Promotion of Mefenamic acid Nucleation by a Surfactant Additive, Docusate Sodium
Katalin Bodnár, Sarah P. Hudson, and Åke C. Rasmuson

Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.8b00995 • Publication Date (Web): 18 Dec 2018
Downloaded from http://pubs.acs.org on January 2, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Promotion of Mefenamic acid Nucleation by a Surfactant Additive, Docusate Sodium

Katalin Bodnár, Sarah P. Hudson, Åke C. Rasmuson*

Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland

* E-mail: Ake.Rasmuson@ul.ie

ABSTRACT: The influence of docusate sodium (DOSS) on the nucleation of mefenamic acid (MEF) has been studied in different dimethylacetamide (DMA) – water mixtures. A series of induction time experiments were conducted under moderate supersaturations, varying the solvent composition and the concentration of DOSS. In 40 % DMA – 60 % water, the presence of 0.1 mg/mL and 0.2 mg/mL DOSS increased the nucleation rate. Evaluating the results by the classical nucleation theory reveals that the pre-exponential factor \(A \) increases by approximately 50 % while the interfacial energy is essentially uninfluenced. It is also found that the crystal growth rate becomes higher in the presence of DOSS. It is thus hypothesized that transport and desolvation of MEF molecules is facilitated in the presence of DOSS. With increasing amount of DMA in the binary solvent mixture, the influence of DOSS appears to decrease.
1. INTRODUCTION

Many potential drug candidates have poor water solubility and slow dissolution rates in vivo, leading to limited bioavailability and failure to reach the market\(^1\). Antisolvent precipitation is a potential low-energy crystallization method for the industrial production of drug nanocrystals with an improved bioavailability\(^2\). Additives are generally used in the process to promote nucleation, inhibit crystal growth and stabilize the system against subsequent particle transformation\(^3,4\). Specifically, enhancement of nucleation can decrease the initial crystal size. By increasing the rate of nucleation, a higher number of nuclei forms and thus, smaller crystal sizes can be achieved. However, the identification of suitable additives for each drug is challenging due to the lack of knowledge about the specific action of different additives in the nanocrystal preparation process.

The mechanisms by which additives promote the nucleation of a compound is a topic of intensive interest in the crystallization community\(^5\). It is known that the presence of a larger amount of additive can decrease the solubility of a compound, increasing the thermodynamic driving force for nucleation. Recently, Mochizuki et al.\(^6\) found that even low concentration of additives could promote homogeneous nucleation of ice through increasing the activity of water in solution. Electrolytes were found to promote the nucleation of glycine\(^7\) and DL-alanine\(^8\) by inducing a head-to-tail molecular ordering. Computational and theoretical studies\(^9,10,11,12\) propose that surfactant type or surface active oligomeric additives can reduce the nucleus – solution interfacial energy and thus, reduce the nucleation work upon adsorption to the interface. In addition, additives that can stabilize the nuclei may act as heterogeneous nucleation centres\(^13,14,15\).

There are only a limited number of studies showing direct experimental evidence of the promotion of nucleation of organic compounds by soluble organic additives. Kim and co-workers\(^16\) conducted induction time experiments using moderate supersaturations and found that
amphiphilic additives promoted the nucleation of the hexahydro-1,3,5-trinitro-1,3,5-triazine molecule. However, the results showed an increasing nucleation rate over time in contrast to a stationary rate assumed by the classical nucleation theory and thus, they were unable to estimate interfacial energy values for the studied systems. Poornachary et al.17 found that polyvinylpyrrolidone (PVP) promoted the nucleation of naproxen crystals by increasing the pre-exponential factor with an insignificant change in the thermodynamic parameter and thus, interfacial energy for nucleation. The authors concluded that PVP acted as a heterogeneous nucleation centre in the crystallization process.

In an earlier study18, an anionic surfactant, docusate sodium (DOSS), had to be added to produce nanocrystals of a poorly water-soluble compound, mefenamic acid (MEF), during an antisolvent precipitation process in 5\% dimethylacetamide (DMA) – 95\% water system. Since the final size of the nucleating crystals is governed by the number of formed nuclei and thus, the nucleation rate, the reduction of the crystal size suggested that DOSS accelerated the nucleation of MEF. The approximately threefold reduction of the crystal volume in the presence of 1 mg/mL DOSS corresponds to a threefold increase in the number of formed nuclei, suggesting an approximately threefold increase of the nucleation rate. An increase in nucleation rate by the addition of additives is less commonly encountered than the opposite, so experimental evidence that the nucleation rate actually increased is needed. In order to produce nanocrystals of MEF, a very high supersaturation needs to be generated. This was achieved by using a high water concentration as MEF is essentially insoluble in water. However, at these conditions the induction time is extremely short and thus difficult to measure with sufficient accuracy. In addition, primary nucleation is a highly stochastic process and thus the nucleation rate at each condition must be recorded in repeated experiments. Commonly this is done in parallel cooling crystallization experiments where 10 – 30 experiments on the millilitre scale are observed
simultaneously at isothermal conditions after the creation of supersaturation19,20,21 and where the cooling and reheating can be cycled to collect perhaps a hundred recordings of the induction time at each condition. However, supersaturation generation by cooling can only be used for induction times in the order of minutes and longer, at lower supersaturations and water content of the solutions, and thus not for the supersaturation experiments used in the nanocrystal manufacturing method for mefenamic acid. Measurement of shorter induction times at higher supersaturations, in solutions having a higher concentration of water, requires an antisolvent method. However, to operate 50 – 100 repeated antisolvent experiments is of course much more demanding as the antisolvent needs to be injected in every individual vial, and the experiment cannot be repeated without replacing the solution with fresh material.

In this work, the influence of DOSS on the nucleation of a MEF solution is studied with the aim being to elucidate the action of DOSS in the nanocrystal formation process of MEF. A series of induction time experiments were performed at isothermal conditions in the absence or presence of DOSS, varying the supersaturation and the ratio of the drug to the additive. Initially, supersaturation was created using the conventional cooling crystallization method in 70 % DMA – 30 % water solvent system. This allowed for parallel crystallization experiments of up to 15 vials to be performed and recycling of the solution, significantly reducing chemical waste and labour expenses. However, no influence of DOSS on the nucleation rate was found perhaps related to the much higher DMA content and lower supersaturations compared to the originally used conditions during the preparation of MEF nanocrystals18. A more laborious antisolvent crystallization method17, where the solutions had to be mixed in each separate vial to achieve a desired composition, allowed for the study of significantly shorter induction times in 40 % DMA – 60 % water solvent mixtures and at higher levels of supersaturation. Under these latter conditions, DOSS enhanced the nucleation of MEF. The results are analyzed within the
framework of the classical nucleation theory (CNT), and a mechanism for the nucleation enhancement and the influence of solvent composition is proposed.

2. THEORY

According to CNT, the stationary rate of primary crystal nucleation, J, is defined as the number of crystals formed per a unit volume and time, and can be expressed as 22,23,24:

$$J = z f^* C^* = z f^* C_0 \exp \left(- \frac{\Delta G}{kT} \right)$$ \hspace{1cm} (1)

where C^* is the equilibrium concentration of critical nuclei, f^* is the frequency of attachment of building units to the critical nucleus and z is the Zeldovich factor. The term C^* includes the thermodynamic information about the nucleation process, being the product of the concentration of nucleation sites in the system, C_0, and an exponential term containing the free energy barrier, ΔG, that must be surpassed for nucleation to occur as well as the Boltzmann constant (k) and absolute temperature (T). For homogeneous nucleation assuming a spherical nucleus, ΔG can be expressed as 22:

$$\Delta G = \frac{16 \pi}{3} \frac{v_m^2 \gamma^3}{(kT)^2 \ln^2 S}$$ \hspace{1cm} (2)

where v_m is the volume of a molecule in the crystal, γ is the interfacial energy and S is the supersaturation, calculated in this paper by dividing the molar concentration (mol/L) of the molecules in the supersaturated solution with the equilibrium concentration. Note that the ratio of concentrations in the unit of mol/L for the same compound is equal to the ratio of concentrations in the unit of mg/mL, which concentration unit is also used herein for easier representation of the data.

The Zeldovich factor can be written as 22:
\[z = \frac{\ln^2 S (kT)^{\frac{1}{2}}}{8\pi
u_m \gamma^{\frac{1}{2}}} \]

Attachment of monomers occurs by diffusion of the solute in the bulk solution towards the nucleus and by transferring the solute from the vicinity of the nucleus to a position incorporated in the nucleus. Assuming interface transfer control, the attachment frequency can be expressed as:

\[f^* = \lambda A^* c \frac{D}{d} = \lambda 8\pi \left(\frac{4\pi}{3} \right)^{\frac{1}{3}} u_m^{5/3} \gamma^2 c_d D \frac{S}{(kT)^2 \ln^2 S} \]

where \(\lambda \) is the sticking coefficient accounting for the molecules in the vicinity of the nucleus that do not adsorb to the nucleus, \(A^* \) is the surface of the nucleus, \(c \) is the concentration of the monomers in the solution, \(d \) is the distance of the jump that could be approximated by the molecular diameter and \(D \) is the diffusion coefficient. \(D \) can be expressed with an Arrhenius type equation \((D=D_0 \exp(-\Delta E/kT)) \) where \(\Delta E \) describes an energy barrier associated with a desolvation process and/or conformational change of the molecule during incorporation into the nucleus. Expressing \(c \) using \(S \) and elaborating the term \(A^* \) for a spherical nuclei provides the form of the attachment frequency on the right hand side of the formula.

The above equations for the free energy barrier (2), Zeldovich factor (3), and attachment frequency (4) are derived assuming homogeneous nucleation and spherical nuclei. It is possible, however, that heterogeneous nucleation occurs on a surface that can stabilise the nucleus by lowering the interfacial energy and thus, the energy barrier for nucleation. For heterogeneous nucleation, the above formulas can be used by replacing the interfacial energy with an effective interfacial energy accounting for the influence of the heterogeneous surface\(^{22}\). The geometry of a non-spherical nucleus can be also considered by using numerical corrections.

By combining (1)-(4), the nucleation rate can be expressed as:\(^{22}\):
\[J = A S \exp\left(-\frac{B}{\ln^2 S} \right) \]

(5)

3. MATERIALS AND METHODS

The experimental work of this study includes determination of the solubility of mefenamic acid polymorphs (stable Form I and where relevant, metastable Form II) and nucleation induction times in 40 % DMA – 60 % water and in 70 % DMA – 30 % water, in the presence and absence of the surfactant docusate sodium. In the nucleation experiments the supersaturation is generated by antisolvent addition or cooling, respectively. For both solvent systems, the crystallized solid has been isolated for determination of the polymorphic form. In the 40 % DMA – 60 % water mixture, also the timescale of transformation of Form II to Form I has been studied.

3.1. Materials

Mefenamic acid (MEF, Form I, >98 %), N,N-dimethylacetamide (DMA, >99.9 %), acetonitrile (ACN), acetic acid, sodium docusate (dioctyl sulfosuccinate sodium salt, DOSS), and sodium acetate were obtained from Sigma Aldrich. Tetrahydrofuran (THF) was purchased from VWR. Deionized water was used for aqueous solutions (18 MΩ, ELGA, Purelab Ultra). All chemicals were used as received.

The metastable polymorphic form, MEF Form II, was prepared as a reference material by heating the as received MEF Form I to 160 °C for 48 hours\(^2\). The structural purity of the product was examined by PXRD and FTIR.

3.2. Solubility Studies

The solubility of the stable MEF polymorph, Form I in 40 % DMA – 60 % water (v/v) was determined at the crystallization temperature \(T_{\text{cryst}}\) of 25 °C in the absence and presence of 0.2
mg/mL DOSS from six separate solubility experiments. Here v/v % represents the volume fraction of solvents mixed for creating the specific cosolvent system. The solubility of Form I in 70 % DMA – 30 % water (v/v) was measured at the crystallization temperature (T_{cryst}) of 15 °C in the presence of 0-5 mg/mL DOSS, as well as at 20 °C, 30 °C and 35 °C in the absence of DOSS to estimate the saturation temperature (T_{sat}) at which a solution with a given concentration is saturated. In this solvent system, three separate solubility experiments were done at each condition of DOSS concentration and temperature. In all cases, solutions were saturated by adding an excess of Form I solid to the corresponding solvent mixture and placing into a water bath (Grant GR150, accuracy ± 0.1 °C) under magnetic stirring at 400 rpm. After 24 h, the stirrer was switched off and the suspensions were left to settle for 24 h. From each solution a 2 mL sample was then filtered with nylon (with 40 % DMA) or polytetrafluoroethylene (PTFE) (with 70 % DMA) syringe filters (0.2 µm pore size, VWR), discarding the first mL to avoid possible adsorption of the MEF molecules to the filter membrane. While a hydrophilic nylon membrane was suitable for filtering solutions containing 60 % water, an organic solvent resistant PTFE was used to avoid possible degradation of the filter material with 70 % DMA. In case of both solvent systems, the filtrate was diluted with 70 % DMA – 30 % water and analyzed using an Agilent high performance liquid chromatography system (HPLC) at a detection wavelength of 285 nm. The mobile phase consisted of 55 % sodium acetate buffer at 50 mM, pH 5 and 45 % ACN:THF (23:7) solvent mixture. The chromatographic separation was carried out using a reverse phase C₈ column (250 mm x 4.6 mm) and 1 mL/min flow rate. The volume of the injected sample was 20 µL. Powder X-ray diffraction experiments verified that the crystalline state of the suspended MEF Form I did not change during the equilibration.

The determination of the solubility of the metastable Form II polymorph is more challenging because of the tendency for polymorphic transformation. Thus in the present work, the solubility
of Form II crystals was estimated from the mole fraction solubility ratio (x_{II}/x^I) determined by Romero et al.26 at 25.0 °C in different solvents, as this value is almost independent of the choice of solvent, representing the relative stability of the forms at a certain temperature (fundamental justification is given in Supporting Information). The mole fraction solubility ratio of MEF Form II and Form I at 25.0 °C was reported to be 1.37 in water, 1.40 in ethanol and 1.28 in ethyl acetate26. Considering that polymorphic transformation is the fastest when the solubility is the highest, \textit{i.e.} in ethyl acetate26, and the solubility determination is more uncertain at low solubility, \textit{i.e.} in water26, the highest mole fraction solubility ratio measured in ethanol, 1.40, has been selected for the solubility calculation of MEF Form II at 25.0 °C.

In 40 % DMA – 60 % water at 25.0 °C, the solubility of the stable MEF Form I was 0.065 ± 0.003 mg/mL, and remained the same in the presence of 0.2 mg/mL DOSS (Table 1). The solubility of the metastable MEF Form II was calculated to be 0.091 ± 0.004 mg/mL. In 70 % DMA – 30 % water the solubility of MEF Form I at 15.0 °C was 3.80 ± 0.01 mg/mL and did not change in the presence of 1 mg/mL DOSS but increased slightly to 3.92 ± 0.03 mg/mL in the presence of 5 mg/mL DOSS. The solubility in 70 % DMA – 30 % water in the absence of DOSS determined at different temperatures are graphed on Figure S1 (Supporting Information) along with an exponential fit to calculate Form I saturation temperatures for any given concentration relevant to supersaturation generation by cooling crystallization.

Table 1 Solubility of MEF in 40 % DMA – 60 % water at 25 °C and in 70 % DMA – 30 % water at 15 °C in the absence and presence of different concentrations of DOSS. Standard deviation is calculated from six (40 % DMA – 60 % w) or three (70 % DMA – 30 % w) repeat of the entire solubility determination experiment.
3.3. Induction time experiments

Induction time refers to the time elapsed from the moment of the creation of supersaturation until the detection of the first crystals. Two different procedures, antisolvent crystallization (40 % DMA – 60 % water) and cooling crystallization, were used to generate supersaturation. Although supersaturation generation was different, crystallization occurred at isothermal conditions in both crystallization procedures at relatively similar temperatures, providing a basis for the comparison of the results. The program of induction time experiments is presented in Table 2, including the temperature of crystallization, the polymorphic outcome and supersaturations calculated based on the solubility results from Table 1. Throughout the paper, S^I denotes supersaturation calculated with respect to Form I, whereas S^{II} denotes supersaturation calculated with respect to Form II. Polymorphic behavior of the systems, providing a basis for the calculation of supersaturation, is presented later, in section 4.1. In both systems, the concentration of DOSS was selected to achieve molar ratios comparable to the originally used $n_{DOSS}/n_{MEF} = 0.29$ during the preparation of MEF nanocrystals in 5 % DMA – 95 % water\(^1\).
Table 2. Induction time experiments performed, temperature of crystallization (T_{cryst}), concentration of MEF (c_{MEF}) and DOSS (c_{DOSS}) in the final solvent mixture, the molar ratio of DOSS to MEF ($n_{\text{DOSS}}/n_{\text{MEF}}$), nucleating polymorphic form and supersaturation (S)

<table>
<thead>
<tr>
<th>% (v/v) of DMA</th>
<th>Generation of supersaturation</th>
<th>T_{cryst} / °C</th>
<th>c_{MEF} / mg∙mL$^{-1}$</th>
<th>c_{DOSS} / mg∙mL$^{-1}$</th>
<th>$n_{\text{DOSS}}/n_{\text{MEF}}$</th>
<th>Polymorphic form</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Antisolvent crystallization</td>
<td>25</td>
<td>0.40</td>
<td>0</td>
<td>0</td>
<td>Form II</td>
<td>4.40$^\text{II}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>Form II</td>
<td>3.30$^\text{II}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
<td>0</td>
<td>0</td>
<td>Form II</td>
<td>2.64$^\text{II}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td>0</td>
<td>0</td>
<td>Form II</td>
<td>2.20$^\text{II}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Cooling crystallization</td>
<td>15</td>
<td>7.55</td>
<td>0</td>
<td>0</td>
<td>Form I</td>
<td>1.99$^\text{I}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.66</td>
<td>1</td>
<td>0.08</td>
<td>Form I</td>
<td>1.75$^\text{I}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0.41</td>
<td></td>
<td></td>
<td>1.70$^\text{I}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.81</td>
<td>0</td>
<td>0</td>
<td>Form I</td>
<td>1.53$^\text{I}$</td>
</tr>
</tbody>
</table>

$^\text{I}$S is calculated based on Form I solubility

$^\text{II}$S is calculated based on Form II solubility

In the case of the 40 % DMA – 60 % water solvent system, supersaturation (S_{II}=4.40 – 2.20) was created by antisolvent crystallization at T_{cryst}=25.0 °C. MEF solution (solution 1) was prepared in 80 % DMA – 20 % water (v/v) and filtered with a PTFE syringe filter (0.2 µm, VWR) after overnight stirring. The antisolvent solution (solution 2) consisted of 5.9 mL deionised water or aqueous DOSS solution premixed with 3.6 mL DMA. When DOSS was used,
the antisolvent solution was filtered with a nylon syringe filter (0.2 µm, VWR) to remove particulate impurities. For an induction time experiment, 0.5 mL MEF solution (solution 1) was pipetted into 9.5 mL antisolvent solution (solution 2) giving a final solvent composition of 40 % DMA – 60 % water. The mixed solution was stirred at 300 rpm using a magnetic stir bar and the induction time was recorded with a camera. The visually detectable level of the mixing of the two phases was complete within 4 s. Since the mixing of DMA and water is highly exothermic, premixing of the major part of DMA and water as the antisolvent solution prior the addition of MEF solution allowed for the reduction of the initial temperature rise to less than 0.2 °C. The recorded videos were analyzed by the naked eye, carefully comparing snapshots prior to and after the visual appearance of crystals. The uncertainty of the detection technique itself, estimated from repeated analysis of the induction time video for a given vial of nucleating solution is 3-4 seconds at $S^\text{II}=4.40$, increasing to 5-10 s at $S^\text{II}=2.20$. The use of lower supersaturations was restricted due to the decreasing turbidity of the system as a result of the lower mass crystallized. A 59-91 data points were measured for each condition to account for the stochastic nature of nucleation.

In the case of 70 % DMA – 30 % water, supersaturation ($S^l=1.99 – 1.53$) was generated by cooling the solution below its saturation temperature, to $T_{\text{cryst}}=15$ °C. A 250 mL stock solution was prepared by dissolving a known amount of MEF in the premixed solvent mixture at a T_{diss} dissolution temperature, 16 °C above the corresponding saturation temperature ($T_{\text{diss}}=T_{\text{sat}}+16$ °C) using submersible magnetic stirrer plate for mixing (400 rpm, 4 h). Based on solubility results (Figure S1 in Supporting Information), T_{diss} was 40.0 °C, 42.8 °C and 45.0 °C for $S^l=1.53$, $S^l=1.75$ and $S^l=1.99$, respectively. Then, the solution was filtered with preheated syringes equipped with PTFE filters (0.2 µm, VWR) to eliminate particulate impurities. This batch solution was subjected to two crystallization cycles prior to recording any induction times (pre-treatment cycles) in order to overcome history of solution/filtration effects: first crystallization at
5 °C followed by dissolution of the crystals at T_{diss} (4 h), then crystallization at $T_{\text{cryst}}=15$ °C followed by dissolution of the crystals at T_{diss} (3 h). Fifteen mL solutions were then distributed into 15 preheated vials containing a magnetic stir bar and left to equilibrate for another 2 h at T_{diss}. To start the induction time experiments, the vials were placed into a waterbath at $T_{\text{cryst}}=15$ °C and stirrer speed of 250 rpm, and a high resolution camera was started to record the induction time by visual inspection. Due to the 3-4 min initial cooling period to the crystallization temperature, also measured as a part of the induction time, only supersaturations giving sufficiently large induction times (>10 min) could be studied using this method to ensure that nucleation occurs at isothermal conditions. After crystallization, the vials were placed back into the waterbath at T_{diss} for dissolution (5 h) and the crystallization cycle was repeated ($T_{\text{cryst}} - T_{\text{diss}} - T_{\text{cryst}}$ and so on) to collect 90-105 and 60-75 induction time data in the absence and presence of DOSS, respectively.

3.4. Isolation and characterization of the crystals

In the case of 40 % DMA – 60 % water solvent system, two drying methods have been used to understand the polymorphic behavior of the systems. (1) At $S_{\text{II}}=4.40$ in the absence of DOSS, crystals were isolated by filtration at different times (8 min, 15 min and 3.5 hours) after the first detection of crystallization and dried under high vacuum (<27 Pa) at room temperature for 16 h. (2) At $S_{\text{II}}=4.40$ and $S_{\text{II}}=2.20$, in the absence and presence of 0.1-0.2 mg/mL DOSS, crystals were isolated by filtration, 8 min (in case of $S_{\text{II}}=4.40$) or 15 min (in case of $S_{\text{II}}=2.20$) after the first detection of crystallization and dried at 50 °C for 1 h. Due to the very low crystallizing mass, these selected times were required to ensure enough sample for characterization. While drying at room temperature was employed to slow down polymorphic transformation during drying, the obtained crystals were partially defected because of the high vacuum. Thus, the second drying
method using higher temperature but atmospheric pressure was used further on to avoid
sublimation of the crystals.

In case of 70% DMA – 30 % water, crystals were isolated by filtration, 8 min (S_I=1.99) or 15-
20 min (S_I=1.75 and S_I=1.70) after the first detection of crystallization and dried at 50 °C for 1
hour.

The polymorphic form of the crystals, in cases of small crystallization yields, was
characterized by Fourier transform infrared (IR) spectroscopy, employing a Perkin Elmer
Spectrum 100 ATR FTIR. Spectra were recorded between 650-4000 cm\(^{-1}\) using 2 cm\(^{-1}\) spectral
resolution and 32 scan per sample. Three samples were characterized at each condition unless
otherwise stated.

The polymorphic form of the crystals nucleated in 70 % DMA – 30 % water at S_I=1.99,
having a larger crystallization yield, was verified using a Philips PANalytical X’pert powder X-
ray diffractometer. The sample was placed between amorphous tapes and measured in
transmission geometry using Ni filtered Cu Kα radiation (\(\lambda=1.54\ \text{Å}\)), 40 kV accelerating voltage
and 40 mA anode current. The diffraction pattern was collected between 5° and 30° (2θ) and the
separately measured diffraction pattern of the amorphous tape was subtracted from the
diffractogram.

The size and habit of the isolated crystals were analyzed by a HITACHI SU-70 scanning
electron microscope at 3 kV. To prepare the samples, a small amount of isolated particle was
placed onto an adhesive carbon tape attached to a cylindrical aluminum sample holder and gold
sputtered at 20 mA for 1 minute using an EMITECH K550. Two samples were characterized at
each condition.
4. RESULTS

4.1. Polymorphic behaviour of the systems

Example IR spectra of the crystals nucleated in 40 % DMA – 60 % water at $S^{II}$$=4.40$ and $S^{II}$$=2.20$ in the absence and presence of 0.1-0.2 mg/mL DOSS and dried at 50 °C are shown in Figure 1, whereas additional spectra of repeated samples are shown in Figure S2 ($S^{II}$$=4.40$) and in Figure S3 ($S^{II}$$=2.20$) in the Supporting Information. The stable Form I and the metastable Form II polymorphs can be distinguished by the band position associated with the amine stretch25,27, being 3308 cm$^{-1}$ with a shoulder at 3344 cm$^{-1}$ for Form I and a single peak at 3344 cm$^{-1}$ for Form II. Looking at $S^{II}$$=4.40$ in Figure 1 and Figure S2, several samples contain only Form II crystals and in case of the mixtures, Form II crystals are dominating with a small amount of Form I. This indicates that the metastable Form II crystals are nucleating initially and the stable Form I crystals appear as a result of polymorphic transformation. At $S^{II}$$=2.20$ shown in Figure 1 and Figure S3, the majority of the isolated samples are a mixture of Form II and Form I crystals (eight out of nine samples) with one exception at 0.2 mg/mL DOSS being only Form I. The higher ratio of Form I crystals in these samples as opposed to at $S^{II}$$=4.40$ is likely to be the result of longer suspension aging time, being 15 min as opposed to 8 min at $S^{II}$$=4.40$. At both supersaturations, no clear influence of DOSS on the polymorphic form was observed.

The timescale of polymorphic transformation was tested at $S^{II}$$=4.40$ in the absence of DOSS by isolating samples at different times after the detection of crystallization and drying under high vacuum at room temperature. Compared to drying at 50 °C (Figure 1), this drying condition provided pure Form II samples or samples containing a significantly lower amount of Form I crystals when isolated after the same 8 min aging time (Figure S4 in Supporting Information). Increasing the aging time to 15 min substantially increased the amount of Form I crystals in the sample, and after 3.5 h aging pure Form I crystals or Form I crystals with a very small amount of
Form II were obtained. These results verify that the timescale of polymorphic transformation is indeed short and even more accelerated by drying at higher temperatures, supporting the hypothesis that the presence of Form I crystals in the samples crystallized at S_II^{II}=4.40 or S_II^{II}=2.20 and dried at 50 °C is due to polymorphic transformation. Therefore supersaturation is calculated with respect to Form II solubility in 40 % DMA – 60 % water systems.

Figure 1 IR spectra of pure MEF polymorphs and MEF crystals nucleated in the absence or presence of DOSS at different supersaturations. At S_II^{II}=4.40, crystals were isolated at 8 min aging time, whereas at S_II^{II}=2.20, crystals were isolated after 15 min aging time, and crystals were dried at 50 °C. S_II^{II} is calculated based on the solubility of the nucleating Form II crystals.

In 70 % DMA – 30 % water, in the pure MEF system at S_I^{I}=1.99, Form I crystals were isolated (Figure 2). Since Form I crystals have a weak adsorption band in the IR spectra at the same
position as the main band of Form II crystals, 3344 cm\(^{-1}\), the absence of Form II crystals in the sample was verified using PXRD (Figure S5 in Supporting Information). At \(S^I=1.75\), the addition of 1 mg/mL and 5 mg/mL DOSS did not have an influence on the polymorphic form of the crystals, yielding Form I crystals in each case. Since only the stable polymorphic form was isolated at \(S^I=1.99\) and \(S^I=1.75\), the crystals at \(S^I=1.53\) are also expected to be Form I. Therefore supersaturation is calculated with respect to Form I solubility in 70 % DMA – 30 % water systems.

![Figure 2 IR spectra of pure MEF polymorphs and MEF crystals nucleated in the absence or presence of DOSS at different supersaturations. At \(S^I=1.99\), crystals were isolated at 8 min aging time, whereas at \(S^I=1.75\) and 1.70, crystals were isolated after 15-20 min aging time. \(S^I\) is calculated based on the solubility of the nucleating Form I crystals.](image-url)
Figure 3 presents SEM images of the crystals obtained from 40 % DMA – 60 % water. Based on IR, most of the samples presented herein are a mixture of Form I and Form II crystals (except at $S^{II}=4.40$, 0.1 mg/mL DOSS) with the images focusing on the initially nucleating Form II crystals. In the absence of DOSS, Form II crystals had parallelepiped habit at both $S^{II}=4.40$ and $S^{II}=2.20$, having more evolved facets at $S^{II}=2.20$. The presence of DOSS, irrespective of the concentration used, did not have a noticeable influence on the habit indicating no specific face for adsorption of the surfactant molecule. The habit of Form I crystals present in the same samples, when found in the case of polymorph mixtures, was distinctly different being plate-like at all studied conditions (Figure S6 in Supporting Information). Similarly, in 70 % DMA – 30 % water at $S^I=1.75$ in the absence of DOSS, the habit of the Form I crystals was plate-like, and did not change upon the addition of 1 mg/mL or 5 mg/mL DOSS (Figure 4.)
Figure 3 SEM images of MEF crystals prepared in the absence or presence of DOSS in 40 % DMA – 60 % water, at SII=4.40 (isolated at 8 min) and at SII=2.20 (isolated at 15 min). Based on IR, samples are a mixture of Form I and Form II crystals except at SII=4.40, 0.1 mg/mL DOSS, with the images focusing on mainly Form II crystals (parallelepiped shape). SII is calculated based on Form I solubility.

![SEM images of MEF crystals](image)

Figure 4 SEM images of crystals prepared in the absence and presence of DOSS in 70 % DMA – 30 % water. Crystals were isolated after 15-20 min aging and are pure Form I. SI is calculated based on Form I solubility.

4.2. Induction time probability distributions

Figure 5 shows the experimental probability distribution of induction times of MEF in 40 % DMA – 60 % water at SII=4.40-2.20 in the absence or presence of 0.1 mg/mL and 0.2 mg/mL DOSS. For each system, the induction times and the width of the distributions are systematically increasing with decreasing supersaturation, where the scattering of the data is attributed to the inherent stochasticity of nucleation events28,29,30 and influenced by the experimental technique used31. In the absence of DOSS, the measured induction times were in the range of 27 s – 74 s at SII=4.40 and increased to 92 s – 370 s with decreasing the supersaturation to SII=2.20. In the presence of DOSS, overall shorter induction times were measured at each supersaturation examined but the measured distributions did not depend on the DOSS concentration.
Figure 5 Experimental probability distributions of induction times of MEF in the absence or presence of DOSS at different supersaturations. Green triangle (△): pure MEF; blue circle (○): MEF with 0.1 mg/mL DOSS; red rhombus (◆): MEF with 0.2 mg/mL DOSS. The fit to equation (6), described in section 4.3, is also shown. S^{II} is calculated based on the solubility of the nucleating Form II crystals.

In a 70 % DMA – 30 % water solvent mixture, presented in Figure 6, the induction times varied from ten minutes to hours at S^{I}=1.99-1.53, in contrast to induction times of couple of ten seconds to minutes measured in 40 % DMA – 60 % water systems at higher supersaturations. At S^{I}=1.75, the addition of 1 mg/mL DOSS only slightly shifted the distribution to longer induction times compared to the pure system. In the presence of 5 mg/mL, the supersaturation decreased
from $S^I=1.75$ to $S^I=1.70$ at the same concentration of MEF due to the increase in solubility. The corresponding induction time distribution was shifted to longer induction times compared to the two systems at $S^I=1.75$.

Figure 6 Experimental probability distributions of induction times of MEF in the absence or presence of DOSS at different supersaturations in 70 % DMA – 30 % water. Dark green triangle (\blacktriangle): pure MEF at $S^I=1.99$; green circle (\circ): pure MEF at $S^I=1.75$; light green square (\blacksquare): pure MEF at $S^I=1.53$; orange rhombus (\blacklozenge): MEF with 1 mg/mL DOSS at $S^I=1.75$; red triangle (\blacktriangle): MEF with 5 mg/mL DOSS at $S^I=1.70$. Fit to equation (6), described in section 4.3, is also shown. S^I is calculated based on the solubility of the nucleating Form I crystals.

4.3. Nucleation rate determination

Assuming independent nucleation events and a single nucleus mechanism, the induction time distributions can be described with a homogeneous Poisson distribution, where the probability of detection of a nucleation event $P(t)$ within a time t is21,24,32:

$$P(t) = 1 - \exp\left(-J \cdot V \left(t - t_g \right)\right)$$

(6)
Where J is the nucleation rate, V is the solution volume and t_g is the growth time. The growth time accounts for the time difference between the detection of nucleation (t) and the actual nucleation event ($t-t_g$), with the assumption that the shortest nucleation time is 0 s ($t=t_g$). Tables 3 and 4 summarize J and t_g obtained from fitting equation (6) to the experimental probability distributions presented in Figure 5 and 6, respectively. In 40 % DMA – 60 % water, R^2 values describing the quality of the fit were in the range of 0.89-0.99, being lower at higher supersaturations, whereas in 70 % DMA – 30 % water, a fairly good $R^2 \geq 0.95$ was found at all conditions.

In 40 % DMA – 60 % water (Table 3), in the presence of DOSS, the nucleation rate increased by 37-51 %, while the growth time decreased by 13-22 % compared to the pure system in the range of $S_{II}=2.20$-3.30, with no major difference between the studied DOSS concentrations. At $S_{II}=4.40$, the experimental induction time distributions from Figure 5 shows the same trend. However, the analysis, Table 3, lead to significantly lower nucleation rate at $S_{II}=4.40$ in the presence of 0.1 mg/mL DOSS than in the presence of 0.2 mg/mL DOSS or in the absence of DOSS. These outlying data points arise from the increasing uncertainty of the results with increasing supersaturation and the lowest accuracy of the Poisson fit at $S_{II}=4.40$ in the presence of 0.1 mg/mL DOSS ($R^2=0.89$).

As a comparison, to verify the same influence of DOSS at $S_{II}=4.40$ as at $S_{II}=3.30$-2.20, we also determined J from fitting a lognormal cumulative distribution function (LCDF)20,33:

$$P(t) = 0.5\text{erfc}\left(-\frac{(\ln t - \eta)}{\sigma \sqrt{2}}\right)$$

(7)

to the cumulative induction time distributions, where the location parameter η can be translated to the geometric mean (=median induction time, t_{50}) by $\exp(\eta) = t_{50}$ and the scale parameter σ to the geometric standard deviation (σ^*) by $\exp(\sigma) = \sigma^*$. The nucleation rate, included in Table 3, can be
calculated from the median induction time and solution volume by $J = 1/t_{50}V$. Compared to J values obtained using the Poisson function (6), using LCDF resulted in a similar trend in the range of $S^{II}=2.20-3.30$, with values being 47-55 % smaller. This trend also extended to $S^{II}=4.40$, showing higher and comparable nucleation rates in the presence of both concentration of DOSS than in the absence of it. The difference in the nucleation rates calculated by fitting a Poisson distribution and the LCDF derives primarily from the fact that the latter method assumes that the time to grow to visibility is negligible. Thus, the nucleation time is approximated by the induction time, and the nucleation rate is calculated from the median induction time. This results in larger nucleation times and thus, lower nucleation rates. However, in these systems, it appears as if the growth time is not negligible and thus, the LCDF analysis is primarily presented to qualitatively verify the trend in nucleation rates at different supersaturations and DOSS concentrations, as this analysis is less sensitive to the shape of induction time distribution than the Poisson analysis.
Table 3. Nucleation rate, J, and growth time, t_g, of MEF at different S^II supersaturations in the absence or presence of DOSS in 40 % DMA – 60 % water, from fitting to equation (6). As a comparison, the median induction time t_{50a} and the nucleation rate J^a from fitting to equation (7) is also shown. S^II is calculated based on the solubility of the nucleating Form II crystals.

<table>
<thead>
<tr>
<th>S^II</th>
<th>DOSS / mg·mL$^{-1}$</th>
<th>Molar ratio $n_{\text{DOSS}}/n_{\text{MEF}}$</th>
<th>J / m$^{-3}$·s$^{-1}$</th>
<th>t_g / s</th>
<th>t_{50a} / s</th>
<th>J^a / m$^{-3}$·s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.40</td>
<td>0.0</td>
<td>0</td>
<td>6270</td>
<td>28.8</td>
<td>40.9</td>
<td>2448</td>
</tr>
<tr>
<td>4.40</td>
<td>0.1</td>
<td>0.14</td>
<td>5784</td>
<td>20.8</td>
<td>33.5</td>
<td>2982</td>
</tr>
<tr>
<td>4.40</td>
<td>0.2</td>
<td>0.27</td>
<td>7025</td>
<td>23.0</td>
<td>33.8</td>
<td>2956</td>
</tr>
<tr>
<td>3.30</td>
<td>0.0</td>
<td>0</td>
<td>2861</td>
<td>40.6</td>
<td>65.6</td>
<td>1524</td>
</tr>
<tr>
<td>3.30</td>
<td>0.1</td>
<td>0.18</td>
<td>4061</td>
<td>33.9</td>
<td>52.6</td>
<td>1901</td>
</tr>
<tr>
<td>3.30</td>
<td>0.2</td>
<td>0.36</td>
<td>4027</td>
<td>34.7</td>
<td>52.9</td>
<td>1890</td>
</tr>
<tr>
<td>2.64</td>
<td>0.0</td>
<td>0</td>
<td>1859</td>
<td>66.3</td>
<td>106.2</td>
<td>941</td>
</tr>
<tr>
<td>2.64</td>
<td>0.1</td>
<td>0.23</td>
<td>2799</td>
<td>51.6</td>
<td>78.8</td>
<td>1267</td>
</tr>
<tr>
<td>2.64</td>
<td>0.2</td>
<td>0.45</td>
<td>2606</td>
<td>50.7</td>
<td>78.9</td>
<td>1267</td>
</tr>
<tr>
<td>2.20</td>
<td>0.0</td>
<td>0</td>
<td>1109</td>
<td>111.4</td>
<td>177.1</td>
<td>565</td>
</tr>
<tr>
<td>2.20</td>
<td>0.1</td>
<td>0.27</td>
<td>1517</td>
<td>96.8</td>
<td>145.2</td>
<td>689</td>
</tr>
<tr>
<td>2.20</td>
<td>0.2</td>
<td>0.54</td>
<td>1524</td>
<td>90.5</td>
<td>141.3</td>
<td>723</td>
</tr>
</tbody>
</table>

In 70 % DMA – 30 % water at $\text{S}^\text{l}=1.99-1.53$ (Table 4), the nucleation rates determined by fitting the Poisson function were orders of magnitude lower and the growth times larger compared to those measured at higher supersaturations in 40 % DMA – 60 % water. At $\text{S}^\text{l}=1.75$, compared to the pure system, the addition of 1 mg/mL DOSS only slightly decreased the nucleation rate by 7 %, but increased the growth time by 20 %. At $\text{S}^\text{l}=1.70$ in the presence of 5 mg/mL DOSS, the nucleation rate was further decreased and the growth time increased, possibly just because of the lower supersaturation.
Table 4. Nucleation rate, \(J \), and growth time, \(t_g \), of MEF at different \(S^I \) supersaturations in the absence or presence of DOSS in 70 % DMA – 30 % water, from fitting to equation (6). \(S^I \) is calculated based on Form I solubility.

<table>
<thead>
<tr>
<th>(S^I)</th>
<th>DOSS / mg·mL(^{-1})</th>
<th>Molar ratio (n_{DOSS}/n_{MEF})</th>
<th>(J)/m(^3)s(^{-1})</th>
<th>(t_g)/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.99</td>
<td>0</td>
<td>0</td>
<td>104.2</td>
<td>1128</td>
</tr>
<tr>
<td>1.75</td>
<td>0</td>
<td>0</td>
<td>28.9</td>
<td>1638</td>
</tr>
<tr>
<td>1.75</td>
<td>1</td>
<td>0.08</td>
<td>26.8</td>
<td>1972</td>
</tr>
<tr>
<td>1.70</td>
<td>5</td>
<td>0.41</td>
<td>25.7</td>
<td>2259</td>
</tr>
<tr>
<td>1.53</td>
<td>0</td>
<td>0</td>
<td>8.6</td>
<td>5239</td>
</tr>
</tbody>
</table>

4.4. Calculation of pre-exponential factor and interfacial energy

In order to calculate the pre-exponential factor \(A \) and interfacial energy \(\gamma \) of the nucleation process, equation (5) can be rearranged using \(B' = B \cdot T^3 \) as:

\[
\ln \frac{J}{S} = \ln A - \frac{B'}{T^3 \ln^2 S}
\]

This shows that a plot of \(\ln (J/S) \) versus \(T^3 \ln^2 S \) should result in a straight line with an intercept of \(\ln A \) and a slope of \(-B'\). From \(B' \), the interfacial energy, \(\gamma \), can be calculated as:

\[
B' = \frac{16\pi \gamma^3 v_m^2}{3 k^3}
\]

Figure 7a and Figure S7 in Supporting Information show this fit for the nucleation rates measured in 40 % DMA – 60 % water excluding and including \(S^H=4.40 \) in the linear fit, respectively, whereas Figure 7b presents the plot in both solvent systems and shows the fit for pure MEF in 70 % DMA – 30 % water. The nucleation parameters calculated from the fits are summarized in Table 5.
In 40 % DMA – 60 % water, the nucleation parameters were calculated excluding and including the outlying S\text{II}=4.40 in the linear regression. Excluding S\text{II}=4.40 from the linear regression provided an excellent linear correlation for all the three systems (0.98 \leq R^2). From the fits, the pre-exponential factor A was calculated to be 1324 m$^{-3}$s$^{-1}$ in the absence of DOSS and increased to 2007 m$^{-3}$s$^{-1}$ and 1904 m$^{-3}$s$^{-1}$ with the addition of 0.1 mg/mL and 0.2 mg/mL DOSS, respectively. In contrast, the interfacial energy γ (with respect to Form II) was similar in the absence or presence of DOSS, being 2.92 – 3.00 mJm$^{-2}$. Including S\text{II}=4.40, the fit was less good (0.91 \leq R^2) and the derived A and γ values did not show a clear trend with changing the concentration of DOSS from 0 to 0.2 mg/mL. Thus nucleation parameters at 40 % DMA – 60 % water are determined using the Poisson fit, excluding the data points at S\text{II}=4.40, which may deviate because uniformity of supersaturation might not have been achieved at the shortest induction times. The mixing of the solvent and antisolvent solutions is visually detectable for approximately 4 s after solution injection, and molecular level mixing should be somewhat longer than this. As a comparison, at the highest supersaturation of S\text{II}=4.40, the shortest induction time data is 16 s, whereas at the second highest supersaturation of S\text{II}=3.30 this data is 27 s, being considerable longer.

As an estimation for the error of calculating the solubility of Form II and the corresponding S\text{II} from the mole fraction solubility ratio of $x^{\text{II}}/x^{\text{I}}=1.4$, A and γ values have been recalculated using $x^{\text{II}}/x^{\text{I}}=1.3$ or $x^{\text{II}}/x^{\text{I}}=1.5$. The obtained results are qualitatively the same, with A and γ values being 2.0-2.3 % smaller and 7.9 % larger at $x^{\text{II}}/x^{\text{I}}=1.3$, respectively, and 1.9-2.2 % larger and 7.4 % smaller at $x^{\text{II}}/x^{\text{I}}=1.5$, respectively, and showing no influence of DOSS on γ.

As can be seen from Table 5, the same trend in A^a and similar γ^a values were found when the parameters were calculated from plotting the nucleation rates determined from fitting to LCDF (J^p) in the whole range of studied supersaturations, S\text{II}=2.20-4.40, as for A and γ over S\text{II}=2.20-
3.30. This verifies that DOSS only has an effect on the pre-exponential factor with an insignificant influence on the interfacial energy.

In previous recent work on tolbutamide survival theory analysis has been adopted for advanced evaluation of the statistical confidence of parameters obtained by fitting the classical nucleation theory to the same kind of nucleation data as in this study. In the study of tolbutamide in different solvents slopes and intercepts depending on the solvent were proven to be statistically different, except for between the two alcohols that also in the graph essentially overlapped. In the tolbutamide study 50-100 induction times were determined for each of three different supersaturations except for one case where there were four different supersaturations. In the present study on mefenamic acid 59-91 induction times were determined for each of three different supersaturations (S\text{II}=3.30-2.20) in 40 \% DMA - 60 \% water. Accordingly the statistical conditions are very similar, and based on this experience and the appearance of the classical nucleation theory plot (Figure 7a) we believe that it is reasonable to assume that there is a statistically valid difference in the nucleation behavior between the pure solution and the impure solutions.

In 70 \% DMA – 30\% water, in the absence of DOSS, the pre-exponential factor was found to be \(A=160 \text{ m}^3\text{s}^{-1}\) and the interfacial energy was calculated to be \(\gamma = 2.86 \text{ mJm}^{-2}\) with respect to Form I. The data points with 1 mg/mL DOSS at S\text{I}=1.75 and 5 mg/mL DOSS at S\text{I}=1.70 are lying along the fitted line of the pure system within experimental error, suggesting no influence on the nucleation of MEF.
Figure 7 Plot of $\ln(J/S)$ versus $T^3\ln^2 S \cdot 10^7$ for the determination of the pre-exponential factor A and interfacial energy γ of the nucleation by fitting equation (8), showing (a) data points in 40 % DMA – 60 % water including data in the linear fit at $S_{II}=2.20-3.30$ and (b) all data points and the fit for pure MEF in 70 % DMA – 30 % water. In 40 % DMA – 60 % water, Form II crystals nucleate and data is plotted using S_{II}, whereas from 70 % DMA – 30 % water Form I crystals are isolated and data is plotted using S_I.

Table 5. Pre-exponential factor, A, and the interfacial energy, γ, determined for the nucleation of MEF Form II in 40 % DMA – 60 % water and MEF Form I in 70 % DMA – 30 % water, in the absence or presence of DOSS. In 40 % DMA – 60 % water, fit was determined over $S_{II}=2.20-4.40$ or $S_{II}=2.20-3.30$ and as a comparison, A^α and γ^α values obtained using J^α from the fit with LCDF are also included.
<table>
<thead>
<tr>
<th></th>
<th>A [m$^{-3}$s$^{-1}$]</th>
<th>γ [mJm$^{-2}$]</th>
<th>R^2</th>
<th>A [m$^{-3}$s$^{-1}$]</th>
<th>γ [mJm$^{-2}$]</th>
<th>R^2</th>
<th>A^a [m$^{-3}$s$^{-1}$]</th>
<th>γ^a [mJm$^{-2}$]</th>
<th>R^{2a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 % DMA – 60 % water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure MEF</td>
<td>1800</td>
<td>3.25</td>
<td>0.91</td>
<td>1324</td>
<td>2.92</td>
<td>1.00</td>
<td>742.9</td>
<td>3.03</td>
<td>1.00</td>
</tr>
<tr>
<td>MEF + 0.1 mg/mL DOSS</td>
<td>1795</td>
<td>2.87</td>
<td>0.96</td>
<td>2007</td>
<td>3.00</td>
<td>0.98</td>
<td>928.0</td>
<td>3.02</td>
<td>0.99</td>
</tr>
<tr>
<td>MEF + 0.2 mg/mL DOSS</td>
<td>2099</td>
<td>3.07</td>
<td>0.99</td>
<td>1904</td>
<td>2.96</td>
<td>1.00</td>
<td>891.8</td>
<td>2.94</td>
<td>1.00</td>
</tr>
<tr>
<td>70 % DMA – 30 % water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure MEF</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. DISCUSSION

The main objective of the present work is to investigate how the addition of DOSS influences the nucleation of MEF, and in particular to seek validation of the hypothesis that the reason why DOSS promotes the formation of nanocrystals of MEF in a 5% DMA – 95% water (S approximately in the order of 700018) antisolvent process is that DOSS promotes the nucleation of MEF under these conditions. The isothermal antisolvent crystallization protocol employed here, though being laborious, allowed for the rapid creation of uniform supersaturation and investigation of induction times as short as a couple of ten seconds, as opposed to the shortest induction times of ten minutes obtained in the traditional cooling crystallization experiments. The antisolvent experiments were performed at lower DMA content (40 %) and higher supersaturations: $2.20 \leq S^{II} \leq 4.40$, compared to the cooling crystallization experiments at 70 % DMA, and $1.53 \leq S^{I} \leq 1.99$. In the antisolvent experiments, being closer to the original nanocrystallization conditions18, the presence of 0.1 mg/mL and 0.2 mg/mL DOSS enhanced the nucleation of MEF crystals by increasing the pre-exponential factor A by approximately 50% (excluding the data points at $S^{II}=4.40$), with no change in the interfacial energy γ.

Within the frame work of the classical nucleation theory, the increase in A in the presence of DOSS, observed in the 40 % DMA – 60 % water mixture, is the result of an increase of the
monomer attachment frequency or in the concentration of nucleation sites \(f^* C_0 \) as the Zeldovich factor, equation (3), does not change since the interfacial energy has been shown to remain essentially unchanged. The attachment frequency parameter, given by equation (4), relates to the rate of transport of molecules to the critical nucleus surface and the likelihood of actually attaching and sticking to the surface. Thus it depends on the diffusion coefficient and the nucleus surface area. The latter remains unchanged if the interfacial energy is uninfluenced. Other parameters remain unchanged (molecular volume, equilibrium solute concentration, supersaturation, temperature) or are as a first approximation assumed to be unchanged (sticking coefficient) with the addition of DOSS in 40 % DMA – 60 % water. The diffusion process describes the transport of the solute molecules from the solution to the surface of the nucleus, and includes desolvation and required conformational changes. Thus, the increase in \(A \) in the presence of DOSS may reflect that the transport process is facilitated.

As shown in Figure 8, the mefenamic acid molecule has hydrogen bond accepting and donating functionalities, but also has large hydrophobic surface patches. In water, the MEF solubility is very low, because the hydrophobic parts of the molecule will force an entropically unfavorable structuring into the surrounding water molecules. The solubility is significantly improved by addition of DMA, but even in 40 % and 70 % by volume DMA – water mixtures the solubility of Form I is only about 0.065 mg/mL (0.27 mmol/L) at 25 °C and 3.8 mg/mL (15.7 mmol/L) at 15 °C, respectively.
Figure 8 Molecular structure of water, DMA, MEF and DOSS, highlighting the type of functionalities in the molecules.

DMA is a polar aprotic solvent having a large dielectric constant and a sizeable dipole moment. The normalized solvent polarity parameter, E_N^T, is 0.38 and the octanol/water logP value is -0.77. However, even though DMA and water are fully miscible, the solution is not well mixed on the molecular level. At DMA in water concentrations of our previous nanocrystallization experiments: 5 % v/v DMA = 1.0 mole %; the tetrahedral structure of normal water predominates in the solution, and the radial distribution function (RDF) reveal the same data as in pure water. At the DMA concentration of the antisolvent nucleation experiments of the present study: 40 % v/v = 11.4 mole %, this water structure starts to disappear, and clusters of DMA molecules begin to form. DMA molecules aggregate with the dipole-dipole interactions between DMA molecules to form DMA clusters stabilized in water by the hydrophobic effect and
by strong hydrogen bonding with water over the carbonyl group. Thus in comparison, the force of interaction between DMA molecules is fairly weak. At the conditions of the cooling nucleation experiments of the present work: 70 % v/v DMA = 31.1 mole %, the RDF of pure DMA gradually dominates. Being an amphiphilic solvent, DMA has hydrophobicity in the methyl groups and can thus facilitate the solvation of the hydrophobic parts of MEF, which leads to increased solubility. However, in doing so, the DMA molecules partially have to order turning the polar side outwards, potentially hydrogen bonding with water. The unfavorable entropy decrease in the solvent molecules surrounding the hydrophobic parts of the MEF molecule should however be less than in pure water.

The docusate ion has hydrogen bond accepting functionality that may bond to water and MEF but there is no hydrogen bond donating functionality (Figure 8). The docusate ion has a large hydrophobic surface, and is expected to more favorably solvate the corresponding MEF molecular surface when introduced into the solution, and thus replace the less favorable solvation by water and DMA molecules. Hydrophobic interaction is not associated with particular forces between MEF and DOSS, and hence because of the weak interaction with DOSS the desolvation is facilitated. Accordingly, the attachment frequency factor becomes higher and the nucleation becomes facilitated. It appears as if it is more the role of the water that is important, since with increasing DMA content from 40 % to 70 %, the favourable effect on the nucleation of adding DOSS seems to disappear.

As mentioned earlier, it has been hypothesized that DOSS promotes the formation of nanocrystals of MEF in a 5 % DMA – 95 % water 18. While, unfortunately, we do not have the experimental capability to investigate the rate of nucleation at the very high supersaturations in 5 % DMA, the present work has shown that even at the very much lower supersaturations where we are capable of making actual nucleation experiments, a promoting effect can be detected.
Since the effect was found to relate to the large water content at 40 % DMA and decreases with increasing ratio of DMA in the solvent mixture, it is expected to be even stronger at 5 % DMA, thus supporting the hypothesis that DOSS promotes formation of smaller nanocrystals by increasing the rate of nucleation.

It should be recognized though that in parallel to the increase in DMA content from 5 % to 70 %, the supersaturation employed during the crystallization experiments also decreases perhaps even leading to a change from homogeneous to heterogeneous nucleation, and the polymorphic form nucleating possibly changed from the metastable Form II (5 %, 40 % DMA) to the stable Form I (70 % DMA). In addition, while the DOSS concentration employed in 40 % DMA – 60 % water system is only 0.1 - 0.2 mg/mL, the DOSS/MET molar ratio is 0.14-0.54 (Table 2), which perhaps explains why the results do not show a significant influence of a two fold increase in DOSS concentration.

Without the boundaries of the classical nucleation theory, the situation can be examined from a crystal structure point of view. The two structures of MEF feature the centrosymmetric hydrogen bonded dimerization, and the dimers are basically arranged in stacks linked through C-H…pi interactions involving aromatic C-H and the alkylated phenyl ring. These stacks are then arranged parallel in the crystal structure held together by van der Waals bonding. Presumably, the strongest bonding is the H-bonding between the carboxylic acid groups in the dimers, followed by the bonding between the dimers in the stack. The weakest bonding (per molecule) is likely to be that between the stacks. This agrees with vacuum crystal shape simulations within the Material studio software, using the attachment energy method. The shape of Form I crystals is plate-like and the axis of the stacks is parallel to the big flat slow growing surface.

In building the nucleus, we would expect the sequence: dimer formation, stacking and stack binding. In pure water the aggregation of MEF molecules should be significantly influenced by
hydrophobicity, *i.e.* reducing the exposure of the hydrophobic surfaces of the molecule to water. The dimer hydrogen bonding does not contribute to this, and thus dimers should not be expected to dominate in the solution. The hydrophobicity will somewhat promote the formation of the stacks, but will still leave a significant portion of the hydrophobic surface exposed. The binding of the stacks together will reduce the total hydrophobic surface area exposed to water. Adding DMA to a water solution will to some extent (as is illustrated by the increase in solubility) facilitate the solvation of the hydrophobic parts of MEF, and thus somewhat reduce the unfavorable conditions for dimer formation and stacking. Introducing docusate sodium into this may further facilitate dimerization and stacking of MEF molecules in the solution, and thus promote nucleation.

In solvating the hydrophobic surface of MEF, DOSS will turn its own hydrophilic hydrogen bond accepting surface towards water/DMA. This will reduce the thermodynamically unfavorable contact between hydrophobicity and hydrophilicity, and facilitate the formation of dimers. If the formation of dimers is facilitated and become the units being transported, addition of DOSS will promote the nucleation. As no measurable decrease was observed in the solid-liquid interfacial energy at these concentrations of DOSS (Table 5), the governing factor cannot be claimed to be improved solvation of the surface of the nucleus by DOSS. In relation to this, it is noteworthy that in 40 % DMA – 60 % water, the solubility of MEF in the presence of 0.2 mg/mL DOSS is essentially unchanged from the value in the absence of DOSS (0.065 ± 0.001 mg/mL and 0.065 ± 0.003 mg/mL respectively at 25 °C), and in the 70 % DMA – 30 % water mixture there is a very slight increase from 3.80 ± 0.01 mg/mL at 15 °C in pure solvent mixture to 3.92 ± 0.03 mg/mL in the presence of 5 mg/mL DOSS (Table1).

Transport and attachment of molecules is required for both the formation of the critical nucleus as well as for the growth of the nuclei to detectable size. Accordingly, if the rate of
molecule attachment is governing, the increase in nucleation rate should correspond to a decrease in time for crystal nuclei to grow to become visible. In fact, in the present work, the growth time t_g is decreased in the presence of DOSS in 40 % DMA – 60 % water over the entire supersaturation range examined. The same relation has been found previously 40 for p-aminobenzoic acid in different solvents, and it was concluded that desolvation of the carboxylic acid group and formation of carboxylic acid dimers is the rate limiting step for nucleation as well as for crystal growth. Studies showing molecular additives to increase the nucleation rate are rather scarce, but it has been found 41 that tailor-made additives can accelerate the growth of γ-glycine along the fast growing pole by disruption of the solvation, and that crystal growth of L-alanine 42 is accelerated in the presence of L-valine enhancing the rate of surface diffusion.

Another possible mechanism for nucleation rate improvement in the presence of DOSS could be a templating effect of DOSS micelles or single DOSS ions, facilitating the arrangement of MEF molecules to form a nucleus and thus, increasing the pre-exponential factor A. However, in 40 % DMA – 60 % water, micelle formation cannot be detected at the DOSS concentrations employed (Figure S8). In addition, an increasing nucleation promotion effect with increasing DOSS concentration would be expected if DOSS ions acted as nucleation centre which was not found at the concentrations examined here.

6. CONCLUSION

In antisolvent crystallization at 40 % DMA – 60 % water and supersaturations of S^H=4.40-2.20, DOSS enhanced the nucleation rate of MEF. Within the classical nucleation theory, this increase is due to an increase in the pre-exponential parameter A by 52-44% at 0.1 mg/mL and 0.2 mg/mL DOSS, respectively, while the interfacial energy γ remains essentially unchanged. The analysis leads to the hypothesis that the increase in A is due to an increase in the attachment
frequency of MEF molecules to the growing nucleus, as a result of a facilitated desolvation of MEF in the presence of DOSS. This is supported by the fact that also the time of growth to visibility t_g is observed to decrease in the presence of DOSS. In the analysis, it is further recognised that DOSS may facilitate the formation of MEF dimers, a key element of the crystal structure. At 70 % DMA – 30 % water and supersaturations of $S^I=1.99-1.53$, the influence of DOSS is very small, suggesting that it is in the presence of higher water concentrations that the influence of the surfactant DOSS is more clearly observed.

ASSOCIATED CONTENT

Supporting Information. Solubility of MEF Form I in 70 % DMA-30% water at different temperatures (Figure S1); Polymorphic form of MEF crystals nucleated in 40 % DMA – 60 % water at $S^{II}=4.40$ (Figure S2) and at $S^{II}=2.20$ (Figure S3) and in 70 % DMA – 30 % at $S^I=1.99$ (Figure S5); IR spectra showing the timescale of polymorphic transformation in 40 % DMA – 60 % water (Figure S4); SEM images of Form I crystals obtained as a result of polymorphic transformation in 40 % DMA – 60 % water (Figure S6); Determination of nucleation parameters in 40 % DMA – 60 % water over the range of $S^{II}=4.40-2.20$ (Figure S7); Figure and discussion about the critical micelle concentration of DOSS in different DMA-water mixtures (Figure S8).

AUTHOR INFORMATION

Corresponding Author

Email: ake.rasmuson@ul.ie
Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We acknowledge Science Foundation Ireland for the financial support (Grant number: 12/RC/2275). This work was also conducted under the framework of the Irish Government’s Programme for Research in Third Level Institutions Cycle 5, with the assistance of the European Regional Development fund.

REFERENCES

(4) Khan, S.; de Matas, M.; Zhang, J.; Anwar, J. Nanocrystal preparation: Low-energy

(30) Xiao, Y.; Tang, S. K.; Hao, H.; Davey, R. J.; Vetter, T. Quantifying the inherent uncertainty associated with nucleation rates estimated from induction time data measured

For Table of Contents (TOC) use only

Promotion of Mefenamic Acid Nucleation by a Surfactant Additive, Docusate Sodium

Katalin Bodnár, Sarah P. Hudson, Åke C. Rasmuson

![Graph showing nucleation probability and induction time with Mefenamic Acid and Surfactant Additive]({})

Synopses

Nucleation of mefenamic acid in the presence of an anionic additive, docusate sodium was enhanced in 40 % water - 60 % DMA mixture.