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Abstract
Amodel for the spreading of online information or ‘memes’ onmultiplex networks is introduced and
analyzed using branching-processmethods. Themodel generalizes that of (Gleeson et al 2016Phys.
Rev.X) in twoways. First, even for amonoplex (single-layer)network, themodel is defined for any
specific network defined by its adjacencymatrix, instead of being restricted to an ensemble of random
networks. Second, amultiplex version of themodel is introduced to capture the behavior of users who
post information fromone socialmedia platform to another. In both cases the branching process
analysis demonstrates that the dynamical system is, in the limit of low innovation, poised near a critical
point, which is known to lead to heavy-tailed distributions ofmeme popularity similar to those
observed in empirical data.

1. Introduction

The advent of socialmedia and the resulting ability to instantaneously communicate ideas andmessages to
connections worldwide is one of the great consequences arising from the telecommunications revolution over
the last century. Individuals do not, however, communicate only upon a single platform; instead there exists a
plethora of options available to users,many of whomare active on a number of suchmedia.While each platform
offers someunique selling point to attract users, e.g. keeping up to date with friends throughmessaging and
statuses (Facebook), photo sharing (Instagram), seeing information from friends, celebrities and numerous other
outlets (Twitter) or keeping track of the career paths of friends and past colleagues (Linkedin), the platforms are
all based upon the fundamentalmechanisms of connectingwith other users and transmitting information to
them as a result of this link.

The dynamics of information flow in online socialmedia is an active research area (see, for example, [1–8])
but analytically solvablemodels are relatively rare. An analytically tractablemodel for the spreading of ‘memes’
(the term is used here in the general sense of a piece of digital information) on a single platform for a directed
networkwas introduced in [9]. Thismodel suggested that as a result of the large amount of information received
by users on such platforms competing for their limited attention, the system is poised near criticality. The
implications of the near-criticality of such systems include fat-tailed distributions ofmeme popularity, similar to
those observed in empirical studies [3]. Themodel also incorporatedmemory effects by allowing users to look
backwards a randomamount of time in their streamor feed to ‘retweet’ ameme, which gives a non-Markovian
model for this aspect of human behavior [10, 11]. Interestingly, while this was a nullmodel in the sense that it
was entirely derived fromfirst principles with no assumptions beingmade regarding the parameters
determining the spreading process, it could accurately describe observed cascades of ‘tweet’ popularities on the
directed network Twitter.

Themodel of [9]was, however, overly simplistic in several respects. Firstly, themodelwas restricted to ‘degree-
class’networks,meaning that it applies to an ensemble of randomnetworks inwhich all userswith the same
numbers of connections (i.e. same in-degree andout-degree) are considered to behave in the sameway,with
randomconnections betweenusers. Because of this assumption, important parameters of themodel such as the
innovation probability and the distribution ofmemory timeswere assumed to be the same for all users. Anatural
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question (weaddress here) iswhether the results of [9] remain valid if these restrictive assumptions are relaxed.
Secondly, only amonoplex (single-platform)networkwas considered in [9] so that the effects of users having a
presence onmultiple platformswas ignored. In reality, the connections of usersmay vary ona platform-by-
platformbasis depending upon their use of each site, and it is important to consider thepossibility of users sharing
content between platformsTo study such spreading processeswe require the theory ofmultiplex networks [12],
which has previously been used tomodel processes as varied as the spreading of infectiousdiseases [13], opinion
dynamics [14], neural dynamics [15, 16] anddependencies amongfinancial time series [17].

In this article wewill extend themodel described in [9] in twoways. Firstly we shall consider the same
dynamics but on a specific network rather than a randomnetwork,meaning that the full detail of the specific
adjacencymatrix can be incorporated, and that user-specific parameters can be defined.Wewill show that in the
small innovation, large time limit that such a system approaches criticality. Second, wewill extend themodel to a
multiplex framework, where each layer represents a different socialmedia platform, wewill then allow users to
share content between their accounts on these different platforms and investigate the effects upon the criticality
of the system. The remainder of the paper is structured as follows. Section 2 describes the extendedmodel for a
multiplex specific network (including themonoplex specific network as a special case). Section 3 discusses the
effect that the parameters in thismodel have on the criticality of the systembefore confirming the results using
numerical simulations, and finally, in section 4, we discuss our results.

2.Model

Themodel of [9] considers a directed networkwhere each node represents an individual user while an edge from
user j to user i implies that i follows j. The key component of thismodel is that each user has a streamwhich is a
record of all ‘tweets’ they have ever received.Memes spread in thismodel by users ‘tweeting’, whichmay occur in
twoways. Firstly the usermay innovate and create a new uniquememewith probabilityμ, which enters their
own stream and also is viewed by their followers, each of whom find it interesting, and thus accept it into their
stream,with probabilityλ. Secondly, the usermay decide to ‘retweet’ content they have previously accepted into
their own feedwith probability 1− μ, thememe they decide to retweet is determined by their ‘memory time’
distributionΦ(tm) such that the randomamount of timewhich they look back is drawn fromΦ(tm) and the
meme thatwas present in their stream at time t−tm is chosen, where t is the current time. Also, the rate at which
a user tweets is determined by the activity rateβ, which is common to all users with the same in- and out-degrees.
We refer the reader to [9] for amore detailed explanation of themodel.

Wewish to extend the abovemodel by considering amultiplex network consisting ofNnodes andM layers,
such that each layer represents a different socialmedia platformwhile each node represents a unique account of
a user. Throughout this article we assume that the content sharingmechanismof each platform is identical. Our
focus is on the specific network case wherebywe know the exact network topology and thus have the adjacency
matrix = Åa aA A , whereAα represents the adjacencymatrix of layerα.We note in passing that the case where
M=1will exactly describe the specific network extension of the degree-class networkmodel used in [9]. The
aimof ourmodel is to allowusers to share contentwhich they have seen from their account on one socialmedia
platform to another of their accounts on an alternative platform, this requires us to an interlayer couplingmatrix
Cwith elements equal to 1 if the nodes i and j represent accounts of the same user on two different platforms
[12], and zero otherwise. Such notation allows ourmodel to incorporate individuals owning accounts on
multiple different platforms and also allows for each layer to have a different number of accounts: both these
characteristics are desirable features for such amodel and commensurate with empirical findings [18].

In ourmodel thesematricesA andCwill not be used directly themselves but rather are proxies for two
alternativematrices. Thefirst of these isΛwhich has elementsλij representing the probability that the account j
finds content from account i interesting and thus accepts it into their stream for possible future retweeting. This
matrix is directly related toA as l ¹ 0ij if and only if user j is connected to user i on the same layer. Similarly we

have amatrix C with elements cij describing the probability that content is shared from an account i to an
account j on a different layer, which in ourmodelmay only occur if the accounts are owned by the same user and
as such C is a direct relation ofC. The dynamics of themodel is such that a usermay see ameme theyfind
interestingwhile using their accounts on one platform e.g.Twitter, and decide to share it through their account
on another platform e.g.Instagram. Themain characteristics governing the spreading in ourmodel are
highlighted infigure 1, where node i shares ameme from layer 1 to the node j in layer 2 (both of which are
accounts owned by the same individual), this account then immediately proceeds to share it to their followers
one of whom, account k, will accept it into their streamwith probabilityλjk.

This framework also allows us (in contrast to [9]) to define user-specific parameters, namely for a given node
iwehave their innovation probabilityμi, i.e. the probability that the user creates a newmeme from their account
and immediately shares it with their followers (thismeme also appears in their own stream as they find their own
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content automatically interesting). The second quantity that is specific to each account is their activity rate
βi�0, which determines howoften they become active either to innovate or to retweet a previously seenmeme
from their stream. Finally, if the user does decide to retweet on their account at time t then theywill look
backwards in their stream to a time t−tm, where tm is a randomvariable determined by their ‘memory-time’
distributionΦi(tm), and retweet thememe that was present in their feed at that time (figure 2).

In all the following analysis we shall consider the spreading of ameme from the node i. Now, the likelihood
of a givenmeme being retweeted by the account is dependent on howquickly othermemes enter their stream as
themore content an account receives, the less likely they are to retweet any onememe.Wenow consider the
different ways inwhich amememay be accepted into the streamof account i. Firstly, account imay innovate
themselves (the newmeme immediately appears in their stream), which occurs at a rateμiβi. Secondly, account i
receives content from the individuals whom they follow on the same socialmedia platform i.e.on the same layer
α; the rate at which suchmemes are received depends on the number of accounts followed, how active these
individuals are and also how interesting account ifinds their content, being given by l båk ki k. Account imay
also share content that they themselves have seen on another one of their socialmedia platforms, this rate
depends on the number of platforms the user is present on, how active they are on these platforms and also how
likely they are to share fromonemedium to another, and is given by bå ck ki k. Finally, the individuals whom they
follow on their own layerαmay also share content that they seen on another of their accounts which our user
may ormay notfind interesting, this occurs with rate l bå å[ ( )]ck ki l lk l . Newmemes thus enter the streamof user
i as a Poisson process with constant rate given by the sumof the rates described above:

å å å åm b l b b l b= + + +
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )r c c . 1i i i

k
ki k

k
ki k

k
ki

l
lk l

Consequently, the time forwhich a singlememe occupies the streamof account i is an exponentially distributed
randomvariable with probability density

= -ℓ ℓ( ) ( ) ( )P r rexp . 2i i iocc,

Now, as in [9], we consider the size of retweet trees observed at a time W, which arise from the successful
insertion of ameme at time τ into the streamof account i. The tree would be created by the retweeting by

Figure 1. Schematic showing howmemesmay spread in ourmultiplexmodel, specifically we show an account i on layer 1 sharing a
meme to another account j on layer 2 owned by the same user with probability cij, who then immediately shares it with their own
followers each ofwhommay ormay not find it interesting. The arrows indicate the direction of information flow (i.e. arrows point
from followed node to following node).
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account i at some time point between τ and W as a result of looking back in their stream to a time rwhen the
memewas present, i.e. in the interval bounded by τ and t + Wℓ( )min , .We now consider the small time
interval rd and the size of trees that occur as a result of looking back into this interval from a time t. The
probability of looking back in this waywill be dependent on the individual traits of the user on account i,
specifically their activity rateβi, their innovation rateμi and also theirmemory distributionΦi. The probability
that a tree is seeded at time td by retweeting thememe that was present in the time interval rd is given (similar to
equation (5) of [9]) by

m b= - F -( ) ( ) ( )P t r t r1 d d . 3i i i iseed,

Weare now interested in determining how the relationship between two accounts affects the popularity of a
memewhich enters one of their streams.We define t W( )G x, ;ij to be the probability generating function (pgf)
[19] for the excess popularity of ameme,which entered account iʼs stream at time τ, as a result of their link to
account j, observed at time W:

åt tW = W
=

¥

( ) ( ) ( )G x q x, ; , , 4ij
n

ij n
n

0
,

where t W( )q ,ij n, is the probability that amemewhich entered user iʼs feed at time τ has received n retweets by
time W as a result of the edge between nodes i and j.We note that this suggests a tree-based approximation of the
networkwhich is assumed in themodel due to the independence of the branching processes [20].

Figure 2. Schematic of themodel.We consider the possible ways inwhich accountA that is on layer 1may spreadmemes in our
model, firstly the different colors represent thememes present in each accounts stream, and at time tR

A accountA decides to retweet a
previously seenmeme. She chooses the redmeme by looking back in her stream a time determined by hermemory-time distribution
ΦA and it is shared to each of her followers on layer 1 one ofwhom, userB,finds it interestingwith probabilityλAB and thus accepts it
into their stream. AccountC on a different platform is owned by the same user (highlighted by the blue arrow joining them) and as a
result there is a probability cAC thatA shares thememe across platform, if this occurs accountC immediately shares it with all their
followers on layer 2 one ofwhom, userD, accepts thismeme into their streamwith probabilityλCD. At time tI

A userA decides the
innovate and create a newuniquememewhich is immediately seen by all their followers only on layer 1, unless at some point in the
future they decide to share it across layers as before.
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Considering the distribution of excess tree sizes from ameme that has been seeded at time twenote that once
a tree has been seeded it is immediately seen by the followers of account i on the same layer. An account j on this
layermay find the content interesting with probabilityλij and thusmay retweet it in the future. If the account j
belongs to the same user as account i, but on a different layer, themememay be shared to this site with
probability cij and is then instantaneously transmitted to all of their followers, each of whommayfind it
interestingwith probabilityλjl. Thus the pgf for tree size at W is4

  l l l lW = - + W - + - + W
⎪

⎪

⎪

⎪

⎛
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( ) ( ) ( )
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ij ij ij
k

jk ij ij
l

jl jl
m
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Todetermine the total tree size thatmay result from the account i copying in the rd interval and sharingwith
the account jwemust consider all times t at whichwemay copy from and thus the total tree size from sharing
fromaccount i to account j is distributed by

= - + W
=

W

( ) [ ( )] ( )J r x P P R t x; 1 , ; , 6ij
t r

i i ijseed, seed,

which (as in equation (9) of [9])may be approximated by

òm b - - F - - W 
W⎧⎨⎩

⎫⎬⎭( ) ( ) ( )[ ( )] ( )J r x r t r R t x t t; exp 1 d 1 , ; d as d 0. 7ij i i
r

i ij

As this is the size of a tree resulting from looking back to the time rd , to determine the total tree size culminating
from thememe being present in the streamof account iwemust consider all times r from τ to t + Wℓ( )min , ,
so that the total size pgf is given by
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Considering these probabilities for all the possible occupation timesℓof thememe in the stream, as given by
equation (2), we integrate to obtain
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Introducing the change of variables t t= W - = - = W -a r r t t, , , we obtain

ò
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Wenote, as in [9], that the only appearance of W in the above is in the first two arguments ofG, and as such the
popularity ofmemes depends only on their age rather than the global time. Therefore wemay defineGij in terms
of the age of thememe only, which allows us towrite the closed equation

ò ò òm b= - - - F - - -
¥ -

   
⎧⎨⎩
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min ,

0

This equation determines the pgf of the distribution of excess popularities at age a as a result of the connection
between user i and j; we note that the pgfs describing both the entire excess distribution for ameme of age a that
entered user iʼs feedGi(a; x) and also the distribution for popularities of amemewhichwas created by account i
via innovationHi(a; x), are easily calculated by following the corresponding derivations in [9]. For the analysis
described in the remainder of this paper however equation (11)will be sufficient.

4
As the total excess tree size on any layer would be the sumof the tree sizes for thosewho found the content interesting, wemultiply all their

excess tree pgfs (since the pgf for the sumof randomvariables is given by the product of the pgfs corresponding to each variable).
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3. Criticality of the branching process

The pgf described in equation (11) essentially describes an edge-specific quantity, namely the probability
distribution of popularities based upon the link between account i and account j, and as such thismodelmay can
be thought of as an age-dependentmulti-type branching process [21]. Recall that in a classic single-type
branching process the criticality of the system is determined by the ‘branching number’ ξ, which is themean
number of ‘children’ from each ‘parent’: the branching process is exactly critical if the value of ξ is 1, while it is
subcritical if ξ is less than 1 and supercritical in the case where ξ exceeds 1.

In the theory ofmulti-type branching processes [21, 22] there is a similarmeasure of the system’s criticality,
determined by the single reproductive numbermatrix,M, with elementsmij, which is the expected number of
children of type j that a parent of type i produces. The long termbehavior of such a process is then determined by
the largest eigenvalue ρ of thematrixM such that ρ<1 describes a subcritical process and ρ>1 implies the
process is supercritical. Again, the branching process is exactly critical when ρ is 1.

As in section 4.1 of [9]we classify ameme that was accepted into account iʼs stream at time τ as a parent of
type i, and the retweets of it that are accepted into the streamof account j at some time t>τ as the children of
type j. The pgf for the number of children is derived in a similarmanner to equation (11) but we replaceRijwith

l l- + - +( )( )x c c x1 1ij ij ij ij , as nowwe are only interested in thememe being accepted into the feed of
account j and notwhat occurs thereafter; the resulting pgf is given by

ò ò òm b
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The expected number of children is then found by differentiatingKijwith respect to x the above and evaluating at
x=1:
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now taking the large-a limit we obtain
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3.1. Analysis of themeanmatrix
Todetermine the criticality of this process wemust evaluate themaximumeigenvalue of thematrixMwith
elements given by equation (14). First we shall consider the case of amonoplex networkwith no innovation and
determine the criticality of such a system, thenwewill include the (small) innovation probability and using a
perturbative analysis we shall analyze the effect this has on the criticality of our process. Finally, wewill discuss
themultiplex case with both innovation and crossover probabilities, andwewill show that the behavior of this
system is purely dependent on the layer of themeanmatrix which has the largest eigenvalue.

• Case 1:Monoplex withμi=0
In this casewe are essentially using one of the layers represented by adjacencymatrixAα. As such there is no
crossover probability, i.e. = "c i j0, ,ij and equation (14) reduces to

l b
l b

=
å

( )m , 15ij
ij i

k ki k

In the appendixwe prove that that the largest eigenvalue r of such amatrix is equal to 1, this implies that in the
case of amonoplex networkwhere there is no innovation, the branching process is critical.We note that this is
in agreement with the result found in [9]which showed that the degree-class version of themodel described in
section 2 also approached criticality in the limit asμ→0.We also note that as thematrix M is non-negative
the Perron–Frobenius theorem [23] states that eigenvalue equal to the spectral radius of such amatrix has
positive left and right eigenvectors u and v. This result will be important for our arguments in the following
cases.
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• Case 2:Monoplex withμi�0
Taking into consideration now the possibility of innovation on a single layer, i.e.μi�0 but = "c i j0, ,ij , we
note that equation (14) is then given by

m l b
m b l b

=
-

+ å
~ ( )

( )m
1

. 16ij
i ij i

i i k ki k

If we now consider the innovation probabilities to be small5, i.e. m m= i i with mi being( )1 and ò=1,
equation (16)may be expressed to ( ) as
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Sowewrite thematrix = + D~
M M M, and let r r+ D be the largest eigenvalue of

~
M. The change in

eigenvalue rD can be estimatedwhen   1via a first order approximation as [24]




r rD = ¢ =
D∣ ( )u v

u v

M
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T

TM

where r ¢ ∣M represents the derivative of r r+ D evaluated at ò=0.Noting thatDM is thematrix with all-

negative elements
m l b b l b

l b

- +å

å

 ( )
( )

i ij i i k ki k

k ki k
2 in equation (18), and that u and v are positive eigenvectors, we see that

rD as given in equation (18) is necessarily negative. Thus the largest eigenvalue decreases from1when there is
a non-zero possibility of innovation, which implies that the branching process becomes subcritical in the case
where an individualmay innovate. The change in eigenvectors associatedwith the largest eigenvalue as a result
of the perturbationmay also be calculated to give

 D » D D » D( ) ( ) ( )v v u uM M, . 19T

• Case 3:Multiplex withμi, cij�0
Considering now the entiremodel over amultiplexwith non-zero innovation and crossover probabilities,
equation (14)may be expressed as

m l b
m b l b
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We immediately note that the first term in the above is thematrix described by equation (16), whichwe have
shown hasmaximumeigenvalue less than one.Now let us consider how the second termon the right-hand-
side of equation (20) affects the structure of thematrix M. Againwe assume the crossover probabilities to be
small such that = c cij ij with cij being( )1 and   1. The elements with non-zeroλij are on the diagonal

blocks of thematrix such that each block,
~

aM , represents a layerα of themultiplex. Now as ò is increased from
zero the largest eigenvalue for each of these blocks will also decrease from1, which can be seen by using a
similar argument as in the case of amonoplex with innovation butwhere thematrix is perturbed (tofirst
order) by

 l b l b

l b

- å + å

å

 

( )
{ }

( )
c c

. 21
ij k ki k ki l lk l

k ki k
2

If thismatrix only consisted of these diagonal blocks such that = Å ~
a aM M , thematrix would have the same

set of eigenvalues as
~

a{ }M andwe could guarantee that the system is subcritical. Howeverwe also have the
components in equation (20)which are groupedwith the cij terms and these are all off-diagonal entries which
maymodify themaximum eigenvalue of thematrix. Letting r r r= + Da where ρα is the largest eigenvalue

ofÅ ~
a aM and considering = Å + D~ ~

a aM M M, whereD
~
M is thematrix with elements (tofirst order) given

by
b

l bå

cij i

k ki k
, we can determine the criticality of this systemusing ρα. Again the change in themaximum

eigenvalue (and its associated left and right eigenvectors) can be approximated tofirst order as

r
r r

D =
D

D =
D

D =
D~ ~ ~

a a

( ) ( )u v

u v
v

v
u

uM M M
, , , 22

T

T

T

5
Wenote that this assumption ismotivated by empirical data in [9], where the innovation probability for hashtags was estimated as

μ=0.055.
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where v (u) is the right (left) eigenvector associatedwith ρα. Similarly to the approach of [13]we consider here
the case of two layers (α=1, 2), but the argumentmay be easily generalized to an arbitrary number of layers.
The two scenarios wemust consider are ρ1?ρ2 (r r2 1 follows the same line of reasoning) and r r1 2.

When ρ1?ρ2, layer one has the dominant eigenvalue with associated eigenvectors

= =( ) ( ) ( )( ) ( )
v

v
u

u

0
,

0
, 23

1 1

and therefore the change inmaximumeigenvalue given by equation (22) is rD = 0. This implies that the
criticality of the branching process is determined by the layer of themultiplexwhich is itselfmost near to
criticality. In this sense the existence of a dominant layer guarantees that the system is subcritical.

In the case where r r=1 2 the eigenvectors related to themaximum eigenvalue of thematrix are given by

= =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )( )

( )

( )

( )
v

v
v u

u
u, , 24

1

2

1

2

and therefore the change in eigenvalue is given by

rD =
D + D

+

~ ~
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

u v u v

u v u v

M M
, 25

T T

2 12 1 1 21 2

1 1 2 2

whereD~Mab describes the block inmatrixD~M which represents coupling from layer a to b.We cannotmake
any definitive statement about the eigenvalue in this case, and sowe resort to numerical simulations.

3.2. Numerical simulation
Wenow consider numerical simulations to validate the results obtained in section 3.1, in these simulationswe
examine amultiplex composed of two layers (M=2), eachwithN=105 nodes obtained via a directed
configuration-model with out-degree distribution given by pk. To keep analysis as simple as possible we consider
the zero-memory case introduced in [5] such that if an account decides to retweet they always choose thememe
that is currently in their feed dF =[ ( ) ( )]t ti m m aswell as homogeneous parameters among users such that
m m b b l l= = = = "c c i j, , , and , ,i ij i ij . Time units are also chosen in the simulations such that on average
each user becomes active once permodel time unit, i.e.β=1. Finally, we also assume that each user has an
account on both platforms, such that the couplingmatrixC consists only of identitymatrices in both the off-
diagonal blocks.

To validate the results of section 3.1we consider twomultiplexes, the first of which consists of layers where
every account has exactly k followers; k=10 on thefirst layer and k=2 on the second, which results in one of
the layers having a dominant eigenvalue. The secondmultiplex consists of distinct networks on each layer both
with k=4, this ensures that the largest eigenvalues of each layer’smeanmatrix are very similar. To determine
the effect of the crossover probability we perform simulationswithμ=0.05 and c={0, 0.1, 0.8}. The resulting
CCDFofmemepopularities at age 10when the two layers have different out-degree distributions are shown in
figure 3(a) andwhen the layers have the same out-degree distribution infigure 3(b), we immediately note that
increased crossover probability results in larger cascades of retweet popularity which is justified by the fact that
there are nowmore users whomay retweet amemewhen it appears onmultiple platforms.

The numerical spectral analysis of this system for bothmultiplexes is also considered in table 1, which shows
the largest eigenvalue of thewhole system (ρ)in addition to each layer (ρ1, ρ2), for the crossover probabilities
shown infigures 3(a) and (b) as well as c={10−4, 10−3}. The results fromour perturbative analysis of themean
matrix in section 3.1may now also be considered; equation (21) suggests that with larger c values, themaximum
eigenvalue of each layer would decrease, which is which is consistent with the results in table 1. Secondly we note
that in the case where there exists a dominant layer (ρ1?ρ2), the spectral radius of the system’smeanmatrix is
approximately equal to that of the dominant layer, particularly for smaller c values, and in all cases the presence
of intra-layer linksmoves the system closer to its critical point. The case where themeanmatrices of both layers
have similar leading eigenvalues (ρ1≈ρ2)may also be analyzed. In this case, for the smallest c values (0, 10−4),
the largest eigenvalue of the system is approximately equal to that of the dominant layer, however the
perturbative effect noted by equation (25) soon becomes apparent as the crossover probability increases, such
that even for c values as small as 10−3 the largest eigenvalue of the system is noticeably different from that of the
dominant layer and in fact for crossover probabilities ofmuch largermagnitude (0.8) it appears that the system is
much closer to its critical point than either of the layers individually.

Finally, we comment on the fact that in all examples described here the system is subcritical andwe
hypothesize that this system is in fact subcritical for all valid parameter values (while approaching criticality as
the innovation probabilities tend toward zero).We hope that this result will encourage further research into the
criticality of this systemwith the aimof validating this hypothesis.
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4.Discussion

In this paper we have extended themodel formeme spreading that was introduced in [7, 9]. Instead of assuming
that all nodes in each degree-class of the network behave the same, we here consider a specific network, defined
by its adjacencymatrix. In addition, we allow for each individual user i to have his/her ownparameter values,
such as tweeting activity rateβi.Moreover, we generalize beyond themonoplex (single-platform) case
considered in [7, 9] tomodel the effects of users having accounts onmultiple socialmedia and potentially
sharing information across platforms.

By developing an analytical approximation in terms of amulti-type branching process, we derive the
equations (5) and (11) for the probability generating functions ofmemepopularity. Although the complexity of
these equations renders them intractable for large networks, we can nevertheless investigate the criticality of the
branching process by spectral analysis of themeanmatrix (equation (14)).We have twomain results. First, we
show that the criticality of the dynamical system formonoplex networks, as found in [7, 9] for the vanishing-
innovation limit, is robust,meaning that themulti-type branching process for a specific network (andwith user-
specific parameters) is also critical in the limit of zero innovation. Secondly, whenwe consider amultiplex
network tomodel cross-platform transmission of informationwe show that the criticality of the system can be
reduced to the spectral analysis of themeanmatrix (equation (14)). In the case where the innovation probability
is small, we show that if one layer of themultiplex has a dominant eigenvalue then the criticality of themulti-type
branching process is determined by the layer of themultiplex that is closest to criticality. In the case where two
layers have similar eigenvalues the analysis ismore difficult, but numerical experiments suggest that the system is
subcritical for all parameter values.We have also showndetailed numerical simulations of thismodel which
results in heavy-tailed popularity distributions for a number of parameter values, and suggests that the potential
for crossover between platforms results in larger cascades ofmeme popularity than on single-layer networks.
Direct calculations of the spectral radius of themeanmatrix in these simulationswere also performed and

Figure 3.Complimentary cumulative distribution functions formeme popularity at age 10 obtained via numerical simulations with
μ=0.05 andmultiple c values, two differentmultiplexes are considered eachwith two layers of sizeN=105. Themultiplex used in
(a) consists of layers with d=pk k,10 and d=pk k,2, while in (b) both layers have d=pk k,4. Dashed lines correspond toCCDFs for
power law popularity distributions given by g-n .

Table 1. Leading eigenvalues, ρ, of the system’smeanmatrix, for the twomultiplexes
described in section 3.2, where each layer has out-degree distribution given by pk.
Various crossover probabilities, c, are considered and in all casesμ=0.05. Also
shown is the leading eigenvalue of each individual layer’smeanmatrix (r r,1 2).We
consider the case where there exists a dominant layer (ρ1?ρ2) and also the
contrary (r r»1 2).

ρ1?ρ2 ρ1≈ρ2

pk δk,10 δk,2 δk,4 δk,4

c ρ ρ1 ρ2 ρ ρ1 ρ2

0 0.9889 0.9889 0.8508 0.9178 0.9178 0.9174

10−4 0.9887 0.9887 0.8506 0.9177 0.9177 0.9173

10−3 0.9878 0.9878 0.8459 0.9171 0.9166 0.9162

10−1 0.9000 0.8899 0.7361 0.8496 0.8122 0.8118

0.8 0.5915 0.5236 0.3813 0.8941 0.4516 0.4514
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further validated our results regarding the dependence of the system’s criticality upon the existence (or not) of a
dominant layer.

In conclusion, we believe that the generalization of the results of [7, 9] beyond randomnetworks to
demonstrate the possibility of near-critical dynamics in specific andmultiplex networks is potentially important
to the understanding of information spreading in real-world scenarios. Ourmain approximation is the
assumption of branching-process dynamics within themodel, but such approximations have been found to be
quite accurate in similar dynamical systems on networks [20, 25].We hope that the proof of possible near-
critical dynamics in this simplemodel of human behavior will inspire further theoretical and empirical work on
information spreading inmultiplex networks.

Acknowledgments

Thisworkwas supported by Science Foundation Ireland grant numbers 16/IA/4470, 16/RC/3918 (J.D.O’B and
J.P.G), and 15/IA/3074 (I.K.D).

Appendix. Proof of criticality of M

Theorem.The largest eigenvalue of thematrix  = [ ]mM ij i j N1 , , with elements

b l

l b
=

å
= ¼

=

m i j N, , 1, 2, , ,ij
i ij

k
N

ki k1

is 1.

Proof. If Îz is eigenvalue of M, and = [ ]u u u u... N
T

1 2 is the corresponding eigenvector we have:
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we canwrite equation (26) as
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or, equivalently,
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DefiningB as thematrix
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wenow suppose that an eigenvaluewith >∣ ∣z 1exists, andwewill show that we arrive at a contradiction.
Considering column j of thematrixB, we observe that since ∣ ∣z is assumed to be greater than 1,
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å å
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Since all the bj, cj,λij are non-negative we have

å b l b l b l< - -
¹

∣ ∣ ∣ ∣ ∣ ∣zc zc .
i j

N

i ij j j jj j j jj

This implies that thematrix ( )zM is strictly diagonally dominant, i.e. ( )zM is non-singular (this can be proved
by using theGershgorin circle theorem, see [26]). However, if ( )zM is non-singular then û, and consequently u,
will be equal to 0N,1, contradicting the fact that u is an eigenvector of z. Thus, based on assuming >∣ ∣z 1we have
derived a contradiction and sowe conclude that there do not exist eigenvalues with >∣ ∣z 1.

For z=1 thematrix ( )zM takes the form

b l b l b l
b l b l b l

b l b l b l

=
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It is easy to observe that each columnof ( )M 1 sums to zero, i.e. ( )M 1 is singular, and z=1 is an eigenvalue of M.
This completes the proof.
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