous medium parameters including the porosity, permeability,
pore size, and so forth are considered in the model. The porous
media are considered homogeneous and isotropic. The
equilibrium thermal model is used for the energy equation.
The velocity of the fluid in the x-direction (Ux) is considered as
the output of the ANFIS, while the x, y, and z coordinates of the
node’s location are the inputs. The effects of the number of
inputs, the number of MFs, and the type of MF on the ANFIS
efficiency are assessed.

2. SIMULATION METHODOLOGY
2.1. CFD Approach. The test was performed for an

incompressible consistent state, three-dimensional, and turbu-
lent flow in a pipe entirely occupied by a permeable medium, in
which the permeable medium is saturated with a single-phase
Newtonian fluid.38 Then, the fluid is introduced into the pipe
with a uniform temperature T0 and a uniform velocity u0. It is
presumed that the heat flux at the wall Tw is continuous. Porous
characteristics such as the porous material, porosity, perme-
ability, and PPI are aluminum, 0.8, 5 × 10�8 m2, and 10,
respectively. The final mass, energy, and momentum equations
are given in refs,39�41 and they can be also written as follows

Continuity equation
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The effective thermal conductivity can be determined as
follows

� �= Š +k k k(1 )e s F (4)

where ks and kF are the solid porous material and fluid
conductivities, respectively.

The following equations for water properties are used
Density42
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Viscosity43
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where A = 2.414 × 10�5, B = 247.8, and C = 140.
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2.2. CFD Validation Test. As there are not enough
investigations on turbulent forced convection of water in a
metal foam tube, the velocity profile of this study is compared
with that from Ameri et al.’s44 study which considered the
Fe3O4/water nanofluid flow in a heated metal foam tube.
According to Figure 1, there is a good agreement between both
velocity profiles as a function of radial coordinate.

2.3. ANFIS Model. ANFIS is an artificial intelligence method
for extremely nonlinear and complicated problems. Herein, the
utilized ANFIS structure includes two inputs and five layers,
where the Takagi-Sugeno fuzzy system was used as the FIS. For
elucidating the procedure of ANFIS, it was taken into
consideration that the FIS includes one output (F) and two
inputs (x1,x2). Normally, the fuzzy rules can be reported as
follows45

Rule 1

= + + +

x I x J

F a x b x r

if is and is and etc. ; then

...

1 1 2 1

1 1 1 1 2 1 (8)

Rule 2

Figure 1. Velocity profiles for the present study and Ameri et al.’s44

study: Adapted in part with permission from [Ameri, M.; Amani, M.;
Amani, P., Thermal performance of nanofluids in metal foam tube:
Thermal dispersion model incorporating heterogeneous distribution of
nanoparticles. Advanced Powder Technology 2017, 28 (10), 2747�
2755]. Copyright [2020] [ELSEVIER].
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= + + +

x I x J

F a x b x r

if is and is and etc. ; then

...

1 2 2 2

2 2 1 2 2 2 (9)

where x1 and x2 represent the inputs. a1, b1, r1, a2, b2, and r2
denote the output (O) function parameters. I1, I2, J1, and J2
represent the MFs for inputs (x1 and x2). ANFIS’s fundamental
configuration is a feedforward network containing five layers
with different functions.

Each layer’s function is provided in refs.46,47 By the input
nodes in layer 1, the membership association including the
output and input functions of this layer is given by48

�= =F I i( ), 1, 2i Ai1, (10)

�= =F J i( ), 1, 2i bi1, (11)

The output in rule nodes or layer 2 is the product of input
signals given by48

� �= = =F W I J i( ) ( ), 1, 2i i i i2, (12)

where � i(I) and � i(J) denote the MFs. The weight function in
the normalized layer or the third layer is under normalization as
follows48

= =
+

=F W
W

W W
i, 1, 2i

i
3,

1 2 (13)

In the consequent nodes or the fourth layer as the defuzzy
layer, the former layer’s output is multiplied with the function of
the Sugeno49 fuzzy rule

= = + + + =F w f w a x bx r i( ... ), 1, 2i i i i i i i4; 2 (14)

Within the output node with one node (layer 5), the summation
of all outputs of each rule from the final layer is determined as48
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3. RESULTS AND DISCUSSION
Water forced convection inside a metal foam tube under a
constant wall heat flux (i.e., 55 kw/m2) is simulated using the
ANSYS-FLUENT CFD package. Among all CFD results, the
velocity of the fluid in the x-direction is selected as an output of
ANFIS artificial intelligence. Three nodal fluid locations in the
tube (i.e., x, y, and z) are considered as the inputs and are added
to the ANFIS model step-by-step to achieve the best
intelligence. In addition to this, the number and type of MFs
are changed in each step. The training process is done by the
CFD results on the metal foam tube at different cross sections
(i.e., z = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9). In other words,
70% of the CFD results are used in the training process, while all
data (including z = 0.5) are selected for the testing process.

Figure 2 describes the whole steps in this study for the
prediction of water velocity in the x-direction (Ux) in the porous
pipe by the ANFIS. The x, y, and z coordinates of the nodes are
selected, as the first to the third inputs. In addition, the velocity
of the nanofluid in the x-direction is defined as the output. The
grid partition clustering is selected as the type of data clustering
and for generating the primary FIS. For the FIS algorithm,
parameters such as the number of data, the number of iterations,
and the percentage of data for the training process are
determined. For grid partition clustering parameters, the
number of MFs and the type of MF must be defined. In this
study, a sensitivity test is conducted to find out the proper values
of input number, the number of MFs, and the type of MF for the
best intelligence of the ANFIS. Therefore, the intelligence
process of the ANFIS is done through a loop until the
intelligence is achieved; the training of the CFD data is done; the

Figure 2. Flowchart of ANFIS learning progress.
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regression number (R), the coefficient of determination (R2),
the mean standard error (MSE), the root mean standard error
(RMSE), and the standard error (STD) are recorded for
different input numbers, MF numbers, and MF types. The
intelligence condition is related to the lowest errors and the
highest R. The velocity predictions of the DEFIS are validated
with those of the CFD modeling. Once the results have been

validated, the ANFIS predicts the water velocity on the cross-
section plate that does not exist in the learning process.

Figure 3 shows the values of R2 of the training and testing
processes by changing the number of inputs, number of MFs,
and the type of MF. At first, it should be noted that there is a
relationship between the number of inputs and the number of
MFs and the number of rules. The number of MFs to the power
of the number of inputs is equal to the number of rules. For

Figure 3. (a) Different learning with one input and changes in the number and type of MF. (b) Different learning with two inputs and changes in the
number and type of MF. (c) Different learning with three inputs and changes in the number and type of MF.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c04497
ACS Omega XXXX, XXX, XXX�XXX

D

https://pubs.acs.org/doi/10.1021/acsomega.0c04497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c04497?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c04497?ref=pdf


example, for two inputs and three MFs, the number of rules is
equal to 9. At the first glance, it is shown that the R2 values
increase by the MF number. Therefore, for all types of MFs, the
highest value of R2 is related to the maximum amount of MF
number. For one and two inputs, the values of R2 are not that
much (i.e., around 0.02). As the number of inputs increases to
three, the maximum values of R2 for each type of MF jump to
around 0.98. This means that the ANFIS gets closer to the best
intelligence for three inputs. According to Figure 3c, among
different types of MFs, the best intelligence is achieved by the
“gbellmf” MF (R2 = 0.97). The detailed analysis and comparisons
of R, R2, MSE, RMSE, MEAN, and STD of the training and
testing processes can be found in the “Supporting Information”.
Thus, the highest value of R2, in other words, the best
intelligence could be seen once again for three inputs, five
MFs, and the “gbellmf” MF type.

Figure 4a,b depicts the ANFIS training and testing regression
for the condition where the best intelligence is achieved (i.e., the
input number is three, MF number is five, and MF type is
“gbellmf”). At this condition, the regression numbers are close to
1 for both training and testing processes.

A comparison is made between the CFD and ANFIS
predictions of Ux, as shown in Figure 5. The results reveal
that there is a good agreement between the predicted results of
both methods. Figure 6 illustrates this comparison in another
way. According to Figure 6, the output data obtained by both
CFD and ANFIS methods are shown versus the inputs.

The final comparison is made between the Ux prediction at a
length of 0.5 m that resulted from the CFD and that from the
ANFIS (Figure 7). Similar results are seen again by both
predictions. Therefore, it can be concluded that the ANFIS
model has reached the best intelligence and the model is able to
predict the Ux in each randomly selected node. Totally, the
results revealed that the ANFIS cannot be simply used for
learning the CFD data. A sensitivity test is needed for finding the
ANFIS parameters at the best intelligence. These parameters
differ from one study to another, and the parameters must be
adjusted in each case study.

According to Figure 8, a comparison is made between the
predictions of two artificial algorithms: one is the ANFIS that

was used in this study and the other one is GAFIS (genetic
algorithm-based fuzzy interface system). Figure 9 describes this
comparison based on the CFD results. The black line represents
the CFD results, while the blue and red lines represent the
ANFIS and GAFIS predictions, respectively. Magnifying the
graph lines in the three sections A, B, and C shows that the
ANFIS predictions are closer to the CFD results than to the
GAFIS ones. For a quantitative comparison, the standard error
deviations of GAFIS and ANFIS from CFD are estimated as 1.9
× 10�5 and 1.77 × 10�0.5, respectively.

Tables S1�S3 (Supporting Information) illustrate the R, R2,
MSE, RMSE, MEAN, and STD of the training and testing
processes by changing the number of inputs, number of MFs,
and the type of MF. As the number of inputs increases, all types
of errors decrease for all numbers and types of MFs in both
training and testing processes. For lower input numbers (i.e., 1
and 2) all kinds of error values are not sensitive to the number
and type of MF. Besides, for one and two inputs, the values of R
and R2 are not that much (i.e., around 0.2 and 0.02,
respectively). As the number of inputs increases to three, the
values of R and R2 jump to around 0.98. This means that the
ANFIS gets closer to the best intelligence for three inputs. The
best intelligence is achieved by the “gbellmf” MF. In almost all
cases, “gbellmf” shows the least error. Besides increasing the
number of MFs, all types of errors decrease. For instance, as the
number of MFs increases from two to five, the MSE and STD
decreased, respectively, from 7.71 × 10�9 to 3.03 × 10�10 and
from 8.78 × 10�5 to 1.74 × 10�5. Therefore, the highest values of
R and R2 (i.e., 0.98 and 0.97, respectively) and the lowest MSE,
RMSE, and STD (i.e., 3.14 × 10�10, 1.77 × 10�10, and 1.77 ×
10�10 respectively) are achieved for three inputs, five MFs, and
the “gbellmf” MF type.

4. CONCLUSIONS
The present study tries to investigate the ability of the artificial
intelligence (AI) method in cooperation with the computational
fluid dynamics (CFD). For this purpose, a 3D water flow in an
aluminum metal foam tube under a constant wall heat flux (i.e.,
55 kW/m2) is considered as a case study. The ANFIS is
employed as the AI method. The simulation is done using the

Figure 4. Regression of learning process of ANFIS intelligence when the number of inputs is three and the type of MF is gbellmf. (a) Training and (b)
testing.
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ANSYS-FLUENT CFD package. The velocity of the fluid in the
x-direction (Ux) is selected as an output of ANFIS artificial
intelligence. The nodal locations of the fluid in the metal foam
tube (i.e., x, y, and z) are considered as the inputs. The number
of inputs of the ANFIS model is increased step-by-step to
achieve the best intelligence. In addition to this, the number and
type of MF are changed in each step. The training process is
done by the CFD results on the tube cross sections at different
lengths (i.e., z = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9), while all
data (including z = 0.5) are selected for the testing process.

The following conclusions can be drawn as a result of this
investigation:

• increase in the number of inputs, all types of errors
decrease for all numbers and types of MFs in both training
and testing processes.

• For lower input numbers (i.e., one and two), all kinds of
error values are not sensitive to the number and type of
MF.

• in the number of MFs, all types of errors decrease.

• For input number equal to three, MF number equal to
five, and “gbellmf”-type MF, the best intelligence is
achieved.

• For the best intelligent conditions, the regression
numbers are close to 1 for both training and testing
processes.

• The ANFIS model with the best intelligence is able to
predict the Ux in each randomly selected node.

Figure 5. (a) Validation of the training process of ANFIS intelligence when the number of inputs is three and the type of MF is gbellmf. (b) Validation
of the testing process of ANFIS intelligence when the number of inputs is three and the type of MF is gbellmf.
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Figure 6. (a) Comparison of ANFIS prediction and CFD output nodes based on the first and second inputs. (b) Comparison of ANFIS prediction and
CFD output nodes based on the first and third inputs. (c) Comparison of ANFIS prediction and CFD output nodes based on the second and third
inputs.
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Figure 7. Velocity by ANFIS prediction (left side) using absent data in the learning process and the real velocity plot (right side) based on CFD
outputs.

Figure 8. Correlation coefficient of the best results of ANFIS and GAFIS methods.

Figure 9. Pattern recognition ANFIS and GAFIS predictions.
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