Self-Healing Gold Mirrors and Filters at Liquid-Liquid Interfaces

Evgeny Smirnov, a Pekka Peljo, b Micheál D. Scanlon, b Frederic Guny a and Hubert H. Girault a†

The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied towards different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial AuNP nanofilms we used both in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial AuNP nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of “floating islands” of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even at sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison to a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial AuNP nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbs around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetra-thiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due aggregation and broadband absorbance.

Introduction

Currently, mirrors and filters are produced industrially by thin film technology. 1 The manufacturing process is technically challenging, requiring large metal evaporation chambers operating under vacuum conditions and clean-room environments. A proposed industrially viable alternative towards the development of thin film optical technology, potentially circumventing the need for such stringent, complex and costly process environments, is the controlled large-scale self-assembly of nanoparticles (NPs) with tunable optical responses on various substrates 2,3 and interfaces. 4,5 In this regard, metallic NPs, which possess Localized Surface Plasmon Resonance (LSPR) in the visible or near-infrared (NIR) range of the electromagnetic spectrum, open new avenues towards the development of scalable, low cost mirrors and filters. 9,12 The optical responses of the latter are tunable (i) by the intrinsic properties of the individual NPs, with the optical properties of noble metallic NPs such as silver (AgNPs) or gold (AuNPs) dependent on their size and shapes, and (ii) by the packing arrangements and spacing between individual NPs in the assemblies. 7,13–15

Self-assembly processes at liquid-solid interfaces can suffer from inconsistencies across films on large-scales, and poor reproducibility between process batches. In contrast, liquid-liquid interfaces are inherently defect-free and, furthermore, both mechanically flexible and offering self-recovery characteristics. 16–20 Thus, liquid-liquid interfaces represent an ideal system to perform self-assembly of a panoply of species, ranging from molecules to microparticles, 21,22 to NPs to microparticles, 25 into two-dimensional ordered films. The latter for NPs has been recently reviewed in detail. 26 Crucially for the production of optical technology, NP films (nanofilms) at liquid-liquid interfaces have been shown to remain stable for time periods ranging from months to years. 24,27

DOI: 10.1039/x0xx00000x
Since Yogev and Efrima28 first described the formation of metal liquid-like films upon the reduction of silver salts at liquid-liquid interfaces, many other methods have been introduced to form such nanofilms, e.g. addition of ethanol or methanol to the interfacial region,23,29,30 precise injection of colloidal AuNP solutions prepared in methanol at water-organic solvent interfaces,31 use of salts,32 solvent evaporation,33 covalent bonding14,34,35 and self-assembly provided by electrostatic interactions.36-38 Applications of these self-assembled nanofilms include filters, mirrors3,39 or smart mirrors,40 substrates for Surface Enhanced Raman Spectroscopy (SERS) sensors,41-44 and as a method to enhance non-linear Second Harmonic Generation (SHG) optical responses.45-47 Finally, these nanofilms were used to achieve electrocatalysis at electrically polarized liquid-liquid interfaces.48,49

Recently, our group introduced a facile biphasic method to self-assemble nanofilms of AuNPs at water-1,2-dichloroethane (DCE) interfaces with controllable interfacial AuNP surface coverages ($g_{i}^{A_{1}N_{1}P}$).24 Briefly, a lipophilic species (tetrathiafulvalene; TTF) was present in the DCE phase and contacted with an aqueous solution of citrate-stabilized AuNPs. Upon vigorous mechanical shaking, TTF displaced the citrate ligands from the surface of the AuNPs and, in turn, underwent Fermi-level equilibration with the AuNPs becoming oxidized to TTF$^{\text{II}}$ or possibly, but less likely, to TTF$^{\text{III}}$. These TTF$^{\text{II}}$-coated AuNPs were entrapped at the liquid-liquid interface upon cessation of shaking. We postulate that the TTF$^{\text{II}}$ molecules act both as a “glue”, holding the AuNPs together due to π-π-interactions between TTF molecules, and as a “lubricant” permitting the reproducible self-healing behavior of the interfacial nanofilm of AuNPs after substantial perturbations, such as vigorous mechanical shaking. In this context, self-healing means that the nanofilm of AuNPs retains it metallic lustrous properties after substantial perturbations. Thus, the TTF molecule prevents irreversible AuNP aggregation at the liquid-liquid interface which would destroy the optical properties of the lustrous nanofilm.24 Finally, the optical extinction spectra and observed visual appearance of the interfacial AuNP assemblies varied substantially depending on the mean-diameters of the individual AuNPs used to create them.24

Herein, we optimize the biphasic experimental conditions to produce self-assembled interfacial AuNP nanofilms with suitable optical responses for gold mirror or filter applications. To this end, we carried out an in situ comparative study of the optical responses (extinction and reflectance) of self-assembled and self-healing interfacial nanofilms of AuNPs with (i) different mean diameters (12 and 38 nm Ø), (ii) at various $g_{i}^{A_{1}N_{1}P}$ values, (iii) using several organic solvents to form water-organic interfaces with different interfacial surface tensions (γ_{S0}), and (iv) using alternative lipophilic molecules, such as neocuproine (NCP),7 in the organic droplet instead of TTF. We identify an optimal value of $g_{i}^{A_{1}N_{1}P}$ at water-DCE interfaces that permits the maximum coverage of the interface with a 2D monolayer (enhancing reflectance) without the presence of substantial 3D piles of AuNPs that cause the incident light to scatter (diminishing the optical response). We demonstrate that the interparticle spacing between AuNPs in the interfacial nanofilms, and thus their plasmon coupling and optical properties, can be varied significantly by replacing TTF in the organic phase with NCP. Finally, overall, we show that the best optical responses were obtained at water-nitrobenzene interfaces.

Experimental

Chemicals

Tetrachloroauric acid (HAuCl$_4$, 99.9%), neocuproine (NCP) and tetrathiafulvalene (TTF) were received from Aldrich. Citrate trisodium dihydrate (Na$_3$C$_6$H$_5$O$_7$·2H$_2$O), 1,2-dichloroethane (DCE), nitrobenzene (NB), and nitromethane (MeNO$_2$) were purchased from Fluka, whereas α, α-trifluorotoluene (TFT) was received from Acros. Silver nitrate (AgNO$_3$) was bought from Chempur and ascorbic acid (C$_6$H$_8$O$_6$) from Reidel-de-Haen. All chemicals were used as received without further purification. In all experiments Millipore water (18.2MΩ·cm) was used.

Preparation of aqueous colloidal AuNP solutions and their characterization

Suspensions of AuNPs with various mean diameters were prepared using the seed-mediated growth method.29 Initially, seed AuNPs were synthesized.50,51 Briefly, 41.5 mg of HAuCl$_4$·3H$_2$O was dissolved in 300 mL of deionized water in a round-bottomed flask with stirring. This solution was brought to the boil and 9 mL of a 1% w/v trisodium citrate solution was injected to form the 12 nm mean diameter AuNPs. Subsequently, to prepare the 38 nm mean diameter AuNPs by seed-mediated growth, 4 mL of 20 mM HAuCl$_4$·3H$_2$O with 0.4 mL of 10 mM AgNO$_3$ were added to 170 mL of deionized water. To this, under vigorous stirring, 15 mL of the 12 nm Ø AuNP seed solution and 30 mL of 5 mM ascorbic acid solution were added by a syringe pump in a drop-wise manner with a constant flow rate of 0.5 mL·min$^{-1}$. The colloidal AuNP solutions were characterized by UV-Vis spectroscopy using a standard Perkin Elmer, Lambda XLS+ spectrophotometer with a 10 nm cell width. By analyzing these spectra as described by Haiss et al.52 information on the mean AuNP diameter and concentration of AuNPs in solution were attained. Further analysis of the mean AuNP diameter and size distribution was accomplished by dynamic light scattering (DLS) measurements performed with a Nano ZS Zetasizer (Malvern Instruments, U.K.), with irradiation (λ = 633 nm) from a He-Ne laser, and using Dispersion Technology Software (DTS). Transmission electron microscopy (TEM) images were obtained using a FEI CM12 (Phillips) transmission electron microscope, operating with a LaB$_6$ electron source at 120 kV. The size distributions of the AuNPs were estimated by using ImageJ software and assuming that the AuNPs were spherical. For each sample 4 to 5 individual images were analysed, collecting information on more than 150 AuNPs.

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

2. Please do not adjust margins
Preparation of interfacial AuNP nanofilms and their characterization

Interfacial AuNP nanofilms were prepared using a biphasic method introduced by our group recently. The typical procedure involves either sonicating or vigorously shaking an aqueous colloidal AuNP solution contacted with a droplet of organic solvent (either DCE, TFT, NB or MeNO₂) containing a lipophilic species (either TTF or NCP, typically 1 mM concentrations). Once the color of the agitated solution changed from red to bluish gray, the suspension was left to settle, resulting in an interfacial AuNP nanofilm covering the entire surface area of the organic droplet. This nanofilm has a self-healing nature meaning that the droplet restores its original lustrous properties after being vigorously shaken several times.

For scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies only, the interfacial AuNP nanofilms were transferred to a polished silicon substrate or TEM grid, respectively, by carefully dipping the solid support in the organic droplet. These transferred nanofilms were then analyzed further by a Merlyn (Zeiss, Germany) high-resolution scanning electron microscope (SEM) operating at 3kV with secondary electron detectors. The separation distance distributions between individual AuNPs were calculated based on HR-TEM images obtained with the FEI CM12 (Phillips) TEM mentioned above. These interparticle size distributions were estimated by using ImageJ software. For each AuNP sample, 2 to 3 individual images were analysed, collecting information on between 50 to 70 interparticle distances.

UV-Vis-NIR spectra of the interfacial AuNP nanofilms were recorded in situ at the liquid-liquid interface without transferring the nanofilm to a solid substrate. Two separate configurations were investigated, total extinction (or transmittance) and total reflectance, as outlined in Scheme 1. The spectra were obtained using a white integrating sphere, 6 cm in diameter, which was installed inside of the PerkinElmer Lambda 950 spectrometer. The sample for the reference beam for all experiments was a white standard SRS-99 (LabSphere).

Extinction and reflectance spectra were recorded for interfacial AuNP nanofilms prepared at a liquid-liquid interface inside of a quartz cell (QS, Hellma) with a 10 mm light path and 2 mm wall thickness. This cell was fixed either at the entrance to the integration sphere (Scheme 1A – C) to measure extinction or at the exit (Scheme 1D – F) to obtain reflectance. The extinction spectra obtained from interfacial 12 nm Ø AuNP nanofilms were compared with the spectrum of a commercially available blue filter (FGB37S, ThorLabs) (Scheme 1C). All reflectance spectra were compared with the ThorLabs solid gold

![Scheme 1](image-url)

Scheme 1. Extinction and reflectance spectra acquisition at interfacial AuNP nanofilms: in situ UV-Vis-NIR experimental configurations with a white integrating sphere. (A) “Blank” (without the AuNP nanofilm coating the organic droplet) and (B) “Sample” (with the AuNP nanofilm coating the organic droplet) extinction spectra were measured through two AuNP films at opposite walls of the quartz cuvette. (C) “Reference” extinction spectra were obtained at a solid blue filter with an additional 2 mm quartz plate in front of it. (D) “Blank” and (E) “Sample” reflectance spectra were obtained at a single interface on one side of the quartz cell. (F) “Reference” reflectance spectra were obtained at a solid gold mirror, separated from the sample window with a 2 mm quartz plate, and corresponding to 100 % reflectance. Q, w, org, NF, SBF and SGM are acronyms for quartz, water, organic solvent, nanofilm of AuNPs, solid blue filter and solid gold mirror, respectively. The colors corresponding to each component in the quartz cell are detailed in the various legends.
mirror (PF10-03-M01) separated from the window of the integrating sphere by a 2 mm thick QS plate with the same thickness as a typical QS cell (Scheme 1F).

In Scheme 1 we depicted how the interfaces were probed for each experimental configuration. To measure the extinction of nanofilms, the light beam has to pass through two AuNP nanofilms, one at the two opposite sides of the cell; whereas, to record reflectance only one interface can be taken into account. The angle between the incident beam and the beam normal to the surface in the reflectance measurement was 8°. The latter was determined by the diameter of the integrating sphere (6 cm). The bigger the diameter, the closer this angle can be to 0°. However, it cannot achieve exactly 0° because in that case the reflected beam would leave the sphere through the entrance.

The precise procedure to prepare the interfacial AuNP nanofilms in the quartz cuvettes for the in situ UV-Vis-NIR measurements was as follows. To record the reference spectrum, firstly, 1 ml of an organic solvent (DCE, TFT, NB or MeNO₂) containing 0.25 mM of the lipophilic molecule (TTF or NCP) was placed into the quartz cell and a further 2 ml of MilliQ water added on top. Once the reference spectrum was obtained, the entire aqueous phase was removed and replaced with 2 mL of an aqueous colloidal AuNP solution. Then, the cell was shaken vigorously and left for a couple of minutes to allow the emulsion to settle. Finally, the extinction and reflectance spectra were recorded successively as described in Scheme 1 earlier. The overall procedure was repeated step-by-step in the same quartz cell to cover entire interfacial surface coverage (θ_{AuNP}^{int}) range of interest.

Results and discussion

Mean diameter determination and size distributions of the colloidal AuNP solutions.

AuNPs with mean diameters of 12 and 38 nm, respectively, were chosen for the study. The rationale behind the choice of these specific AuNP sizes was that, based on the extinction spectra of interfacial AuNP nanofilms consisting of 12 and 38 nm Θ AuNPs at water-DCE interfaces reported previously as a function of θ_{AuNP}^{int}, we identified the relatively small 12 nm Θ AuNPs as suitable candidates for optical filter applications and the relatively large 38 nm (and above) Θ AuNPs for potential optical mirror applications. Additionally, we endeavored to keep the size of the AuNPs below the threshold for electric quadrupole resonance of AuNPs ranging from ~60 or 70 nm to ~150 nm Θ. The AuNPs were synthesized as described in the Experimental Section. Both the 12 and 38 nm Θ procedures resulted in mostly spherical AuNPs. Mean diameters were initially determined as 12 and 38 nm Θ based on UV-Vis absorbance spectra and considering the maximum of the SPR-peak intensity, with respect to the work of Haiss and co-workers. These results were further corroborated by analyzing the AuNP size distributions based on transmission electron microscopy (TEM) images, dynamic light scattering (DLS) measurements and UV-Vis spectroscopy (as described by Haiss et al.).

![Fig. 1. Characterization of the mean diameters and size distributions of AuNPs synthesized with two mean diameters (A) 12 nm and (B) 38 nm by transmission electron microscopy (TEM) images, dynamic light scattering (DLS) measurements and UV-Vis spectroscopy (as described by Haiss et al.).](image-url)
hydrodynamic diameter, which is typically higher for smaller NPs, as reported previously.56,57 Meanwhile, for 38 nm Ø AuNPs all three methods gave comparable and converging results. Additionally, the AuNP size distribution broadened and the AuNP concentration dropped drastically (e.g., from 4.0·109 particles/µL for 12 nm Ø AuNPs to only 1.1·109 particles/µL for 38 nm Ø AuNPs) with increasing NP size.

Characterization of the interfacial AuNP nanofilms by extinction and reflection spectra: experimental configurations.

In situ UV-Vis-NIR spectra were recorded in two configurations, total transmittance or extinction and total reflectance, using a white integrating sphere, as outlined in Scheme 1. The interfacial AuNP nanofilms were formed biphasically in the quartz cells, as described in the Experimental Section, and fully coated the droplet of organic solvent on all sides. This was facilitated by a thin layer of water on the walls of the hydrophilic quartz cells allowing the AuNP nanofilm to spread uniformly over the entire organic droplet surface along the sides and the bottom of the cuvette, see Scheme 1B.

To obtain the transmission spectra, light must pass through two AuNP nanofilms before entering the integrating sphere (Scheme 1B). The background signal of the organic phase (Scheme 1A) was subtracted from all recorded transmission spectra (Scheme 1B). Subsequently, the obtained values were converted into extinction spectra as follows:

\[E_x = -\log_{10}T \]

where \(T \) is transmittance of the light through two AuNP nanofilms. Thus, the combination of the 0° angle of incidence and subtraction of the transmission spectra for the organic phase ensured that the influence of light scattering and parasitic reflection at each interface (air-quartz, quartz-water, and water-organic phase), and absorbance of the incident beam in the bulk phase, were minimized. The extinction spectrum of a commercially available blue filter, purchased from ThorLabs (FGB37S), was recorded as depicted in Scheme 1C and used for comparison.

Reflectance spectra were collected immediately upon completing the acquisition of the extinction spectra. Extinction spectra were recorded with the incidence beam impinging the film on one side of the cell (Scheme 1D). The background reflectance spectrum from the organic phase was subtracted to evaluate only the reflectance due to the AuNP nanofilm (Scheme 1E). The reflectance spectrum of a commercially available gold mirror, purchased from ThorLabs (PF10-03-M01) and separated from the sample-window with a 2 mm quartz plate (the same thickness as the quartz window of the cuvette), was recorded and used as a “reference” corresponding to 100 % reflectance (Scheme 1F).

Influence of AuNP mean diameter and interfacial AuNP surface coverage (\(\theta_{\text{AuNP}} \)) on the extinction and reflectance spectra obtained for interfacial AuNP nanofilms prepared at water-DCE interfaces.

(i) Liquid mirrors based on nanofilms of 38 nm Ø AuNPs. Initially, we comprehensively characterized the extinction (Fig. 2A, C & E) and transmission (Fig. 2B, D & E) spectra obtained at interfacial AuNP nanofilms formed with the larger 38 nm Ø AuNPs at water-DCE interfaces (in the presence of TTF in the organic solvent droplet) as a function of \(\theta_{\text{AuNP}} \). The latter was calculated, as described previously,24 by (a) assuming the AuNPs adopt a hexagonal close-packed (HCP) monolayer assembly at the liquid-liquid interface, (b) determining the concentration of the AuNPs present in the aqueous phase (of known volume) by UV-Vis spectroscopy, and (c) approximating the available liquid-liquid surface area as that equivalent to a cube defined by the dimensions of the quartz cuvette, namely, 6 ± 0.2 cm2.

Briefly, \(\theta_{\text{AuNP}} \) may be obtained simply as follows:

\[\theta_{\text{AuNP}} = \frac{V_{\text{added}}}{V_{\text{HCP}}} \]

where \(V_{\text{added}} \) denotes the added volume of AuNPs of a known concentration, \(V_{\text{HCP}} \) is the volume of AuNPs of the same concentration required to entirely fill the available interfacial surface with a hexagonal close-packed monolayer. Thus, \(\theta_{\text{AuNP}} \) is a dimensionless coverage, describing how many monolayers (ML) of AuNPs are adopted by the interface.

The extinction spectra consisted of two bands, indicative of the presence of some separation distances between the AuNPs in the interfacial assemblies (discussed in more detail in the transmission electron microscopy (TEM) studies vide infra).

Firstly, a Localized Surface Plasmon (LSP)-band of individual AuNPs in the interfacial nanofilm was observed with a maximum at ca. 560 nm that remained invariant with \(\theta_{\text{AuNP}} \) (Fig. 2A & C). This band was red-shifted by 35 nm with respect to the LSP-band of the initial aqueous AuNP colloidal solution (the blank dashed curve in Fig. 2A). Secondly, a Surface Plasmon Coupling (SPC)-band was evident, the maximum of which shifted between ca. 770 and ca. 850 nm depending on \(\theta_{\text{AuNP}} \) (Fig. 2A & C).

Similarly, the reflectance spectra also possessed two clear bands located at ca. 550 and 900 nm which may also be attributed to LSP- and SPC-contributions, respectively (Fig. 2B, D).

Two main processes may affect the extinction LSP-band position: (i) charging of the AuNPs by the redox active TTF molecules that displace the citrate ligands from the surface of the AuNPs and (ii) changing the dielectric permittivity of the surrounding media (again, for example, by substitution of the citrate shell with TTF molecules).24,58 TTF molecules are efficient electron donors, capable of pumping electrons into the AuNP with concomitant formation of TTF+, followed by Fermi level equilibration.24,31 Indeed, charging the AuNPs with electrons leads to a blue-shift of the LSP-band. However, as shown by Mulvaney and co-workers,59,60 a significant blue-shift requires injection of massive amounts of electrons into the already electron rich AuNPs. A local change of electrical permittivity or dielectric constant of the surrounding medium may overcome any blue-shift associated with Fermi level
equilibration of the AuNPs with TTF molecules and, thus, produce the observed red-shift in the LSP-band on interfacial AuNP nanofilm formation. A shift was observed in the position of the extinction SPC-band maximum from 790 nm for \(\theta_{\text{AuNP}}^{\text{AuNP}} \).

Fig. 2. UV-Vis-NIR optical responses of interfacial AuNP nanofilms, consisting of 38 nm mean diameter AuNPs, at a water-DCE interface as a function of increasing interfacial AuNP surface coverage \(\theta_{\text{AuNP}}^{\text{AuNP}} \). The DCE phase contains the lipophilic TTF molecule. (A) Extinction spectra: the black dashed line represents the spectra of aqueous citrate-stabilized colloidal AuNP solution prior to interfacial AuNP nanofilm formation. (B) Total reflectance spectra: the black dashed line corresponds to reflectance of a solid gold mirror, i.e., acting as a reference representing 100 % reflectance. Extinction and reflectance spectra were recorded with the incidence beam impinging the surface at angles of 0° and 8° to normal, respectively. (C, D) Two-dimensional surface contour plots of extinction and reflectance evolution with increasing \(\theta_{\text{AuNP}}^{\text{AuNP}} \). (E) Maximum values of the extinction and reflectance intensities plotted versus \(\theta_{\text{AuNP}}^{\text{AuNP}} \). A blue dotted line on the extinction curve denotes linear regions. (F) Photographs demonstrating the clear visible changes in the appearance of the interfacial AuNP nanofilms with increasing \(\theta_{\text{AuNP}}^{\text{AuNP}} \) (values are given in monolayer, ML, as described in the text).
values corresponding to 1/8 of a monolayer (ML), to 770 nm for 1.0 ML, and subsequently up to 850 nm for 3.0 MLs. Thus, the average position of the SPC-band peak maximum was ca. 810 nm. However, it is difficult to establish if this wandering variation of the maximum has a physical origin (e.g., decreasing interparticle distances) or is due to the rearrangements and changes of the local environment of the AuNPs upon nanofilm growth. Plots of the maximum extinction (red data points) and reflectance (black data points) peak intensities versus $\theta_{\text{int}}^{\text{AuNP}}$ were highly informative revealing several interesting features in the optical behavior of the interfacial AuNP nanofilms (Fig. 2E). The steady continuous growths of the overall extinction and reflectance peak intensities with increasing $\theta_{\text{int}}^{\text{AuNP}}$ were both abruptly interrupted at 0.625 ML conditions. At this initial threshold the linear dependence of the Beer-Lambert law was broken for the extinction spectra causing a change of slope or, in other words, the extinction coefficient (Fig. 2E, red data points). A second threshold was reached at 1.125 ML conditions, again leading to a further change of slope. Thus, three distinct regions were distinguished, each with a unique extinction coefficient: (1) a 2D regime dominated by smooth “floating islands” of interfacially adsorbed 2D monolayers, (2) a mixed 2D/3D regime where the 2D “floating islands” start to become modified with 3D nanostructures consisting of small piles of adsorbed AuNPs even at sub-full-monolayer conditions, and (3) a 3D regime where the interfacially adsorbed 2D full-monolayer is completely subsumed beneath significant piles of adsorbed AuNPs. The presence of the three distinct regimes is further supported by ex situ scanning electron microscopy (SEM) images of the interfacial AuNP nanofilms after their transfer to silicon substrates, discussed vide infra.

The variation of the reflectance in these three regimes is marked (Fig. 2E, black data points). As noted, the reflectance increases steadily with increasing $\theta_{\text{int}}^{\text{AuNP}}$ in the 2D regime. In the mixed 2D/3D regime the rate of increase in reflectance slows dramatically and reaches its maximum of 51 % (compared to the 100 % reference reflectance from the Thorlabs gold mirror) between 0.75 and 0.875 ML conditions, followed by slow decrease until 1.125 ML conditions. Beyond this, in the 3D regime, the rate of decrease of reflectance ramps up significantly, and this behavior is clearly visible to the naked eye with a dimming of the luster of the interfacial AuNP nanofilms between 1.0 and 3.0 ML conditions (Fig. 2F).

From the spectroscopic point of view, the overall peak widths of the extinction and reflectance spectra broaden with increasing $\theta_{\text{int}}^{\text{AuNP}}$ beyond 1.0 ML conditions. This is indicative of the formation of additional out-of-plane interactions between AuNPs. As the morphology of the interfacial AuNP nanofilm transitions from 2D to 3D beyond 1.0 ML conditions, each AuNP (surrounded by six close neighbors in the interfacially adsorbed 2D monolayer) establishes contact with three further AuNPs in the second layer leading to additional depolarization factors and peak broadening. The latter is supported by previous simulations and experimental observations demonstrating that increasing the extent of interacting AuNPs leads to a red shift and broadening of the SPC-peak. Under these conditions both red and green light were absorbed strongly (Fig. 2A & C) which also leads to strong reflection of these two colours (Fig. 2B & D). The human eye then perceives these mixtures of red and green light as orange or gold, giving the strong golden coloration of the multilayer nanofilms, see Fig. 2F.

(ii) Liquid filters based on nanofilms of 12 nm Ø AuNPs. Subsequently, we comprehensively characterized the extinction (Fig. 3A, C & E) and transmission (Fig. 3B, D & E) spectra obtained at interfacial AuNP nanofilms formed with the smaller 12 nm Ø AuNPs at water-DCE interfaces (in the presence of TTF in the organic solvent droplet) as a function of $\theta_{\text{int}}^{\text{AuNP}}$. All of the trends found for the larger AuNPs were generally replicated. Once more, the extinction spectra exhibited both LSP- and SPC-bands at ca. 550 nm and ca. 690 nm, respectively. The LSP-band was slightly (10 nm) blue-shifted, while the SPC-band was significantly (120 nm) blue-shifted in comparison to the interfacial AuNP nanofilms formed with 38 nm Ø AuNPs. The LSP-band appeared as a tiny shoulder on the intense and broad SPC-band and was only visible at high $\theta_{\text{int}}^{\text{AuNP}}$ conditions in excess of 1 ML (Fig. 3A). Also, variation in the position of the SPC-band maximum was observed to be quite small under sub-ML conditions: ca. 680 nm for $\theta_{\text{int}}^{\text{AuNP}}$ of 0.16 ML to ca. 675 nm for $\theta_{\text{int}}^{\text{AuNP}}$ of 0.33 ML. However, the maximum of SPC-band reached ca. 720 nm for 4 MLs.

The reflectance spectra also possessed two bands attributed to LSP- and SPC-contributions, respectively (Fig. 3B & D). The trends seen for the variations of the extinction and reflectance peak intensities versus $\theta_{\text{int}}^{\text{AuNP}}$ were replicated with the three distinct regimes, discussed above, again evident (Fig. 3E). In this instance the maximum values of both the extinction and reflectance spectra simultaneously changed slope at ca. 0.83 ML conditions.

Although, the observed trends in the optical behavior for interfacial AuNP nanofilms formed with either 12 or 38 nm Ø AuNPs were broadly similar, some clear distinctions exist that impact their potential applications. Interfacial nanofilms formed with 38 nm Ø AuNPs display (a) considerably broader SCP extinction bands at $\theta_{\text{int}}^{\text{AuNP}}$ conditions in excess of 1 ML (leading...
to their gold coloration) and (b) a maximum reflectance of 51% versus only 24% for 12 nm Ø AuNPs. Hence, 12 nm Ø, and smaller, AuNPs are good candidates to form optical filters at liquid-liquid interfaces, whereas 38 nm Ø, and larger, AuNPs may potentially be utilized to form optical mirrors at liquid-liquid interfaces.

Monitoring the morphology of the interfacial AuNP nanofilms with increasing θ_{int} by scanning electron microscopy (SEM).

The interpretation of the extinction and reflectance spectra for interfacial nanofilms formed with 38 nm Ø (Fig. 2) and 12 nm Ø (Fig. 3) AuNPs was dependent on the existence of 3 distinct morphological regimes of the AuNPs at the interface, each of which scattered light to varying degrees, as a function of θ_{int}.

![Fig. 3. UV-Vis-NIR optical responses of interfacial AuNP nanofilms, consisting of 12 nm mean diameter AuNPs, at a water-DCE interface as a function of increasing interfacial AuNP surface coverage (θ_{int}). The DCE phase contains the lipophilic TTF molecule. (A) Extinction spectra: the black dashed line represents the spectra of aqueous citrate-stabilized colloidal AuNP solution prior to interfacial AuNP nanofilm formation. (B) Total reflectance spectra: the reflectance is normalized with respect to the reflectance of a solid gold mirror, i.e., acting as a reference representing 100% reflectance. Extinction and reflectance spectra were recorded with the incidence beam impinging the surface at angles of 0° and 8° to normal, respectively. (C, D) Two-dimensional surface contour plots of extinction and reflectance evolution with increasing θ_{int}. (E) Maximum values of the extinction and reflectance intensities plotted versus θ_{int}. A blue dotted line on the extinction curve denotes linear regions. (F) Photographs demonstrating the clear visible changes in the appearance of the interfacial AuNP nanofilms with increasing θ_{int} (values are given in monolayer, ML, as described in the text).]
Fig. 4. Macro- and nano-scale mechanisms of decreasing reflectance caused by morphological changes. (A) Comparison of optical microscopy images (50x magnification) performed in situ at the AuNP nanofilm modified liquid-liquid interface and SEM images of these nanofilms transferred to a silicon substrate for selected \(\rho_{\text{inst}} \). 3D piles of AuNPs were seen as brighter dots. Scales bars are, from left to right, 10 µm and 400 nm, respectively. (B) Photographs highlighting the wrinkles (red arrows) that appear in the interfacial AuNP nano film (1 ML) surrounding the organic droplet as a consequence of mechanical forces acting on the nanofilm within the confined environment of the quartz cuvette (on the left). Wrinkles disappear upon surface extension (on the right).

To confirm their existence we transferred interfacial AuNP nanofilms formed in a stepwise manner with 38 nm Ø AuNPs at a series of \(\rho_{\text{inst}} \) conditions (from 0.1 to 2.0 ML) to silicon substrates, as described in the Experimental Section, and obtained SEM images of each (Fig. 4A). Also in situ optical microscopy observations were carried out to confirm the SEM results (selected images are presented in Fig. 4 and a full detailed description is given in Fig. S1, Section 1 of the Supporting Information).

At low \(\rho_{\text{inst}} \), the AuNPs were organized in low density monolayers of both interconnected and isolated 2D “floating islands” (0.1 ML, Fig. 4A). As \(\rho_{\text{inst}} \) increased to 0.4 ML the AuNPs filled the majority of available space with some empty voids still observed (0.4 ML, Fig. 4A). Previously, we predicted that beyond \(\rho_{\text{inst}} \) values of 0.5 ML the floating networks of AuNPs at the interface establish electrically connected pathways, transitioning from insulating to locally electrically conductive structures. At 0.8 ML, in the mixed 2D/3D regime, the interfacial AuNP film was very dense, with few voids present, and a small but notable quantity of AuNPs now forming 3D piles on the surface of the underlying 2D AuNP monolayer (0.8 ML, Fig. 4A). As seen in the optical image, densely-packed areas co-existed with less dense “diffuse” areas. Despite the fact that the interfacial AuNP nanofilm at 0.8 ML is theoretically 20% below the value expected for complete coverage of the liquid-liquid interface with AuNPs in a hexagonal close-packing arrangement, this \(\rho_{\text{inst}} \) for 38 nm Ø AuNPs exhibited the maximum values for reflectance, see Fig. 2E.

Under these conditions maximum coverage of the interface with the 2D monolayer (enhancing reflectance) was attained without the presence of notable quantities of 3D piles of AuNPs that cause the incident light to scatter (diminishing reflectance). Finally, moving into the 3D regime at \(\rho_{\text{inst}} \) of 1.0 and 2.0 ML (Section 1 in Supporting Information), the additional AuNPs now present at the interface could no longer directly adsorb there as it is effectively saturated with AuNPs. Thus, 3D piles of AuNPs grew on the underlying 2D monolayer, rapidly proliferated and increased substantially in terms of their footprint and height. The resultant increase in scattering significantly diminished the reflective luster of the AuNP nanofilms, causing...
them to visually become less reflective to the naked eye (Fig. 2F).

A second factor that may decrease the reflectance at higher than 0.8 ML is the presence of wrinkles in the interfacial AuNP nanofilms due to the mechanical stresses placed on the nanofilms within the restricted confines of the quartz cuvette. As demonstrated in Fig. 4B, these wrinkles are visible to naked eye after the biphasic preparation procedure, detailed in the Experimental Section. Such buckling of the interfacial AuNP nanofilm by mechanical stress is similar to that observed for compressed NP films in Langmuir-Blodgett baths.69-72 Wrinkles arise as the closed-packed interfacial AuNP 2D-layer is a quasi-stable system and can respond to compression forces by buckling. Additionally, to respond to external disturbances, the packing arrangement of the interfacially adsorbed AuNPs may adjust. For example, AuNP assemblies with cubic close packing or random close packing are relatively flexible, and, as a consequence, may suppress to some extent the external mechanical forces through temporary and local transformation to hexagonal close packed arrangements (a rigid system without any free space available for AuNPs to move or relocate, except buckling).

Determining the separation distances between AuNPs in the interfacial AuNP nanofilms by high resolution transmission electron microscopy (HR-TEM).

The presence of two clear bands in the extinction and reflectance spectra for interfacial AuNP nanofilms formed with 38 nm Ø AuNPs (Fig. 2A & B) is evidence that a separation distance exists between these AuNPs within interfacial assemblies. Also, although not as clearly evident for 12 nm Ø AuNPs (Fig. 3A & B), two bands were also shown to exist in the spectra. Several research groups have shown both experimentally and theoretically, through modeling of optical responses for metallic NP assemblies, that extremely low or zero interparticle distances result in a broad band in the reflectance spectra tailing into the NIR range, as seen for bulk mirrors.3,13,72 In contrast, relatively large interparticle distances lead to a bell-shaped reflectance in the middle of the UV-Vis spectra. Thus, the tuning of interparticle distances is a direct way of controlling the optical response of metallic NP assemblies.3,13,72

The interparticle separation distance distributions were measured by HR-TEM and are presented in Fig. 5. For interfacial AuNP nanofilms formed with either 12 or 38 nm Ø AuNPs, the interparticle separation distances were estimated as 0.85 (±0.1) and 0.87 (±0.2) nm, respectively. These distances were equivalent to the thickness of a few layers of π-stacked TTF or TTF+ molecules that form a shell around each AuNP. Thus, while the AuNPs are located in close enough proximity with each other in the interfacial nanofilm to lead to effective electronic coupling between the individual AuNPs, they do not touch each other.3,13,72 This is a key attribute of these nanofilms making them an attractive soft interfacial substrate for mirror applications and future SERS studies in particular.73,74

Fig. 5. High-resolution transmission electron microscopy (HR-TEM) images of interfacial AuNP nanofilms after transfer to a TEM grid. The interfacial AuNP nanofilms were formed with (A) 12 and (B) 38 nm Ø AuNPs at the water-DCE interface, with TTF present in the organic droplet, at and 0.8 ML conditions. Insets: interparticle separation distance distributions were measured based on the HR-TEM-images.

Comparing the optical responses of interfacial AuNP nanofilms formed biphiscally using alternative organic solvents of low miscibility with water and replacing the lipophilic molecule TTF in the organic droplet with neocuproine (NCP).

Thus far we have focused entirely on thoroughly characterizing our initial organic solvent/lipophilic molecule combination of DCE containing TTF.24 In this final section, we will demonstrate that our biphasic approach to interfacial AuNP nanofilm formation, whereby the citrate ligands are displaced from the surface of the aqueous AuNPs by a lipophilic species present in the organic solvent, is not restricted to the combination noted above.

Initially, we expanded our choice of organic solvents under investigation to include α, α, α-trifluorotoluene (TFT), nitrobenzene (NB), and nitromethane (MeNO2). These solvents differ in density (ρ), dielectric constant in a static electric field (ε*) and interfacial surface tension (γo) to 1,2-dichloroethane (DCE). Thus, the goal here was to determine the magnitude of the influence of the immiscible organic solvent on the observed optical responses and stability of the interfacial AuNP...
nanofilms. $\gamma_{\text{w/o}}$ was measured for each water-organic solvent interface by the pendant drop method (Fig. S2, Section 2 in the Supporting Information). With the exception of MeNO$_2$, each of these liquid-liquid interfaces are polarizable (either chemically or electrochemically) and, thus, may be implemented in the construction of electrically driven “smart” filters and mirrors.59 Relevant physiochemical data on each organic solvent and water-organic solvent interface is summarized in Table 1.

Subsequently, the lipophilic molecule neocuproine (NCP), previously used to self-assembly AgNPs at water-DCE interfaces,6,7 was tested and the interfacial AuNP nanofilms formed were compared to those observed at water-DCE interfaces with TTF in the organic phase. We also investigated other bipyrindines, previously reported to create liquid mirror films of AgNPs, and thionine, a direct structural analogue of TTF. However, only NCP led to interfacial AuNP nanofilm formation and is thus the sole focus of our extended analysis herein.

Comparison of the extinction and reflectance spectra for interfacial AuNP nanofilms formed with either 12 nm Φ (Fig. 6A, B) or 38 nm Φ (Fig. 6B, D) AuNPs, using either DCE, TFT, NB or MeNO$_2$ as the organic solvent, are presented in Fig. 6. Optical photographs of the obtained interfacial AuNP nanofilms are given in Fig. S3, Section 3 in the Supporting Information. A value of 0.75 for $\theta^\text{AuNP}_{\text{int}}$, at the beginning of the mixed 2D/3D regime with interfacial AuNP nanofilms formed at water-DCE interfaces, was chosen in all instances to achieve maximum reflectance, discussed \textit{vide supra}. The maximum extinction intensity and percentage reflectance for each interfacial AuNP film at 0.75 ML conditions are summarized in Table 2.

As demonstrated in Fig. 6 and Table 2, the various solvents influenced the interfacial AuNP film formation to some extent, but at 0.75 ML conditions, the extinction and reflectance spectra were broadly similar with no major changes in the shapes of either spectra and relatively narrow distributions observed for the maximum extinction (between 0.77 and 0.91 a.u. for 12 nm Φ AuNPs, and 1.95 and 2.16 a.u. for 38 nm Φ AuNPs) and maximum reflectance (between 14.2 and 22.9 % for 12 nm Φ AuNPs, and 46.5 and 58 % for 38 nm Φ AuNPs). Thus, in terms of developing self-healing optical mirrors, water-NB interfaces with 38 nm Φ AuNPs marginally gave the best reflectance values (58 %). Also, in terms of optical filter applications, again water-NB interfaces with 12 nm Φ AuNPs exhibited the highest extinction intensities at ca. 690 nm.

A notable observation, highlighted in Fig. S3, Section 3 in the Supporting Information, was the self-assembly of interfacial AuNP films at water-MeNO$_2$ interfaces even in the absence of the lipophilic TTF molecule in the organic droplet. A similar observation was recently reported for AuNPs at water-1-butanol interfaces.76 One possibility is that MeNO$_2$ molecules competitively adsorb to the surface of the AuNPs,77-79 in a similar manner to TTF displacing the citrate ligands, reducing the surface charge of the AuNPs enough to facilitate their adsorption at the interface driven by minimization of the total interfacial free energy.80

A second observation was that at $\theta^\text{AuNP}_{\text{int}}$ values in excess of 1 ML, for both 12 and 38 nm Φ AuNPs, the interfacial AuNP films formed at water-TFT interfaces completely lost their metallic luster and became black in color due to massively increased scattering of the incident light, see Fig. S4, Section 4 in the Supporting Information. The interface itself appeared rough either due to the presence of large AuNP agglomerates due to the uncontrolled aggregation of the AuNPs in the interfacial film, or perhaps due to buckling of the water-TFT interface at these high $\theta^\text{AuNP}_{\text{int}}$ values. The origin of this behavior is, as yet, unresolved.

As detailed in Table 1, however, TTF has the highest interfacial

Table 1. Summary of density (ρ) and dielectric constant in a static electric field (ε_r)e of each organic solvent studied, and the interfacial surfac e tension ($\gamma_{\text{w/o}}$) of each water-organic solvent interface (as determined by the pendant drop method in Section 2 of the Supporting Information).

<table>
<thead>
<tr>
<th>Solvent</th>
<th>ρ / g·cm$^{-3}$</th>
<th>ε_r</th>
<th>$\gamma_{\text{w/o}}$ / mN·m$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT</td>
<td>1.181</td>
<td>9.18</td>
<td>38.0 ± 0.5</td>
</tr>
<tr>
<td>DCE</td>
<td>1.256</td>
<td>10.42</td>
<td>30.5 ± 0.3</td>
</tr>
<tr>
<td>NB</td>
<td>1.552</td>
<td>35.60</td>
<td>24.4 ± 0.2</td>
</tr>
<tr>
<td>MeNO$_2$</td>
<td>1.130</td>
<td>37.27</td>
<td>16.0 ± 0.2</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the maximum extinction (a.u.) and reflectance (%) values measured for interfacial AuNP nanofilms, consisting of either 12 nm or 38 mean diameter AuNPs, formed with either DCE, TFT, NB or MeNO$_2$ as the organic solvent. The lipophilic molecules TFT or NCP were present in each organic droplet and $\theta^\text{AuNP}_{\text{int}}$ values of 0.75 ML were implemented. The peak positions at which each of the values were determined from the spectra shown in Fig. 6 are indicated in brackets.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Lipophilic molecule</th>
<th>12 nm Φ AuNPs</th>
<th>38 nm Φ AuNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extinction / a.u.</td>
<td>Reflectance / %</td>
<td>Extinction / a.u.</td>
</tr>
<tr>
<td></td>
<td>(nm)</td>
<td></td>
<td>(nm)</td>
</tr>
<tr>
<td>DCE</td>
<td>NCP</td>
<td>0.87</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(693 nm)</td>
<td>(699 nm)</td>
</tr>
<tr>
<td>DCE</td>
<td>TTF</td>
<td>0.91</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(685 nm)</td>
<td>(745 nm)</td>
</tr>
<tr>
<td>TFT</td>
<td>TTF</td>
<td>0.86</td>
<td>14.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(677 nm)</td>
<td>(757 nm)</td>
</tr>
<tr>
<td>NB</td>
<td>TTF</td>
<td>0.97</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(691 nm)</td>
<td>(728 nm)</td>
</tr>
<tr>
<td>MeNO$_2$</td>
<td>TTF</td>
<td>0.77</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(662 nm)</td>
<td>(723 nm)</td>
</tr>
</tbody>
</table>
surface tension among the considered solvents of 38 mN·m⁻¹ and the impact of increased interfacial surface tension to potentially induce buckling of the interfacial AuNP nanofilms at high interfacial surface coverages is discussed in Section 4 of the Supporting Information.

A comparison of the extinction and reflectance spectra for interfacial AuNP nanofilms formed biphasically with either 12 or 38 nm Ø AuNPs and with either NCP (blue spectra, (see Fig. S5, Section 5 in the Supporting Information for the chemical structure of NCP) or TTF (red spectra) in the DCE droplet are also presented in Fig. 6 and Table 2. Again, \(\theta_{\text{AuNP}} \) values of 0.75 ML were chosen. The extinction spectra for interfacial nanofilms composed of 12 nm Ø AuNPs revealed a significant tailing into the NIR region when NCP was present in the DCE droplet (Fig. 6A).

Additionally, the reflectance of these nanofilms with NCP present was less than that observed with TTF, dropping from 24.2 to 15.5 % (Fig. 6B). For 38 nm Ø AuNPs, major optical differences were observed for the interfacial AuNP nanofilms, with the appearance of a strong broadband absorption (Fig. 6) and a huge drop in reflectance, from 51.2 % to 16.8 % (Fig. 6D), when NCP replaced TTF in the DCE droplet. These observations indicate that the AuNPs in the interfacial AuNP nanofilm formed with NCP were in extremely close proximity, with considerably smaller interparticle separation distances than was the case with TTF in the DCE droplet. These small interparticle

![Fig. 6. Monitoring the influence of the immiscible organic solvent and lipophilic molecule in the organic droplet on the optical responses of the interfacial AuNP nanofilms. (A) Extinction and (B) reflectance spectra for interfacial AuNP nanofilms formed with 12 nm Ø AuNPs. (C) Extinction and (D) reflectance spectra for interfacial AuNP nanofilms formed with 38 nm Ø AuNPs. The organic solvents investigated were DCE, TFT, NB and MeNO₂. The lipophilic molecules TTF or NCP were present in each organic droplet and optimal values of \(\theta_{\text{AuNP}} \), in terms of maximum reflectance for interfacial AuNP nanofilms formed at water-DCE interfaces (determined in Fig. 2 & 3) of 0.75 ML were implemented. For comparison the extinction spectra of a solid blue filter, dashed blue line in (A), and reflectance spectra of a solid gold mirror, dashed gold line in (D), are shown.](image)
distances lead to strong interparticle plasmonic coupling, which in turn cause broadband absorption, low reflectivity and the interfacial AuNP nanofilms to appear very dark in color, resembling “black gold” (see Fig. S5, Section 5 in the Supporting Information for optical photographs of the obtained interfacial AuNP nanofilms), as recently described by Liu et al.76 Clearly, these “black gold” nanofilms are not suitable for either optical mirror or filter applications. However, their lower reflectance and, in particular, strong ability to absorb light in the NIR range leading to their enhanced broadband absorption, means they may potentially impact other technological niches, such as photothermal therapy81,82 and bio-imaging, and targeted drug delivery.83,84

Conclusions

The influence of a host of experimental variables (AuNP mean diameter, \(\varnothing\); interfacial AuNP surface coverage \(\theta_{\text{interf}}\); nature of the organic solvent; nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm) on the optical properties of interfacial AuNP nanofilms formed at immiscible water-oil interfaces were investigated by both in situ spectroscopy (extinction and reflection UV-vis-NIR spectra and optical photographs) and ex situ microscopy (TEM and SEM images of interfacial AuNP nanofilms transferred to silicon substrates) techniques. Smaller AuNPs with 12 nm \(\varnothing\) were suited to applications as liquid based optical band-pass filters, forming interfacial AuNP nanofilms that attenuated green and red light, while transmitting blue. Larger AuNPs with 38 nm \(\varnothing\) were suited to applications as liquid mirrors, forming interfacial AuNP nanofilms that strongly reflected both red and green light, perceived as gold to the human eye.

The magnitudes of the maximum reflection for interfacial AuNP nanofilms formed, determined by in situ UV-vis-NIR spectra, were strongly influenced by the morphology of the nanofilms at the interface, which was in turn determined by \(\theta_{\text{interf}}\). Systematic in situ spectroscopy studies, corroborated by in situ optical micrographs and ex situ SEM images, revealed three distinct morphological regimes, with optimal conditions being those that yielded the maximum coverage of the interface with a 2D monolayer (enhancing reflectance) without the presence of notable quantities of 3D piles of AuNPs that cause the incident light to scatter (diminishing reflectance). For water-DCE interfaces this was determined to be at a sub-monolayer (ML) surface coverage (approximately 0.75 ML) assuming hexagonal close packing of the AuNPs at the interface.

The nature of the organic solvent turned out to be the least influential variable studies, with only small variations of maximum extinction and reflectance observed with both 12 and 38 nm \(\varnothing\) AuNPs at 0.75 ML surface coverages when DCE was replaced with TFT, MeNO\textsubscript{2} or NB. Interesting aberrations included the observation of interfacial AuNP nanofilms with MeNO\textsubscript{2} without a lipophilic molecule in the organic droplet (typically required to displace the citrate ligands and induce biphasic nanofilm formation with all other organic solvents). This was attributed to MeNO\textsubscript{2} molecules competitively adsorbing to the AuNPs surface, displacing citrate ligands. Also, water-TFT interfaces completely lost their metallic luster, turning black in colour, due to massively increased scattering of the incident light at high \(\theta_{\text{interf}}\). A possible reason for this behavior may be linked to the water-TFT interfaces having the highest surface tension of any of the organic solvents investigated and, thus, the interfacial AuNP nanofilm formed may be more prone to buckling and wrinkling. Finally, for optical mirrors, water-NB interfaces with 38 nm \(\varnothing\) AuNPs marginally gave the best reflectance values (58 %) and, for optical filters, again water-NB interfaces with 12 nm \(\varnothing\) AuNPs exhibited the highest extinction intensities at ca. 690 nm. The interparticle spacing within the interfacial AuNP nanofilm was varied by replacing the lipophilic molecule TFT with NCP) in the organic droplet. This caused major drops in the reflectance of the interfacial AuNP nanofilms (especially with the 38 nm \(\varnothing\) AuNPs), a tailing into the NIR region with the 12 nm \(\varnothing\) AuNPs, and a strong broadband absorbance with the 38 nm \(\varnothing\) AuNPs. All of these observations indicated that the interparticle spacing decreased to such an extent with NCP as the capping ligand that the resulting strong interparticle plasmon coupling leads to the formation of “black gold” nanofilms with the larger AuNPs. While no longer suitable for liquid mirror or filter applications, such nanofilms may find use in photothermal treatment and bio-imaging, due to enhanced broadband absorption and lower reflection properties.

All-in-all, we show that by judicious choice of the experimental variables outlined above the reflectance and extinction of interfacial AuNP nanofilms can be varied and optimized, creating self-healing nanofilms with potential applications ranging from optical filters and mirrors, SERS substrates for sensors, enhancing non-linear SHG responses, photothermal treatment and bio-imaging.

Acknowledgements

We would like to acknowledge financial support from Fondazione Oronzio e Niccolò De Nora, Swiss National Science...
Notes and references

36. K. Zhang, J. Zhao, J. Ji, Y. Li, and B. Liu, Anal. Chem.,...
Please do not adjust margins