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A B S T R A C T

This study investigated the antihyperglycaemic effectiveness of an oral Palmaria palmata protein hydrolysate
(PPPH), versus metformin, upon metabolic control in streptozotocin (STZ)-induced diabetic mice. Mice were
administered PPPH (50 mg/kg bodyweight) or metformin (200 mg/kg bodyweight) by oral gavage twice-daily
for 18 days. Blood glucose and plasma insulin were measured every third day. PPPH caused a significant re-
duction in blood glucose (p < 0.001) and a significant increase in plasma insulin (p < 0.001) versus STZ-
treated saline controls. PPPH treatment reduced energy intake (p < 0.05), bodyweight (p < 0.01) and total
plasma glucagon-like peptide-1 (p < 0.01) after 18 days. Terminal oral glucose tolerance (Day 18, p < 0.05),
fasting blood glucose (p < 0.001), HbA1C (p < 0.01), plasma cholesterol (p < 0.01) and plasma triglycerides
(p < 0.05) were significantly improved versus STZ-treated saline controls. All groups showed significant in-
creases in pancreatic islet area, β-cell area, and β:α cell ratio. PPPH demonstrated potent antidiabetic potential in
vivo through reduced food intake and improved beta-cell function.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a progressive disease that results
in dysregulation of glycaemic control attributable in part to a loss of
insulin secretion and/or insulin sensitivity. The therapeutics available
range from sulphonylureas and glucagon-like peptide-1 (GLP-1) re-
ceptor agonists which directly enhance insulin secretion to gliptins and
glifozins which enhance insulin stability through the direct inhibition of
endogenous DPP-IV proteolytic enzymes and renal re-absorption of
glucose via the SGLT-2 transporter, respectively (Tahrani, Barnett, &
Bailey, 2016). Despite the diverse range of preventative strategies and
pharmaceutical approaches available to treat diabetes the incidence
and number of debilitating complications, including cardiovascular
disease, neuropathy, nephropathy and retinopathy continues to in-
crease (Dal Canto et al., 2019). The role of dietary monitoring in
ameliorating and limiting the progression of diabetes has been ex-
tensively reported with an emphasis on restricting carbohydrate intake
without increasing caloric intake (Snorgaard, Poulsen, Andersen, &
Astrup, 2017). Patient compliance with such dietary approaches is a

considerable challenge, however there is increasing interest in dietary
components that may contribute to modulation of satiety and/or gly-
caemic control through reducing postprandial glycaemic response and
reducing the glycaemic surges that contribute to disease complications.

Protein has previously demonstrated efficacy in enhancing satiation
and reducing food intake as well as modulating the glycaemic response
through delayed gastric emptying, enhanced insulin release through
induction of incretin hormone production as well as extending insulin
half-life through DPP-IV inhibition. The efficacy appears to be influ-
enced by protein source and the degree to which a protein is processed
and there is increasing interest in the use of commercial proteolytic
enzymes to produce novel functional peptide hydrolysate products. The
efficacy of collagen, casein, whey, soy proteins and their associated
hydrolysate products have been shown to exert beneficial effects on
satiety and glycaemic control however the efficacy varies greatly and
has been proposed to be due to the compositional differences between
them. There is growing interest in alternate protein sources given the
increasing food security pressures that are emerging due to increasing
global demand for sustainable sources of protein. However, there is also
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interest in the physiological benefits of alternate protein sources par-
ticularly in relation to their potential as functional food ingredients.
Seaweeds have emerged as a potential and sustainable source of pro-
tein, particularly some red seaweeds including Palmaria palmata which
has been reported to have a protein content of> 30% (w/w) dry weight
(Fleurence, Morançais, & Dumay, 2017) along with a favourable es-
sential amino acid composition that will provide fundamental nutri-
tional needs required from dietary protein (Bleakley & Hayes, 2017).
Whilst the initial interest in Palmaria palmata was based on nutritional
value, attention has turned to the potential benefits that Palmaria pal-
mata-derived protein hydrolysates may have on appetite and glycaemic
control (Drummond et al., 2018; Nobile et al., 2016; Patel, 2015; Wang
et al., 2015). Constituent peptides from Palmaria palmata protein di-
gestion have been previously reported to possess DPP-IV inhibitory
activity in vitro (Harnedy, O’Keeffe, & Fitzgerald, 2015). Furthermore,
the outcome of preliminary studies indicates that a Palmaria palmata
protein hydrolysate generated with Alcalase and Flavourzyme mediate
significantly higher DPP-IV inhibitory activity and insulin and GLP-1
secretory activity from cultured pancreatic BRIN-BD11 and en-
teroendocrine GLUTag cells, respectively compared to hydrolysates
generated with other food-grade proteolytic enzyme preparations
(McLaughlin et al., 2016). The objective of the present study was to
determine if the anti-diabetic activity observed with the Palmaria pal-
mata protein isolate hydrolysate in vitro translated to in vivo. The study
aimed to compare the efficacy of repeated administration (twice daily
for 18 days) of the hydrolysate versus metformin, upon glycaemic
control and lipid profiles in an insulin deficient mouse model of dia-
betes.

2. Materials and methods

2.1. Materials

All materials, reagents, and consumables were supplied by Sigma
Aldrich unless otherwise stated.

2.2. Sample preparation

A sample of air-dried milled (5 mm) Palmaria palmata (which was
harvested off the Northeast coast of Ireland in January 2014) was
purchased from Irish Seaweeds Ltd., Belfast, Co. Antrim, Northern
Ireland. The macroalgae was further milled with a Cyclotec™ Mill
(1 mm screen, FOSS Tecator AB, Hoganas, Sweden) and subsequently
stored at ambient temperature in an opaque airtight container for
1 month.

2.3. Extraction and quantification of aqueous and alkaline soluble proteins

Crude aqueous and alkaline soluble protein extracts were prepared
using the method described by Harnedy and FitzGerald (2013) with
some modifications. In brief, the milled Palmaria palmata powder was
suspended in water at a ratio of 1:20 (w/v), and gently stirred at room
temperature for 3 h. The supernatant containing the aqueous soluble
protein was obtained following centrifugation at 4190g (Sorvall RC6
Plus, Fisher Scientific, Dublin, Ireland) for 15 min at room temperature.
The pellet was resuspended in 0.12 M NaOH (1:15 (w/v)) and gently
stirred for 1 h at room temperature and the supernatant containing the
alkaline soluble protein was obtained following centrifugation as de-
scribed above. The pellet from the above was subjected to a second
alkaline extraction using the same conditions and both supernatants
were combined. The aqueous and alkaline soluble protein components
were semi-purified and concentrated by a double isoelectric precipita-
tion step at pH 2.5 (aqueous) and 4.0 (alkaline), respectively using
1.0 M HCl (Harnedy et al., 2015). The precipitated protein pellets ob-
tained following the second isoelectric precipitation were resuspended
in distilled water (dH20) to a protein concentration of ~2.4% (w/v) and

combined. The concentration of protein in the extracts was determined
by the modified Lowry protein quantification method as described
previously (Harnedy & FitzGerald, 2013). All samples were analysed in
triplicate.

2.4. Enzymatic hydrolysis of macroalgal proteins

Macroalgal protein was hydrolysed by the method described by
Harnedy and FitzGerald (2013). A 2% (w/v) protein solution was pre-
heated to 50 °C and adjusted to pH 7.0 and hydrolysed with Alcalase
2.4L® and Flavourzyme 500L™, at an enzyme:substrate (E:S) ratio of
1:100 (w/v) for 4 h at 50 °C. The hydrolysis reaction was maintained at
pH 7.0 using a pH-stat (842 Titrando, Metrohm, Switzerland) and ter-
minated by heating at 90 °C for 20 min. All samples were subsequently
freeze-dried (FreeZone 18L, Labconco, MO, USA).

2.5. Kjeldahl nitrogen quantification

The nitrogen content of the macroalgal sample, non-protein ni-
trogen (NPN) and protein nitrogen fractions generated therefrom as
described by Stack et al. (2017) and the PPPH were quantified using the
macro-Kjeldahl procedure as described previously (Connolly, Piggott, &
FitzGerald, 2013). The nitrogen to protein conversion factor used was
4.70 (Bjarnadóttir et al., 2018). All samples were analysed in triplicate
(n = 3).

2.6. Physicochemical characterisation of the protein hydrolysate

The molecular mass distribution profile of PPPH was determined by
analytical gel permeation-high performance liquid chromatography
(GP-HPLC) as described by Spellman, Kenny, O'Cuinn, and FitzGerald
(2005). The peptide profile of the hydrolysate was determined by re-
verse-phase ultra-performance liquid chromatography (RP-UPLC)
(Nongonierma & FitzGerald, 2012) as described previously by
Nongonierma and FitzGerald (2012, 2019). The amino nitrogen content
of PPPH was estimated by the TNBS method as described by Le Maux,
Nongonierma, Barre, and FitzGerald (2016) with absorbance readings
taken at 350 nm. All samples were analysed in triplicate (n = 3).

2.7. Induction of diabetes using low dose streptozotocin and acclimatization
prior to treatment

All animal experiments were carried out in accordance with the UK
Animals (Scientific Procedures) Act 1986 and EU Directive 2010/63EU
for animal experiments and were approved by Ulster University Animal
Welfare and Ethical Review Board. All necessary steps were taken to
prevent any potential animal suffering. To induce diabetes, HsdOla:TO
mice (8–10 weeks; Envigo Ltd, UK) were administered STZ (40 mg/kg
bodyweight) once every three days over a 9-day period (i.e. −21, −18
and −15 with daily glucose monitoring post injection). This multiple
low dose STZ regime represents a model of Type 1 diabetes with as-
sociated hyperglycaemia (Luo et al., 2019). Mice were given nine fur-
ther days to acclimatize after the final STZ injection, until −6. After
acclimatization, animals were grouped (n = 7–8 mice) according to
their non-fasting blood glucose concentration (if above 12 mmol/L) and
bodyweight. In total, there were 4 groups; STZ-treated animals re-
ceiving saline (STZ saline), STZ-treated animals receiving PPPH (STZ
PPPH), STZ-treated animals receiving metformin (STZ Metformin), and
healthy mice (no STZ) receiving saline (saline controls). From −6 to 0,
each group was given twice daily oral saline (0.9% w/v) mimicking
treatment pattern which commenced from day 0. A dose of 50 mg/kg
was chosen based on the efficacy of PPPH in a dose–response pilot study
examining glucose tolerance in mice. On day 0, twice daily treatments
of PPPH (50 mg/kg bodyweight up to a maximum volume of 200 μl) or
metformin (200 mg/kg bodyweight), by oral gavage (09.00 h and
17.00 h) began and were maintained throughout the remainder of the
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study (up to day 18). Throughout the study (day 0 to day 18) the mice
were assessed at 3-day intervals where the blood was removed from the
tail for both non-fasting blood glucose and insulin determination. Blood
glucose levels were measured using a handheld glucometer (Bayer
Contour, Leverkusen, Germany). Blood was centrifuged at 12,000 rpm
for 10 min and plasma stored in low-bind Eppendorf tubes at −20 °C
prior to insulin analysis by a radioimmunoassay (RIA) (Flatt & Bailey,
1981). Furthermore, animal bodyweight and food intake were mea-
sured throughout the study.

2.8. Terminal analyses

To examine oral glucose tolerance after 18 days treatment, blood
samples were measured following tail venepuncture in 8 h fasted mice.
Blood glucose was measured prior to (0 min) administration of an oral
glucose challenge (18.8 mmol/kg bodyweight). Once administered,
whole blood glucose was measured from the tail vein at 15, 30, 60, 90
and 120 min. Blood glucose and plasma insulin was measured as de-
scribed in Section 2.5. The lipid profile of terminal plasma samples (day
18) was determined using an I-Lab 650 clinical chemistry system (In-
strumentation Laboratory, Warrington, UK), including triglycerides and
cholesterol. Reagents for triglyceride and cholesterol analysis were also
obtained from Instrumentation Laboratory. For analysis of bone mineral
density (BMD) and bone mineral content (BMC), animals were an-
esthetized using Isoflurane and parameters were measured using DXA
scanning (Piximus Densitometer, Inside Outside sales, USA). Following
euthanasia, pancreata were immediately excised and stored in 4%
paraformaldehyde until processing for histology.

2.9. Pancreatic histology

Pancreatic histology was conducted using mouse anti-insulin (1:500
dilution; Abcam, ab6995) and guinea-pig anti-glucagon (PCA2/4, 1:400
dilution; raised in-house) primary antibodies alongside Alexa Fluor 594
goat anti-mouse IgG (1:400 dilution) and Alexa Fluor 488 goat anti-

guinea pig IgG (1:400 dilution) secondary antibodies (both Abcam).
Slides were viewed under a FITC (488 nm) or TRITC (594 nm) filter
using a fluorescent microscope (Olympus system microscope, model
BX51) and photographed using a DP70 camera adapter system. Islet
parameters were analysed using CellF image analysis software
(Olympus Soft Imaging Solutions, GmbH, Germany).

2.10. Statistical analyses

All results were analysed using GraphPad Prism version 5.0
(GraphPad Software Inc., San Diego, CA, USA). Where appropriate, data
were compared using one-way and two-way analysis of variance
(ANOVA), followed by Newman-Keul’s post hoc test. Incremental area
under the curve (AUC) for plasma glucose and insulin were calculated
using GraphPad Prism. Groups of data were considered to be sig-
nificantly different if p < 0.05. All data is presented as
mean ± S.E.M.

3. Results

3.1. Characterisation of Palmaria palmata biomass and PPPH

The total, non-protein and protein nitrogen content of the macro-
algal sample was determined to be 2.87 ± 0.02%, 0.85 ± 0.08% and
2.02 ± 0.10% (w/w), respectively. The protein content of the seaweed
was estimated to be 9.50% (w/w) when calculated from experimentally
obtained % PN value. Proximate analysis showed the hydrolysate had
93.22% (w/w) protein, 3.10% (w/w) carbohydrate, 1.64% (w/w) ash
and 2.04% (w/w) moisture. The amino nitrogen content of the hydro-
lysate was determined to be 21.37 ± 0.37 mg N/g protein. Molecular
mass distribution results for PPPH indicate that 54.80% (w/w) of
peptides were< 1 kDa, 33.10% (w/w) of peptides were in the range
1–5 kDa, 7.70% (w/w) of peptides were in the range 5–10 kDa, and
4.40% (w/w) of peptides were> 10 kDa. The RP-UPLC profile of the
hydrolysate, which is included as a Supplementary Figure (Fig. S1),
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Fig. 1. Effect of twice-daily oral administration of Palmaria palmata protein hydrolysate (PPPH) (50 mg/kg BW) or metformin (200 mg/kg BW) on non-fasting blood
glucose (A) and non-fasting plasma insulin (C) in streptozotocin (STZ)-induced diabetic mice, along with corresponding area under the curve (AUC) data (B & D).
Parameters were measured 6 days prior to commencing treatment on day 0 running to day 18. Values represented as mean ± S.E.M. (n = 7–8). **p < 0.01,
***p < 0.001 vs STZ saline control.
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indicates that the majority of peptides are hydrophilic in nature.

3.2. Effect of PPPH on non-fasting blood glucose and plasma insulin

Mice showed a significant improvement in non-fasting blood glu-
cose of the PPPH group (50 mg/kg bodyweight) versus the STZ-treated
saline group, which was comparable to oral metformin (200 mg/kg
bodyweight) by day 9 (p < 0.01; Fig. 1A). This improvement persisted
until the end of the study period (day 18) and an overall reduction in
blood glucose (by 35–37%) from the area under the curve (AUC) data
(p < 0.001) was observed, when compared to the STZ-treated saline
controls (Fig. 1B). PPPH also resulted in an increased insulinotropic
response (Fig. 1C), reflected in the 1.5- to 1.7-fold increase in the in-
tegrated AUC values, which was similar to the increase observed with
metformin when compared with the STZ saline controls (p < 0.001;
Fig. 1D).

3.3. The effects of 18-day treatment with PPPH on food intake, bodyweight
and plasma total GLP-1

In STZ-induced diabetic mice, PPPH and saline treatment (no STZ)
groups displayed a 24% (p < 0.05) and 31% reduction (P < 0.001) in
cumulative energy intake after 18 days of treatment, respectively
(Fig. 2A). PPPH and metformin treated mice showed a 7% and 5% re-
duction in bodyweight when compared to STZ saline controls (Fig. 2B),
respectively. This contrasts with healthy control mice, which gained 9%
bodyweight over this period. The cumulative energy intake was higher
for the STZ-treated saline group and this might explain why the weight
loss in this group was not as marked as in the PPPH and metformin
treated mice (Fig. 2B). We did not measure energy expenditure or the
activity of these mice. One other potential explanation of the weight
loss could be that PPPH and metformin treated STZ mice might display
an increase in physical activity and/or energy expenditure could pos-
sibly explain this unexpected finding in relation to weight loss. In ad-
dition, there was a significant reduction in plasma triglycerides
(Fig. 4B), which could lead to additional weight loss if these were being
used as an energy source. PPPH treatment, unlike metformin, also re-
sulted in a ~50% reduction in total plasma GLP-1 when compared to
the STZ saline controls (p < 0.01), reaching a value close to the lean
saline controls (Fig. 2C).

3.4. The effects of 18-day treatment with PPPH on glycaemic control,
fasting blood glucose, HbA1C, cholesterol and triglycerides

Both PPPH and metformin treatment resulted in a significant re-
duction in fasting blood glucose concentrations after 18 days (55%
p < 0.05 and 38% p < 0.01, respectively) when compared to the STZ
saline controls (Fig. 3C). However, treatment with PPPH and metformin
did bring the postprandial blood glucose concentrations down to those

of the healthy control mice (81% lower than STZ saline mice). Fur-
thermore, both PPPH and metformin significantly reduced (p < 0.05,
p < 0.01, respectively) postprandial blood glucose following an oral
glucose challenge (Fig. 3A & B). These improvements in glycaemic
control were also reflected in an approximately 3.5% and 4.0% re-
duction in HbA1C in PPPH and metformin treated groups, respectively,
versus STZ-treated controls (Fig. 3D).

Both the PPPH-treated group and the lean control group exhibited a
lower concentration of plasma cholesterol at the end of the treatment
period (day 18) (p < 0.01 and p < 0.05 versus STZ saline controls,
respectively). However, metformin treatment led to no significant
change in plasma cholesterol (Fig. 4A). Only the PPPH treated mice
showed a significant reduction in plasma triglyceride concentration at
the end of the study (p < 0.05 versus STZ saline controls; Fig. 4B).

3.5. The effect of 18-day treatment with PPPH treatment on islet
morphology

PPPH treatment resulted in a 2-fold increase in average islet size
(Fig. 5A; p < 0.05 versus STZ saline control). This was supported by a
3-fold increase in β-cell area (p < 0.05; Fig. 5B) with no significant
change in α-cell area (Fig. 5C). Both PPPH and metformin showed
significant improvement in β:α cell ratio (p < 0.001; Fig. 5D), How-
ever, these improvements were still notably lower than that of the
saline treated healthy control group (p < 0.05).

3.6. The effects of 18-day treatment with PPPH on total and femur region of
interest bone mineral density and bone mineral content

Neither PPPH nor metformin caused a significant change in total or
femur region of interest bone mineral density (Fig. 6A & C). PPPH did
however cause a significant increase in total bone mineral content
versus STZ saline controls (p < 0.01) and lean controls (p < 0.05),
whereas metformin only led to a significant increase in BMC versus STZ
saline controls (p < 0.01) (Fig. 6B).

4. Discussion

This study demonstrated that a Palmaria palmata protein hydro-
lysate generated with Alcalase and Flavourzyme from a highly pure
protein isolate elicits significant beneficial anti-hyperglycaemic and
anorexigenic effects through improvements in blood glucose, plasma
insulin, energy intake, plasma triglycerides and bone mineral content
and density. The proteolytic enzyme preparations, Alcalase and
Flavourzyme, employed herein were selected based on preliminary in
vitro data. This data indicated that the Palmaria palmata hydrolysate
generated with this enzyme combination mediated higher DPP-IV in-
hibitory activity and insulin and GLP-1 secretory activity from cultured
pancreatic BRIN-BD11 and enteroendocrine GLUTag cells, respectively
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Fig. 2. Effect of twice-daily oral administration of Palmaria palmata protein hydrolysate (PPPH) (50 mg/kg BW) or metformin (200 mg/kg BW) on (A) energy intake,
(B) % bodyweight change and (C) plasma total GLP-1 in streptozotocin (STZ)-induced diabetic mice, treated for 18 days. Food intake was measured at 3 day intervals
up to day 18. Values represent mean ± S.E.M. (n = 7 or 8). *p < 0.05,**p < 0.01 and ***p < 0.001 versus STZ saline controls.

C.M. McLaughlin, et al. Journal of Functional Foods 73 (2020) 104101

4



compared to hydrolysates generated with other proteolytic enzyme
preparations (McLaughlin et al., 2016). The study demonstrates that the
biological activity observed in vitro with PPPH translated to in vivo. The
underlying mechanisms behind the action identified herein within the
digestive tract is poorly understood (Caron, Domenger, Dhulster,
Ravallec, & Cudennec, 2017). However, it is generally accepted that
weight loss strategies involving reductions in carbohydrates or fats,
have shown improved dietary compliance with increasing intake of
proteins (Galbreath et al., 2018). This is often attributed to protein
acting upon metabolic targets, which control satiety, such as alterations
in leptin or ghrelin (Klok, Jakobsdottir, & Drent, 2007). Gut hormones
such as GLP-1, glucose-dependent insulinotropic polypeptide (GIP),
cholecystokinin (CCK), and peptide-YY (PYY) also have potential roles

in appetite control (Hameed, Dhillo, & Bloom, 2009; Holst, 2013;
Lafferty, Flatt, & Irwin, 2018). Each of these hormones are involved in
satiety via specific cellular receptor activation and thus a peptide hy-
drolysate from Palmaria palmata may be able to target multiple hor-
monal pathways. While it may be possible that the other minor/low
level carbohydrate and ash components within the PPPH contribute to
the overall observed activity, it is assumed that the active components
are proteinaceous in nature as the PPPH contained 93.22% (w/w)
protein. Furthermore, it is likely that the results observed herein are as
a result of synergistic effects arising from a number of peptides within
the unfractionated/complex hydrolysate. Crude protein hydrolysates
rarely exert their bioactive effect through a singular mechanism of ac-
tion, and more likely to have several modes of action. Work by
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Fig. 3. Effect of twice-daily oral administration of Palmaria palmata protein hydrolysate (PPPH, 50 mg/kg BW) or metformin (200 mg/kg BW) for 18 days on (A)
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**p < 0.01, compared to STZ saline controls.
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Diepvens, Häberer, and Westerterp-Plantenga (2008) showed exo-
genous protein intake produced differential release of GLP-1, ghrelin,
PYY and CCK, which could affect satiety. Furthermore, Caron et al.
(2017) found that protein, or protein hydrolysates can promote sig-
nificant secretion of CCK, which in turn may be able to attenuate food
intake via a reduction of gastric emptying or neuronal activation to
hindbrain appetite centres (Carreiro et al., 2016; Simpson, Parker,
Plumer, & Bloom, 2012). There are many avenues for investigating how
PPPH reduces food intake in mice. However, not all circulating satiety-
related hormones were measured due to the low plasma volumes
available at timed intervals. The caloric reduction shown in Fig. 2A is
thought to be the leading contributor to improved non-fasting blood
glucose (Moebus, Göres, Lösch, & Jöckel, 2011) through a reduction in
overall energy intake.

Metformin treatment initially appears more effective than PPPH in

reducing non-fasting glucose parameters, which could be attributed to
the satiating potential of metformin (Adeyemo et al., 2015), but it is
also used as a higher dose than PPPH in this study. Metformin is also
effective in reducing hepatic glucose output, which is a characteristic
trait of the current STZ-induced insulin deficient animal model
(Burcelin et al., 1995; Zafar, Naeem-ul-Hassan Naqvi, Ahmed, &
Kaimkhani, 2009). The observed increase in circulating plasma insulin
(Fig. 1C) could be due to direct agonism of the beta cells by peptides or
amino acid induced insulin secretion (Newsholme, Brennan, & Bender,
2006). Alternatively, GLP-1-stimulated insulin release or increased beta
cell mass could contribute to the observed raised circulating insulin and
data from Fig. 5 appear to suggest that the latter may be more likely.
Furthermore, it’s relatively unlikely that the significant increase of
circulating insulin seen within the PPPH treated group from day 6 to 9
(p < 0.01) and day 15 to 18 (p < 0.001) (Fig. 1C) was solely amino

Fig. 5. Effect of twice-daily oral administration of Palmaria palmata protein hydrolysate (PPPH, 50 mg/kg BW) or metformin (200 mg/kg BW) on (A) islet area, (B)
β-cell area, (C) α-cell area and (D) β:α cell ratio in STZ-induced diabetic mice. Representative images of islets from (E) STZ saline control group, (F) PPPH-treated
group, (G) metformin-treated group and (H) healthy control group. Images were stained for insulin (red), glucagon (green) and 4′,6-diamidino-2-phenylindole(DAPI;
blue) and shown at 20x magnification. Values are represented as mean ± S.E.M. (n = 7 or 8). *p < 0.05, **p < 0.01, ***p < 0.001 compared to STZ saline
controls and Δp < 0.05 compared with healthy control mice. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Effect of twice-daily oral administration of Palmaria palmata protein hydrolysate (PPPH, 50 mg/kg BW) and metformin (200 mg/kg BW) for 18 days on (A)
total bone mineral density (BMD), (B) bone mineral content (BMC) and femur region of interest (ROI), (C) BMD and (D) BMC, assessed by PIXImus DEXA in STZ-
induced diabetic mice. Values represent mean ± S.E.M. (n = 7 or 8). *p < 0.05, **p < 0.01, versus STZ saline controls. Δp < 0.05 versus healthy controls.
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acid derived due to their expected short circulating half-life after ga-
vage. Amino acids responses are expected to mediate a response that is
relatively short-lived and therefore the observed insulinotropic im-
provements may be attributed to peptide-derived components within
the PPPH or synergistic interactions arising from different peptides
within the hydrolysate. While the amino acid composition of the hy-
drolysate was not determined our previous analyses on Palmaria pal-
mata protein extracts demonstrated an amino acid composition which
was similar to that reported previously by Mæhre, Jensen, and Eilertsen
(2016) and Bjarnadóttir et al. (2018), where there was a predominance
of aspartic acid, glutamic acid, leucine and alanine residues. Another
possibility is that the increase in plasma insulin could also in part be
indirectly linked to inhibition of plasma DPP-4, resulting in increased
circulating endogenous GLP-1. While the inhibition of plasma DPP-4
was not assessed in the present study, PPPH was shown to inhibit DPP-4
(IC50: 0.97 ± 0.03 mg/mL) in vitro (Harnedy et al., 2015). Protein
hydrolysates from various biological sources such as dairy, soy and
marine are being extensively mined for their ability to inhibit DPP-4
activity in an attempt to mimic current oral small molecule pharma-
cological treatments (Power, Nongonierma, Jakeman, & Fitzgerald,
2014; Song, Wang, Du, Ji, & Mao, 2017).

Long-term biomarkers of glycaemic control include assessment of
the level of serum glycated haemoglobin (HbA1c). Measurement of
HbA1C estimates the mean glycaemic control over a 3-month period in
humans, or approximately 6 weeks in mice. The present study period
was 39 days and chronic hyperglycaemia was identified in poorly
controlled diabetes (STZ Saline) with a HbA1C of 10.7% in the diabetic
STZ saline administered mice. Interestingly, the PPPH and metformin
treatment group mediated an improvement in HbA1c value of 7.2%
(p < 0.01) and 6.7% (p < 0.001) (Fig. 3D), respectively, indicative of
an improved glycaemic status (Woo, Shestakova, Ørskov, & Ceriello,
2008). Protein intake has only recently been positively associated with
reductions in HbA1c, and this could be due to offsetting the effects of
other macronutrients such as carbohydrates which directly affect
HbA1C, or through general reduction in carbohydrate intake by in-
creased protein intake. Improvement in blood glucose concentrations
could arise due to reductions in food intake, but increased in-
sulinotropic responses within the PPPH group may also contribute to
the improved HbA1C seen over the treatment period. Thus, establishing
HbA1C levels both pre- and post-treatment could be useful to accurately
compare the change within each treatment group. A significantly re-
duced fasting blood glucose concentration was noted within both PPPH
treated (p < 0.01) and metformin treated (p < 0.05) mice compared
to the STZ saline treated control group (Fig. 3C). Interestingly, 12 h
fasting blood glucose fell by nearly 16 mmol/L and 11 mmol/L fol-
lowing PPPH and metformin treatment, respectively. This improvement
could be due to increased pancreatic insulin content or perhaps through
increased cellular glucose uptake upon treatment (Dale et al., 2018).
Furthermore, this improvement in glycaemic control was mirrored by
the oral glucose tolerance results after 18 days of treatment (Fig. 3A &
B). Here PPPH was more effective than metformin, and this may reflect
a reduction in immune response noted following extensive hydrolysis of
proteins (Kiewiet, Faas, & de Vos, 2018). This may have indirectly as-
sisted in pancreatic recovery/reduction in initial pancreatic damage
after STZ treatment and an associated moderate increase in beta cell
mass and circulating insulin.

The digestibility of seaweed proteins is not well documented and
studies on their bioavailability in humans are scarce (Holdt & Kraan,
2011)). It has been suggested that small peptides from seaweed may
possess bioactivity, for example, of relevance for blood pressure reg-
ulation (Seca & Pinto, 2018). Others have shown that seaweed sup-
plementation for 4 weeks in Type 2 diabetic subjects showed reduced
postprandial glucose, accompanied by reduced circulating triglycerides
plus significantly increased HDL cholesterol and increased antioxidant
enzyme activity (catalase, GPX and SOD) (Kim, Kim, Choi, & Lee,
2008). These various benefits have been attributed to peptide and other

components such as fibre. A more recent study by Sørensen, Jeppesen,
Christiansen, Hermansen, and Gregersen (2019) showed benefit of
three different dietary seaweeds including Palmaria palmata in reducing
glycated haemoglobin in mice.

Terminal analysis of total plasma GLP-1 was performed in this study
(Fig. 2C). Metformin treatment would have been expected to inhibit
DPP-4 activity and thus improve circulating GLP-1 concentration
(Cuthbertson, Patterson, O’Harte, & Bell, 2009, 2011). Despite this, the
results showed that STZ saline control mice has the highest con-
centration of circulating GLP-1. This may be explained in part by hy-
perphagia and heightened GLP-1 release from intestinal L-cells. How-
ever, it has previously been suggested that elevated levels of GLP-1
arise as a compensatory mechanism in the diabetic state in order to
counteract beta-cell loss and hyperglycaemia (Rydgren, Börjesson,
Carlsson, & Sandler, 2012). Furthermore, these findings in combination
with the histology results (Fig. 5) suggest that pancreatic health was
potentially returning to near normal for the PPPH treatment group, as
the concentration of total GLP-1 were at similar levels to those of the
non-STZ saline treated group. Thus, in future work GLP-1 responses as a
marker of dysfunctional β-cells and hyperglycaemia could be de-
termined in STZ-induced diabetes models. However, in the first instance
it would be necessary to determine how total GLP-1 translates to active
GLP-1 and indirectly how this could be related to DPP-4 inhibition.
Furthermore, characterisation studies are required to identify the pep-
tide(s) mediating the observed response.

5. Conclusion

The results presented herein is the first report showing the bene-
ficial effect of Palmaria palmata protein hydrolysates (PPPH) upon sa-
tiety, fasting and non-fasting glucose parameters, lipid profile and in-
direct markers of pancreatic β-cell function in a multiple low-dose STZ-
induced diabetes mouse model. This study found treatment with PPPH
to be at least as effective or more effective than metformin upon me-
tabolic parameters. However, further studies are required to confirm
the antidiabetic efficacy of PPPH in a human study before food claims
can be considered. There is also further in vitro and in vivo research
required to identify and characterise specific bioactive peptides within
the crude hydrolysate. In conclusion, PPPH, a format which is re-
presentative of its ultimate application as a functional food ingredient,
has potent anti-diabetic and satiating bioactivities and has significant
potential as a functional food ingredient for the management of T2DM
and food intake. Different vehicles have already been described in the
literature that have been used to deliver biofunctional hydrolysates.
However, further studies are required to assess the impact, if any, of the
delivery matrix and the processing conditions associated with utilising
this hydrolysate on the retention and ultimate release of the bioactivity.
Furthermore, human studies are required to confirm retention of
bioactivity when delivered as a constituent of a meal.
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