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Abstract

A model for the spreading of online information or ‘memes’ on multiplex networks is introduced and
analyzed using branching-process methods. The model generalizes that of (Gleeson et al 2016 Phys.
Rev. X) in two ways. First, even for a monoplex (single-layer) network, the model is defined for any
specific network defined by its adjacency matrix, instead of being restricted to an ensemble of random
networks. Second, a multiplex version of the model is introduced to capture the behavior of users who
post information from one social media platform to another. In both cases the branching process
analysis demonstrates that the dynamical system is, in the limit of low innovation, poised near a critical
point, which is known to lead to heavy-tailed distributions of meme popularity similar to those
observed in empirical data.

1. Introduction

The advent of social media and the resulting ability to instantaneously communicate ideas and messages to
connections worldwide is one of the great consequences arising from the telecommunications revolution over
the last century. Individuals do not, however, communicate only upon a single platform; instead there exists a
plethora of options available to users, many of whom are active on a number of such media. While each platform
offers some unique selling point to attract users, e.g. keeping up to date with friends through messaging and
statuses (Facebook), photo sharing (Instagram), seeing information from friends, celebrities and numerous other
outlets (Twitter) or keeping track of the career paths of friends and past colleagues (Linkedin), the platforms are
all based upon the fundamental mechanisms of connecting with other users and transmitting information to
them as aresult of this link.

The dynamics of information flow in online social media is an active research area (see, for example, [ 1-8])
but analytically solvable models are relatively rare. An analytically tractable model for the spreading of ‘memes’
(the term is used here in the general sense of a piece of digital information) on a single platform for a directed
network was introduced in [9]. This model suggested that as a result of the large amount of information received
by users on such platforms competing for their limited attention, the system is poised near criticality. The
implications of the near-criticality of such systems include fat-tailed distributions of meme popularity, similar to
those observed in empirical studies [3]. The model also incorporated memory effects by allowing users to look
backwards a random amount of time in their stream or feed to ‘retweet’ a meme, which gives a non-Markovian
model for this aspect of human behavior [10, 11]. Interestingly, while this was a null model in the sense that it
was entirely derived from first principles with no assumptions being made regarding the parameters
determining the spreading process, it could accurately describe observed cascades of ‘tweet’ popularities on the
directed network Twitter.

The model of [9] was, however, overly simplistic in several respects. Firstly, the model was restricted to ‘degree-
class’ networks, meaning that it applies to an ensemble of random networks in which all users with the same
numbers of connections (i.e. same in-degree and out-degree) are considered to behave in the same way, with
random connections between users. Because of this assumption, important parameters of the model such as the
innovation probability and the distribution of memory times were assumed to be the same for all users. A natural
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question (we address here) is whether the results of [9] remain valid if these restrictive assumptions are relaxed.
Secondly, only a monoplex (single-platform) network was considered in [9] so that the effects of users having a
presence on multiple platforms was ignored. In reality, the connections of users may vary on a platform-by-
platform basis depending upon their use of each site, and it is important to consider the possibility of users sharing
content between platforms To study such spreading processes we require the theory of multiplex networks [12],
which has previously been used to model processes as varied as the spreading of infectious diseases [13], opinion
dynamics [14], neural dynamics [15, 16] and dependencies among financial time series [17].

In this article we will extend the model described in [9] in two ways. Firstly we shall consider the same
dynamics but on a specific network rather than a random network, meaning that the full detail of the specific
adjacency matrix can be incorporated, and that user-specific parameters can be defined. We will show that in the
small innovation, large time limit that such a system approaches criticality. Second, we will extend the model to a
multiplex framework, where each layer represents a different social media platform, we will then allow users to
share content between their accounts on these different platforms and investigate the effects upon the criticality
of the system. The remainder of the paper is structured as follows. Section 2 describes the extended model for a
multiplex specific network (including the monoplex specific network as a special case). Section 3 discusses the
effect that the parameters in this model have on the criticality of the system before confirming the results using
numerical simulations, and finally, in section 4, we discuss our results.

2.Model

The model of [9] considers a directed network where each node represents an individual user while an edge from
user j to user i implies that i follows j. The key component of this model is that each user has a stream which is a
record of all ‘tweets’ they have ever received. Memes spread in this model by users ‘tweeting’, which may occur in
two ways. Firstly the user may innovate and create a new unique meme with probability 11, which enters their
own stream and also is viewed by their followers, each of whom find it interesting, and thus accept it into their
stream, with probability \. Secondly, the user may decide to ‘retweet’ content they have previously accepted into
their own feed with probability 1 — p, the meme they decide to retweet is determined by their ‘memory time’
distribution ®(t,,) such that the random amount of time which they look back is drawn from ®(%,,,) and the
meme that was present in their stream at time t — t,, is chosen, where ¢ is the current time. Also, the rate at which
auser tweets is determined by the activity rate 3, which is common to all users with the same in- and out-degrees.
We refer the reader to [9] for a more detailed explanation of the model.

We wish to extend the above model by considering a multiplex network consisting of N nodes and M layers,
such that each layer represents a different social media platform while each node represents a unique account of
auser. Throughout this article we assume that the content sharing mechanism of each platform is identical. Our
focus is on the specific network case whereby we know the exact network topology and thus have the adjacency
matrix A = @,A,, where A, represents the adjacency matrix of layer a. We note in passing that the case where
M = 1 will exactly describe the specific network extension of the degree-class network model used in [9]. The
aim of our model is to allow users to share content which they have seen from their account on one social media
platform to another of their accounts on an alternative platform, this requires us to an interlayer coupling matrix
Cwith elements equal to 1 if the nodes i and j represent accounts of the same user on two different platforms
[12], and zero otherwise. Such notation allows our model to incorporate individuals owning accounts on
multiple different platforms and also allows for each layer to have a different number of accounts: both these
characteristics are desirable features for such a model and commensurate with empirical findings [18].

In our model these matrices A and C will not be used directly themselves but rather are proxies for two
alternative matrices. The first of these is A which has elements );; representing the probability that the account j
finds content from account i interesting and thus accepts it into their stream for possible future retweeting. This
matrix is directly related to A as \;; = 0 ifand only if user j is connected to user i on the same layer. Similarly we
have a matrix C with elements cjdescribing the probability that content is shared from an account i to an
account j on a different layer, which in our model may only occur if the accounts are owned by the same user and
assuch C is a direct relation of C. The dynamics of the model is such that a user may see a meme they find
interesting while using their accounts on one platform e.g. Twitter, and decide to share it through their account
on another platform e.g. Instagram. The main characteristics governing the spreading in our model are
highlighted in figure 1, where node i shares a meme from layer 1 to the node jin layer 2 (both of which are
accounts owned by the same individual), this account then immediately proceeds to share it to their followers
one of whom, account k, will accept it into their stream with probability Aj.

This framework also allows us (in contrast to [9]) to define user-specific parameters, namely for a given node
iwe have their innovation probability y;, i.e. the probability that the user creates a new meme from their account
and immediately shares it with their followers (this meme also appears in their own stream as they find their own
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Figure 1. Schematic showing how memes may spread in our multiplex model, specifically we show an account i on layer 1 sharing a
meme to another account j on layer 2 owned by the same user with probability c;; who then immediately shares it with their own
followers each of whom may or may not find it interesting. The arrows indicate the direction of information flow (i.e. arrows point
from followed node to following node).

content automatically interesting). The second quantity that is specific to each account is their activity rate

B; > 0, which determines how often they become active either to innovate or to retweet a previously seen meme
from their stream. Finally, if the user does decide to retweet on their account at time ¢ then they will look
backwards in their stream to atime t — t,,, where t,,, is a random variable determined by their ‘memory-time’
distribution ®(t,,), and retweet the meme that was present in their feed at that time (figure 2).

In all the following analysis we shall consider the spreading of a meme from the node i. Now, the likelihood
of a given meme being retweeted by the account is dependent on how quickly other memes enter their stream as
the more content an account receives, the less likely they are to retweet any one meme. We now consider the
different ways in which a meme may be accepted into the stream of account i. Firstly, account i may innovate
themselves (the new meme immediately appears in their stream), which occurs at a rate ;8. Secondly, account i
receives content from the individuals whom they follow on the same social media platformi.e. on the same layer
o the rate at which such memes are received depends on the number of accounts followed, how active these
individuals are and also how interesting account 7 finds their content, being given by >, A; Bi. Account i may
also share content that they themselves have seen on another one of their social media platforms, this rate
depends on the number of platforms the user is present on, how active they are on these platforms and also how
likely they are to share from one medium to another, and is given by >, c; Gx. Finally, the individuals whom they
follow on their own layer o may also share content that they seen on another of their accounts which our user
may or may not find interesting, this occurs with rate Y, [ Ax; O_,ci 81)]. New memes thus enter the stream of user
iasa Poisson process with constant rate given by the sum of the rates described above:

n= B+ > Nl + Y cilbe+ D )\ki(z Czkﬁl] . (1)
k k k I

Consequently, the time for which a single meme occupies the stream of account i is an exponentially distributed
random variable with probability density
Boeei(€) = riexp(=n£). )

Now, as in [9], we consider the size of retweet trees observed at a time €2, which arise from the successful
insertion of a meme at time 7 into the stream of account i. The tree would be created by the retweeting by
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Figure 2. Schematic of the model. We consider the possible ways in which account A that is on layer 1 may spread memes in our
model, firstly the different colors represent the memes present in each accounts stream, and at time ¢ account A decides to retweet a
previously seen meme. She chooses the red meme by looking back in her stream a time determined by her memory-time distribution
®, and itis shared to each of her followers on layer 1 one of whom, user B, finds it interesting with probability A,z and thus accepts it
into their stream. Account C on a different platform is owned by the same user (highlighted by the blue arrow joining them) and asa
result there is a probability c4 that A shares the meme across platform, if this occurs account Cimmediately shares it with all their
followers on layer 2 one of whom, user D, accepts this meme into their stream with probability Acp. At time #{' user A decides the
innovate and create a new unique meme which is immediately seen by all their followers only on layer 1, unless at some point in the
future they decide to share it across layers as before.

account 7 at some time point between 7and 2 as a result of looking back in their stream to a time r when the
meme was present, i.e. in the interval bounded by 7and min(r + ¢, €2). We now consider the small time
interval dr and the size of trees that occur as a result of looking back into this interval from a time . The
probability of looking back in this way will be dependent on the individual traits of the user on account i,
specifically their activity rate 3;, their innovation rate x; and also their memory distribution ®;. The probability
thata tree is seeded at time d¢ by retweeting the meme that was present in the time interval dr is given (similar to
equation (5) of [9]) by

Peeai = (1 — p;) 0 ®i(t — r)dt dr. 3)

We are now interested in determining how the relationship between two accounts affects the popularity of a
meme which enters one of their streams. We define G;;(7, {2; x) to be the probability generating function (pgf)
[19] for the excess popularity of a meme, which entered account i’s stream at time 7, as a result of their link to
account j, observed at time §2:

o0
Gij(Ta Q; x) = z ql'j,n(7.> Q)xn’ (4)
n=0
where q; (7, ) is the probability that a meme which entered user i’s feed at time 7 has received n retweets by
time € as aresult of the edge between nodes i and j. We note that this suggests a tree-based approximation of the
network which is assumed in the model due to the independence of the branching processes [20].
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Considering the distribution of excess tree sizes from a meme that has been seeded at time ¢ we note that once
atree has been seeded it is immediately seen by the followers of account i on the same layer. An account j on this
layer may find the content interesting with probability \;; and thus may retweet it in the future. If the account j
belongs to the same user as account i, but on a different layer, the meme may be shared to this site with
probability ¢;; and is then instantaneously transmitted to all of their followers, each of whom may find it
interesting with probability \;. Thus the pgf for tree size at {2 is*

Rji(t, € x) = x(l — X + N [[ Gi(t, x)){l —cij + Cile [1 = A+ N[ G x))]}
k m

I
(5)

To determine the total tree size that may result from the account i copying in the dr interval and sharing with
the account j we must consider all times ¢t at which we may copy from and thus the total tree size from sharing
from account i to account j is distributed by

Q
]ij(r§ x) = l__[ [1— Pseed,i + Pseed,iRij(t: Q; x)], (6)

t=r

which (as in equation (9) of [9]) may be approximated by
Q
Jii(rs x) — exp{—(l — 1) B drf ®;(t — [l — R;i(t, Qs x)] dt} as dt — 0. (7)

As this is the size of a tree resulting from looking back to the time dr, to determine the total tree size culminating
from the meme being present in the stream of account i we must consider all times r from 7to min(7 + ¢, (),
so that the total size pgfis given by

min(7+7,2)
Riei(©) =[]  Jirs %)

r=1

S exp {_(1 Y j;—min(7'+f’,ﬂ) dr er ®;(t — r)[1 — R;i(t, Q5 x)] dt} as dr — 0. 8)

Considering these probabilities for all the possible occupation times Zof the meme in the stream, as given by
equation (2), we integrate to obtain

Gi(7, % %) = [ Peci(?) Ruge (©) 7

= [ new(—nrep { —(1 = ),

) [TV [0 - D= Ry, 95 01de} de. ©)

Introducing the change of variablesa = Q — 7, 7 = r — 7, f = Q) — t, we obtain
Gij(? —a, 5 x) = fooo riexp (—n0) exp { —(1 — p)Bi
min(Z,a) —7 - ~ - -
< [TV [ e — - DI - Ry(Q — T, 0 x)]dt} dz. (10)

We note, as in [9], that the only appearance of 2 in the above is in the first two arguments of G, and as such the
popularity of memes depends only on their age rather than the global time. Therefore we may define Gj;in terms
of the age of the meme only, which allows us to write the closed equation

Gii(a; x) = j:o riexp(—nf)exp{—(l — ;)5 jo.mm(m) dr anJ ®;(a — 7 — D1 — R;(%; x)]df} dz.
(11)

This equation determines the pgf of the distribution of excess popularities at age a as a result of the connection
between user i and j; we note that the pgfs describing both the entire excess distribution for a meme of age a that
entered user i’s feed Gi(a; x) and also the distribution for popularities of a meme which was created by account i
via innovation H,(a; x), are easily calculated by following the corresponding derivations in [9]. For the analysis
described in the remainder of this paper however equation (11) will be sufficient.

* Asthe total excess tree size on any layer would be the sum of the tree sizes for those who found the content interesting, we multiply all their
excess tree pgfs (since the pgf for the sum of random variables is given by the product of the pgfs corresponding to each variable).
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3. Criticality of the branching process

The pgf described in equation (11) essentially describes an edge-specific quantity, namely the probability
distribution of popularities based upon the link between account i and account j, and as such this model may can
be thought of as an age-dependent multi-type branching process [21]. Recall that in a classic single-type
branching process the criticality of the system is determined by the ‘branching number’ £, which is the mean
number of ‘children’ from each ‘parent’: the branching process is exactly critical if the value of { is 1, while it is
subcritical if £ is less than 1 and supercritical in the case where £ exceeds 1.

In the theory of multi-type branching processes [21, 22] there is a similar measure of the system’s criticality,
determined by the single reproductive number matrix, M, with elements m;;, which is the expected number of
children of type j that a parent of type i produces. The long term behavior of such a process is then determined by
the largest eigenvalue p of the matrix M such that p < 1 describes a subcritical processand p > 1 implies the
process is supercritical. Again, the branching process is exactly critical when p1is 1.

Asin section 4.1 of [9] we classify a meme that was accepted into account ’s stream at time 7as a parent of
type i, and the retweets of it that are accepted into the stream of account jat some time ¢ > 7 as the children of
type j. The pgf for the number of children is derived in a similar manner to equation (11) but we replace R;; with
(I — Aj + Xjix)(A — ¢ + cjix), as now we are only interested in the meme being accepted into the feed of
account j and not what occurs thereafter; the resulting pgf is given by

00 min(%,a) ,_ pa—7 - ~
Kii(a; x) = fO riexp(—riz,”)exp{—(l — ui)ﬁifo drf0 O;(a—7—1)
K1 — (1= Aj+ N (1 — ¢ + c,-jx)]df} az, (12)

The expected number of children is then found by differentiating Kj; with respect to x the above and evaluating at
x=1

min(Z,a)

— J}" nexp(nrexp { —(0 = )8 [V d [ 0 - 7 - Dy + A dEf de,(13)

now taking the large-a limit we obtain

i + )\ 1 — A .
mjj ~ (c i) 1)y as a — oo. (14)

wilBi + Y M + Y cuilBe + Zl)\ki(z Ctkﬂzﬂ
k k k 1

3.1. Analysis of the mean matrix

To determine the criticality of this process we must evaluate the maximum eigenvalue of the matrix M with
elements given by equation (14). First we shall consider the case of a monoplex network with no innovation and
determine the criticality of such a system, then we will include the (small) innovation probability and using a
perturbative analysis we shall analyze the effect this has on the criticality of our process. Finally, we will discuss
the multiplex case with both innovation and crossover probabilities, and we will show that the behavior of this
system is purely dependent on the layer of the mean matrix which has the largest eigenvalue.

+ Case 1: Monoplexwith y1; = 0

In this case we are essentially using one of the layers represented by adjacency matrix A,,. As such there is no
crossover probability, i.e. ¢;j = 0, Vi, j and equation (14) reduces to

_ Aii Bi

m i ——

>k ki Br

In the appendix we prove that that the largest eigenvalue p of such a matrix is equal to 1, this implies that in the
case of a monoplex network where there is no innovation, the branching process is critical. We note that this is
in agreement with the result found in [9] which showed that the degree-class version of the model described in
section 2 also approached criticality in the limit as t — 0. We also note that as the matrix M is non-negative

the Perron—Frobenius theorem [23] states that eigenvalue equal to the spectral radius of such a matrix has
positive left and right eigenvectors » and v. This result will be important for our arguments in the following

15)

cases.
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+ Case2: Monoplex with j1; > 0
Taking into consideration now the possibility of innovation on a single layer, i.e. ;1; > Obut ¢;; = 0, V1, j, we
note that equation (14) is then given by

~ (I — p) X B

mij = (16)
i Bi 4 3 ki Br
If we now consider the innovation probabilities to be small’, i.e. 11, = €fi; with i, being O(1) and € < 1,
equation (16) may be expressed to O(¢) as
i Bi 1 Xii Bi( Bi + 25 Aki
Ay = i3 . i A B (5 Zkzkﬁk)' (17)
>k Ak i
> Xk B
k
So we write the matrix M = M + ¢ AM, andlet p + Ap be the largest eigenvalue of M. The change in
eigenvalue Ap can be estimated when € < 1viaa first order approximation as [24]
ule AMv
AﬁZEﬁ/|M=T, (18)

where p / |5 represents the derivative of p + Ap evaluated at e = 0. Noting that AM is the matrix with all-

=1 Aij Bi (Bi + 2ok ki Br)
Ok M)

Ap as given in equation (18) is necessarily negative. Thus the largest eigenvalue decreases from 1 when there is

anon-zero possibility of innovation, which implies that the branching process becomes subcritical in the case

where an individual may innovate. The change in eigenvectors associated with the largest eigenvalue as a result

of the perturbation may also be calculated to give

Av =~ e(AM)v, Au= ec(AM) u. (19)

negative elements in equation (18), and that u and v are positive eigenvectors, we see that

* Case 3: Multiplex with ji;, c; > 0
Considering now the entire model over a multiplex with non-zero innovation and crossover probabilities,
equation (14) may be expressed as

(A — )i, Cij[ﬁi(l — 1) (3, + Zk/\kiﬁk)] - )\zj[ﬁi(l - Mi)(zk{ckiﬁk + )\kizlclkﬁz})]

16 4+ > Ak By (M,‘ B; + X ﬂk) (,Ui B; + XMkl + X { ciBy + Aaicn } )
We immediately note that the first term in the above is the matrix described by equation (16), which we have
shown has maximum eigenvalue less than one. Now let us consider how the second term on the right-hand-
side of equation (20) affects the structure of the matrix M. Again we assume the crossover probabilities to be
small such that ¢;; = €¢; with ¢;; being O(1) and ¢ < 1. The elements with non-zero A;; are on the diagonal

blocks of the matrix such that each block, M, represents a layer o of the multiplex. Now as € is increased from
zero the largest eigenvalue for each of these blocks will also decrease from 1, which can be seen by using a
similar argument as in the case of a monoplex with innovation but where the matrix is perturbed (to first
order) by

—€ /\,-]-Zk{gkiﬁk + )\kizzglkﬂl}
(Zk)\kiﬁk)z

If this matrix only consisted of these diagonal blocks such that M = @, M,, the matrix would have the same

. (21)

set of eigenvalues as {M,} and we could guarantee that the system is subcritical. However we also have the
components in equation (20) which are grouped with the ¢;; terms and these are all off-diagonal entries which
may modify the maximum eigenvalue of the matrix. Letting p = p, + ¢ Ap where p,, is the largest eigenvalue

of EBG,IVI@ and considering M = ®uM, + ¢ AM, where AM is the matrix with elements (to first order) given

y ZC’JA : - We can determine the criticality of this system using p,,. Again the change in the maximum
k ki Pk

eigenvalue (and its associated left and right eigenvectors) can be approximated to first order as
T Y o . T
Ap = M, Ay — %, Ay — M, (22)

ulv Pa Pa

> We note that this assumption is motivated by empirical data in [9], where the innovation probability for hashtags was estimated as
= 0.055.
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where v (u) is the right (left) eigenvector associated with p,,. Similarly to the approach of [ 13] we consider here
the case of two layers (o« = 1, 2), but the argument may be easily generalized to an arbitrary number of layers.
The two scenarios we must consider are p; >> p, (p, > p, follows the same line of reasoning) and p; > p,.

When p; > p,, layer one has the dominant eigenvalue with associated eigenvectors

v = (V(()D), u= (u(()l)), (23)

and therefore the change in maximum eigenvalue given by equation (22) is Ap = 0. This implies that the
criticality of the branching process is determined by the layer of the multiplex which is itself most near to
criticality. In this sense the existence of a dominant layer guarantees that the system is subcritical.

In the case where p, = p, the eigenvectors related to the maximum eigenvalue of the matrix are given by
KO U
= 5> = > 24
’ (V<2>) ! (“<2>) @0

and therefore the change in eigenvalue is given by

_ u@AMpva) + ug)AMavg)

Ap (25)

T T
umvay T U ve)

where AM ;, describes the block in matrix AM which represents coupling from layer a to b. We cannot make
any definitive statement about the eigenvalue in this case, and so we resort to numerical simulations.

3.2. Numerical simulation

We now consider numerical simulations to validate the results obtained in section 3.1, in these simulations we
examine a multiplex composed of two layers (M = 2), each with N = 10° nodes obtained via a directed
configuration-model with out-degree distribution given by p. To keep analysis as simple as possible we consider
the zero-memory case introduced in [5] such that if an account decides to retweet they always choose the meme
that is currently in their feed [®;(t,,) = 0 (t,,)] as well as homogeneous parameters among users such that

B =, ¢ = ¢, B = (B, and \jj = A, V i, j. Time units are also chosen in the simulations such that on average
each user becomes active once per model time unit, i.e. 5 = 1. Finally, we also assume that each user has an
account on both platforms, such that the coupling matrix C consists only of identity matrices in both the off-
diagonal blocks.

To validate the results of section 3.1 we consider two multiplexes, the first of which consists of layers where
every account has exactly k followers; k = 10 on the firstlayer and k = 2 on the second, which results in one of
the layers having a dominant eigenvalue. The second multiplex consists of distinct networks on each layer both
with k = 4, this ensures that the largest eigenvalues of each layer’s mean matrix are very similar. To determine
the effect of the crossover probability we perform simulations with ¢ = 0.05and ¢ = {0,0.1,0.8}. The resulting
CCDF of meme popularities at age 10 when the two layers have different out-degree distributions are shown in
figure 3(a) and when the layers have the same out-degree distribution in figure 3(b), we immediately note that
increased crossover probability results in larger cascades of retweet popularity which is justified by the fact that
there are now more users who may retweet a meme when it appears on multiple platforms.

The numerical spectral analysis of this system for both multiplexes is also considered in table 1, which shows
the largest eigenvalue of the whole system (p) in addition to each layer (p;, p,), for the crossover probabilities
shown in figures 3(a) and (b) as wellasc = {10™* 10~ >}. The results from our perturbative analysis of the mean
matrix in section 3.1 may now also be considered; equation (21) suggests that with larger c values, the maximum
eigenvalue of each layer would decrease, which is which is consistent with the results in table 1. Secondly we note
that in the case where there exists a dominant layer (p; >> p,), the spectral radius of the system’s mean matrix is
approximately equal to that of the dominant layer, particularly for smaller ¢ values, and in all cases the presence
of intra-layer links moves the system closer to its critical point. The case where the mean matrices of both layers
have similar leading eigenvalues (o, ~ p,) may also be analyzed. In this case, for the smallest c values (0, 10~*),
the largest eigenvalue of the system is approximately equal to that of the dominant layer, however the
perturbative effect noted by equation (25) soon becomes apparent as the crossover probability increases, such
that even for c values as small as 10 the largest eigenvalue of the system is noticeably different from that of the
dominant layer and in fact for crossover probabilities of much larger magnitude (0.8) it appears that the system is
much closer to its critical point than either of the layers individually.

Finally, we comment on the fact that in all examples described here the system is subcritical and we
hypothesize that this system is in fact subcritical for all valid parameter values (while approaching criticality as
the innovation probabilities tend toward zero). We hope that this result will encourage further research into the
criticality of this system with the aim of validating this hypothesis.
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Figure 3. Complimentary cumulative distribution functions for meme popularity at age 10 obtained via numerical simulations with
= 0.05 and multiple c values, two different multiplexes are considered each with two layers of size N = 10°. The multiplex used in
(a) consists of layers with p, = & jpand p, = &, whilein (b) both layers have p, = 6 4. Dashed lines correspond to CCDFs for
power law popularity distributions given by n=7.

Table 1. Leading eigenvalues, p, of the system’s mean matrix, for the two multiplexes
described in section 3.2, where each layer has out-degree distribution given by py.
Various crossover probabilities, ¢, are considered and in all cases ;1 = 0.05. Also
shown is the leading eigenvalue of each individual layer’s mean matrix (p,, p,). We
consider the case where there exists a dominant layer (p; > p,) and also the
contrary (p; & p,).

p1 > P2 p1 = P2
P k.10 Ok Oka Ora
¢ p P1 P2 P P1 P2
0 0.9889 0.9889 0.8508 0.9178 0.9178 0.9174

10 0.9887 0.9887 0.8506 0.9177 0.9177 0.9173
107? 0.9878 0.9878 0.8459 0.9171 0.9166 0.9162
107" 0.9000 0.8899 0.7361 0.8496 0.8122 0.8118
0.8 0.5915 0.5236 0.3813 0.8941 0.4516 0.4514

4. Discussion

In this paper we have extended the model for meme spreading that was introduced in [7, 9]. Instead of assuming
that all nodes in each degree-class of the network behave the same, we here consider a specific network, defined
by its adjacency matrix. In addition, we allow for each individual user i to have his/her own parameter values,
such as tweeting activity rate (3. Moreover, we generalize beyond the monoplex (single-platform) case
considered in [7, 9] to model the effects of users having accounts on multiple social media and potentially
sharing information across platforms.

By developing an analytical approximation in terms of a multi-type branching process, we derive the
equations (5) and (11) for the probability generating functions of meme popularity. Although the complexity of
these equations renders them intractable for large networks, we can nevertheless investigate the criticality of the
branching process by spectral analysis of the mean matrix (equation (14)). We have two main results. First, we
show that the criticality of the dynamical system for monoplex networks, as found in [7, 9] for the vanishing-
innovation limit, is robust, meaning that the multi-type branching process for a specific network (and with user-
specific parameters) is also critical in the limit of zero innovation. Secondly, when we consider a multiplex
network to model cross-platform transmission of information we show that the criticality of the system can be
reduced to the spectral analysis of the mean matrix (equation (14)). In the case where the innovation probability
is small, we show that if one layer of the multiplex has a dominant eigenvalue then the criticality of the multi-type
branching process is determined by the layer of the multiplex that is closest to criticality. In the case where two
layers have similar eigenvalues the analysis is more difficult, but numerical experiments suggest that the system is
subcritical for all parameter values. We have also shown detailed numerical simulations of this model which
results in heavy-tailed popularity distributions for a number of parameter values, and suggests that the potential
for crossover between platforms results in larger cascades of meme popularity than on single-layer networks.
Direct calculations of the spectral radius of the mean matrix in these simulations were also performed and
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further validated our results regarding the dependence of the system’s criticality upon the existence (or not) of a

dominant layer.
In conclusion, we believe that the generalization of the results of [7, 9] beyond random networks to

demonstrate the possibility of near-critical dynamics in specific and multiplex networks is potentially important

to the understanding of information spreading in real-world scenarios. Our main approximation is the

assumption of branching-process dynamics within the model, but such approximations have been found to be

quite accurate in similar dynamical systems on networks [20, 25]. We hope that the proof of possible near-

critical dynamics in this simple model of human behavior will inspire further theoretical and empirical work on

information spreading in multiplex networks.
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Appendix. Proof of criticality of M

Theorem. The largest eigenvalue of the matrix M = [77;j], < j< N> with elements

Y
iy = Nﬁ’i’] ij=1,2.., N,
k1 Br
is 1.
Proof.1f z € Ciseigenvalueof M,and u = [y 1 ... un]" is the corresponding eigenvector we have:

(ZI — M)M = 0N,1~

Defining the quantities ¢; by
N
Ci:ZAkiﬁkr Vi= 1,2,...,N,
k=1

we can write equation (26) as

[ 3, _ 01 M2 Bihin
qﬂ A 8,2 g ﬂC/l\ u1 0
M A21 2 N\22 —z . 2 /AN1 uZ 0
(53 [} €2 . =1-.)
By ANt By ANz ByAnn N 0
Cm Cn W |
or, equivalently,
Bihi — zq Bi Mz BN i 0
B2 Bodx — z0 .. B2 AoN | _|o
. . . . . - . b
BN Ant BN AN2 v BNANN — zon | | dN 0
where
ﬁl u
A il . 1 Uy
a=|"7]= dlag{—} .
: Ci)igign| -
unN UN
Defining B as the matrix
B — za Bi iz Bidin
B2 01 Baran — 26 ... B2 Xon
B(z) = X ) ) : ,
B ANt BN ANz v BNANN — 2w

we now suppose that an eigenvalue with |z| > 1 exists, and we will show that we arrive at a contradiction.
Considering column j of the matrix B, we observe that since |z| is assumed to be greater than 1,

(26)

27)
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N N N
STBiXi < 2] Bidi < 12ld_ Bixi + (2 — D)Bj Ay

i=] i=j i=j

N N
=GN < 12D Bidij — BjAj

i=] i=1
N

— Z ﬁ,’)\,‘j < |Z|Cj — ﬁj)\]j-
i=j

Since all the ﬂj, Cp» )\,j are non-negative we have

N

D Bidip <lzgil = 1B A < lzcj — BiAjl.

i
This implies that the matrix M(z) is strictly diagonally dominant, i.e. M(z) is non-singular (this can be proved
by using the Gershgorin circle theorem, see [26]). However, if M(z) is non-singular then ¢, and consequently u,
will be equal to Oy ;, contradicting the fact that u is an eigenvector of z. Thus, based on assuming |z| > 1we have
derived a contradiction and so we conclude that there do not exist eigenvalues with |z] > 1.

For z = 1 the matrix M(z) takes the form

Bidi — a Bi iz BiAin
M(l) _ 52./\21 ﬁz/\zz. -0 52%\21\1
On ANt BN AN2 v ONANN — oN

It is easy to observe that each column of M(1) sums to zero, i.e. M(1) is singular, and z = 1is an eigenvalue of M.
This completes the proof.
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