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A Novel Security Protocol Attack Detection Logic with Unique Fault Discovery 

Capability for Freshness Attacks and Interleaving Session Attacks 

Anca Jurcut, Tom Coffey and Reiner Dojen 

Abstract ð This paper introduces a new logic-based technique for detecting security protocol weaknesses that are exploitable 

by freshness and interleaving session attacks. This technique is realised as a special purpose logic to be used throughout the 

protocol design stage, where a draft of the protocol is subjected to formal analysis prior to its publication or deployment. For any 

detected failures the analysis also reveals their cause, facilitating design corrections.  

The proposed Attack Detection Logic is introduced and its details, including the language, predicates, axioms, rules, semantics 

as well as soundness and completeness are presented. The effectiveness of the logic is evaluated in a case study, where it is 

demonstrated how to use the Attack Detection Logic as part of the design process of security protocols. Further, the logic is 

applied to a range of security protocols, including protocols with known weaknesses and protocols that are known to be secure. 

The logicôs ability to detect various attacks is established by demonstrating that for protocols with known weaknesses, at least 

one detection rule is activated and no detection rule is activated for protocols without weaknesses. This case study confirms the 

logicôs ability to detect design weaknesses exploitable by freshness and interleaving session attacks.  

Index Termsð C.2.2 Network Protocols, C.2.2.c Protocol verification, C.2.8.a Algorithm/protocol design and analysis D.4.6 

Security and Privacy Protection, D.4.6.b Authentication, D.4.6.gVerification 
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1 INTRODUCTION

esigning security protocols that are impervious to at-
tack techniques, such  as freshness and interleaving 

session attacks, has been shown to be extremely difficult 
[1]. This is also evidenced by the large number of pub-
lished protocols that are found to contain various flaws - 
often several years after the original publication [2] [3] [4] 
[5]. This difficulty continues today as highlighted by pro-
tocol attacks revealed over the last decade by many re-
searchers, including the authors of this work, across a wide 
spectrum of security protocols:  
¶ Attack on nonce-based user authentication scheme us-

ing smart cards detected by Nam et al. in 2007 [6].  
¶ Attack on fingerprint-based authentication scheme de-

tected by Xu, Zhu and Feng in 2008 [7]. 
¶ Attack on key management protocol for wireless sen-

sor networks detected by Dojen, Zhang and Coffey in 
2008 [8]. 

¶ Attack on key distribution protocol detected by Dojen 
et al. in 2008 [9]. 

¶ Attack on remote user authentication scheme detected 
by Hsiang and Shih in 2009 [10]. 

¶ Attack on end-to-end authentication and secrecy pro-
tocol detected by Dojen, Pasca and Coffey in 2009 [11]. 

¶ Attack on a satellite communications protocol detected 
by Lasc, Dojen and Coffey in 2011 [12]. 

¶ Attack on authentication/key distribution protocol for 
wireless networks detected by Lv et al. in 2012 [13]. 

¶ Attack on ID-based scheme for mobile environment 
detected by Wang and Ma in 2013 [14]. 

¶ Attack on lightweight RFID authentication protocol 
detected by Fu and Guo in 2013 [15]. 

¶ Attack on RAPP ultra-lightweight RFID protocol de-
tected by Zhuang et al. in 2013 [16]. 

¶ Attack on user authentication scheme detected by 
Jurcut, Coffey and Dojen in 2013 [17]. 
The primary difficulty in the development of effective 

security protocols is to address the vast possibilities of an 
adversary to gain information. In contrast to communica-
tions protocols, where the main issues are reachability of 
all legal states and avoidance of infinite loops, security 
protocol verification deals with the gain of information by 
an adversary [18]. The adversary can be either passive (just 
listening to communication) or active (modifying message 
content or order, dropping messages, etc). Active attacks 
incorporate freshness attacks and interleaving session at-
tacks. In a freshness attack the adversary uses messages (or 
parts of messages) from previous runs of the protocol to 
gain an advantage. In an interleaving session attack, the 
adversary uses multiple runs of the protocol to gather 
knowledge. Interleaving session attacks incorporates 
many forms, such as identity attacks, man-in-the-middle 
attacks, unknown key-share attacks, oracle attacks, multi-
plicity attacks and other parallel session attacks. 

It has been shown that the use of informal methods is 
insufficient to ensure the correctness of security protocols 
[5]. A formal verification centred development process for 
security protocols that aims at revealing any potential ex-
ploitable weaknesses in the protocol design has been pro-
posed by Coffey and Dojen [19]. This development process 
reduces the risk of using faulty protocols, as it improves 
confidence in the security of the designed protocol. 
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1.1 Original Contribution  

In this paper we introduce a new formal technique for the 
detection of protocol design weaknesses at the design 
stage of security protocols. This technique reveals weak-
nesses that are exploitable by freshness attacks and inter-
leaving session attacks, which incorporate many forms, 
such as impersonation attacks, man-in-the-middle attacks, 
unknown key-share attacks, oracle attacks, multiplicity at-
tacks and parallel session attacks. Thus, this technique can 
be used to subject a draft of a new protocol to formal anal-
ysis prior to its publication or deployment. 

The main idea behind our attack detection technique is 
to characterize the general circumstances under which a 
potential attack may exist, by examining the protocol mes-
sages structure, and to define a logical formula that de-
scribes such circumstances. This technique is realised by 
way of a special purpose logic theory. This logic has the 
following key features:   
¶ Unique fault discovery capability: The logic consists of 

formulas that make statements about the properties of 
cryptographic transformations contained in each step 
of a message exchange, as well as the message proper-
ties and the knowledge of the principals involved. This 
approach allows reasoning about new properties, such 
as fresh component for recipient, freshness protected, princi-
pal value type equivalent, symmetries, strong sender/re-
ceiver bound, sender/receiver bound, of messages in secu-
rity protocols. 

¶ Reason for design weakness: In addition to detecting 
the presence of design weaknesses, this logic also iden-
tifies the reasons for the weaknesses. This information 
can then be used to eradicate the design weaknesses.  

1.2 Paper Structure  

The remainder of this paper has the following structure. 
Section 2 gives an overview of related work. The proposed 
Attack Detection Logic, incorporating: the language, pred-
icates, axioms, detection rules, semantics as well as sound-
ness and completeness of the logic are detailed in section 
3. In section 4 we evaluate the effectiveness of the novel 
Attack Detection Logic in detecting protocol design flaws, 
including: (1) a detailed explanation on how to apply the 
detection logic, (2) a demonstration on using the logic as 
part of a security protocol design process and (3) a sum-
mary of attack detection results on a range of well-known 
security protocols. Finally, section 5 concludes the paper. 

2 RELATED WORK 

Design issues for robust and secure cryptographic proto-
cols have been addressed by research studies over the past 
two decades. Bird et al. [20] introduced in 1993 a method-
ology to systematically build a family of cryptographic 
two-way authentication protocols that are resistant to a 
number of attacks. Carlsen [21] provided a list of infor-
mation that should be attached to ciphertexts to protect 
protocol messages from being vulnerable to replay attacks.  
Gong and Syverson [22] presented the notion of fail-stop 
protocols over a restrictive class of protocol design rules 
that avoid replay attacks under certain conditions. Abadi 

and Needham [23] proposed a set of basic principles for 
strengthening the design of security protocols. Two major 
issues were addressed: i) the messages involved in a pro-
tocol together with their content and ii) the dependent 
trust relationship of the protocol participants. Anderson 
and Needham [24] extended this work by incorporating 
principles to avoid protocol design weaknesses, when us-
ing public and private key encryption. Aura [25] sug-
gested recommendations to avoid replay attacks, which 
include: type-tagging messages with unique crypto-
graphic functions and how to produce unique session keys 
without assuming mutual trust between the principals. 
Malladi, Alves-Foss and Heckendorn [26] also put forward 
a recommendation to avoid replay attacks by associating 
every protocol run with a session-id generated by all pro-
tocol participants. They reason that this guarantees replay 
attacks cannot be mounted, but they did not provide a 
mechanism on how participants agree on the session-id.  
 The work on designing new trustworthy security pro-
tocols continues to-date, as does the identification and 
elimination of design weaknesses in existing protocols [27] 
[28] [29]. Lasc, Dojen and Coffey [30] identified desynchro-
nisation attacks on a group of protocols that use dynamic 
shared secrets update mechanisms for wireless communi-
cations. The authors presented design guidelines to pre-
vent such weaknesses and a formal system to model up-
date mechanisms for shared secrets. 

In 2014, Jurcut, Coffey and Dojen [1] investigated the 
reasons why protocols are vulnerable to replay and paral-
lel session attacks and developed design guidelines that 
ensure resistance to these attacks. This work proposed a 
set of protocol design guidelines that are general purpose 
so as to encompass a wide variety of protocols and to ad-
dress the following protocol message exchange situations: 
1) Guidelines to ensure message freshness, covering fresh-
ness requirements with and without synchronized clocks 
and transmission of components used in key generation. 
2) Guidelines to prevent message symmetry, covering direct 
and indirect exchanges of cryptographic transformations. 
3) Guidelines for signed messages. 4) Guidelines for hand-
shakes construction, covering direct and indirect POSH, 
SOPH and SOSH types of challenge-response handshakes 
using symmetric and asymmetric encryption.  

3 A NOVEL ATTACK DETECTION LOGIC 

We now introduce a new logic-based technique for the de-
tection of protocol weaknesses that are exploitable by 
freshness and interleaving session attacks. The set of secu-
rity protocol design guidelines proposed by Jurcut, Coffey 
and Dojen [1] forms the foundation for the formalised 
rules of the proposed attack detection technique. 

3.1 Core Concept of the Logic 

The basic concept behind this logic is to characterize the 
general circumstances under which a potential attack may 
exist by examining a large set of security protocols incor-
porating those found to be vulnerable to freshness and in-
terleaving session attacks and also the published protocol 
fixes for the prevention of these attacks. This investigation 
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analyses the (i) knowledge of the principals involved, (ii) 
role of messages in the protocol, (iii) way messages are 
transmitted and (iv) content of messages. On completing 
this analysis, a finite set of message exchange patterns is 
derived. For each of these patterns a new set of detection 
rules addressing problems leading to freshness and inter-
leaving session attacks is proposed. Each rule defines log-
ical formulae that describe circumstances under which an 
attack is possible. The logic consists of a language and sets 
of predicates, axioms, and rules. 

3.2 Language  

The language L of the logic introduces a set of syntactic 

rules for building well-formed formulas (wff). 

3.2.1 Types of the Logic 

Individual values, such as principals, cryptographic keys, 

nonces or arbitrary binary values form the atoms of L. The 

following atomic types are defined: 
Principal:  Participant of a protocol, denoted by capital let-

ters (e.g. A, B, G, R) 
Trusted Third Party TTP: Sub-type of Principal. Entity 

trusted by all protocol participants.  
Cryptographic Key K: Key used for encryption/decryption. 

KGR denotes a Symmetric Key shared by G and R, KG+ is 
a Public Key of G, KG- is a Private Key of G. 

Nonce N: Unpredictable random number. NG denotes a 
nonce generated by G. 

Timestamp TS: Identifying time when an event occurred.  
Function F(): Arbitrary function. 
Hash H(): Non-invertible cryptographic function.  
Binary Data dataXXX: Any other arbitrary data, not mod-

elled by defined types. 

Valid data objects (also called components) are defined re-
cursively as follows: Any atom j is a valid data object. If b, 
c and d are valid data objects, then the following are also 
valid data objects: b,c (concatenation); d,(b,c) (expression 
order); {b}c (encryption); F(b) (function invocation) and 
H(b) (hashed expression) are also valid data objects. 

3.2.2 Well-formed Formulae of the Logic 

A formula a is a wff of L if: 
𝑎 ∷= 𝑃𝑅(𝑥) | ¬𝑏 | 𝑏 ∧ 𝑐 | 𝑏 ∨ 𝑐 | 𝑏 → 𝑐 | 𝑏 ↔ 𝑐 |   

𝑦 ∈ 𝐷 | 𝐷 ∖ 𝑦 | 𝐷 ∖ 𝐷1  | 𝑏 = 𝑐 | 𝑏 ≠ 𝑐 | 
(∀𝑥|𝑃𝑅(𝑥): 𝑐) | ( ∃𝑥|𝑃𝑅(𝑥): 𝑐)  

where PR is a predicate of L, x is a data object that satisfies 
the requirements of PR in arity and type, b and c are wff of 
L, and D and D1 are sets of equal types. 

3.3 Definitions and Considerations 

The Attack Detection Logic is based on the following defi-
nitions and considerations related to protocols, time, cryp-
tography and attacks against protocols. 

3.3.1 Protocols 

All message exchanges considered are intended to be be-
tween principals G, R and potentially a trusted third party 
TTP. It assumed that an intruder has full control over the 
communications environment, i.e. that the intruder can in-
tercept, modify and replay messages or start new execu-
tions of the protocol. The intruder can be an outside agent 

or a dishonest legitimate principal of the system. 

Definition 1. A protocol P is a set of ordered steps {S1, 
S2,….,Sz}, z>=1, executed in any run of P. A protocol step 
𝑆𝑟  is defined as: 𝑆𝑟: 𝐺 → 𝑅:𝑚,  where G, R are principals and 
m is the message transmitted. G is the sender of message m of 
step 𝑆𝑟 and R is the recipient. In this paper 𝑠(𝑆𝑟) denotes the 
sender of step 𝑆𝑟, 𝑟(𝑆𝑟) the recipient of 𝑆𝑟 and  𝑚(𝑆𝑟) the 
message of step 𝑆𝑟. 

Definition 2. A message exchange of a protocol P is an or-
dered sequence of n steps of a protocol P (𝑛 ≥ 1 𝑎𝑛𝑑 𝑛 ≤ 𝑧, 
where z is the number of steps of P) and a message exchange 
of n steps of protocol P is denoted by 𝐸𝑛(𝑃). A message ex-
change 𝐸𝑛(𝑃) can be depicted as in Fig. 1. 

𝐸𝑛(𝑃) {
𝑆1
⋮
𝑆𝑛

        or        
𝑆1
⋮
𝑆𝑛

} 𝐸𝑛(𝑃) 

Fig. 1: Notation of message exchanges 

Definition 3. An initiation step is any step in a message ex-
change/protocol, where any principal that is not a TTP is the 
sender. The set of all initiation steps is denoted  𝐼𝑆(𝐸𝑛(𝑃) for 
a message exchange and 𝐼𝑆(𝑃) for a protocol. 

Definition 4. A response step 𝑆𝑝 is the first step after an ini-
tiation step 𝑆𝑜 where the recipient of 𝑆𝑝 is the sender of 𝑆𝑜. 
The set of all response steps of all principals is denoted 
R𝑆(𝐸𝑛(𝑃))for a message exchange and 𝑅𝑆(𝑃) for a protocol. 

Definition 5. A protocol run is a single execution of the or-
dered set of steps {S1, S2,….,Sz} of a protocol P. When multi-
ple runs of a protocol are considered, the number of the run 
is indicated by an integer superscript, e.g. run m of protocol 
P is denoted 𝑃𝑚 – similarly, run m of a message exchange of 
protocol P is denoted 𝐸𝑛

𝑚(𝑃). A step 𝑆𝑛 of protocol run 𝑃𝑚 is 
denoted 𝑆𝑛

𝑚. 

3.3.2 Time 

A timeline is defined as a set T of time indices 𝑡𝑖 structured 
by an ordering relation <, corresponding to the ordering 
relation of natural numbers N. The following assumptions 
are made about time: 
¶ Time is discrete (𝑡𝑖  ≠  𝑡𝑗 if 𝑖 ≠ 𝑗, where 𝑖, 𝑗 ∈ 𝑁). 

¶ Time is usually left-bounded to an initial value t1. 

¶ Time can be right-bounded to any final value tn. 
In the definition of the logic, indices of steps indicate the 
time, i.e. steps {𝑆1,  𝑆2, … , 𝑆𝑛}, 𝑛 ≥ 1 correspond to the time-
line 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}. Further, 𝑡0 indicates a time prior to 
the current protocol run. Similarly, superscripts of proto-
col runs indicate their timely ordering. Protocol runs can 
execute at different speeds: while 𝑃𝑚 starts before 𝑃𝑚+1, 
protocol run 𝑃𝑚+1 may terminate before 𝑃𝑚. 

3.3.3 Cryptography 

An ideal cryptographic environment is assumed, where ci-
phertext can only be decrypted with the right key - keys 
are initially only possessed by their legitimate owners. 

Definition 6. A cryptographic transformation c is either a 
cryptographic expression ({x}k) or a hashed expression 
(H(x)). 𝐶𝑇(𝑆𝑛) denotes the set of all cryptographic transfor-
mations transmitted in a step 𝑆𝑛 and CT(P) the set of all cryp-
tographic transformations of a protocol P. 
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Definition 7. A signed statement is a cryptographic expres-
sion where the signing key is a private key.  

3.3.4 Attacks against Protocols 

For the purpose of this Attack Detection Logic, we con-
sider freshness attacks and interleaving session attacks, 
which incorporate many forms, such as identity attacks, 
man-in-the-middle attacks, unknown key-share attacks, 
oracle attacks and other parallel session attacks. 

Definition 8. A freshness attack against protocol P is a pro-
tocol run 𝑃𝑚 where intruder I uses a cryptographic transfor-
mation c recorded from a previous protocol run 𝑃𝑚−𝑖  (that 
does not involve intruder I) in any step 𝑆𝑛

𝑚 and where the 
recipient of 𝑆𝑛

𝑚 is not able to detect that the cryptographic 
transformation c does not belong to protocol run 𝑃𝑚. 

Definition 9. An interleaving session attack against protocol 
P is a protocol run 𝑃𝑚 where an intruder I establishes one or 
multiple concurrent protocol runs 𝑃𝑛1 , … , 𝑃𝑛𝑘  and where I 
uses one or multiple cryptographic transformations ci from 
𝑃𝑛1 , … , 𝑃𝑛𝑘   in any steps 𝑆𝑛

𝑚 and where the recipients of the 
𝑆𝑛
𝑚 are not able to detect that the cryptographic transfor-

mations ci do not belong to protocol run 𝑃𝑚. 

3.4 Predicates 

The following predicates are defined within L: 
¶ C(x,y): object x contains object y. 

¶ C(x,y,i): x contains object y as the i-th sub-component. 

¶ P(G, x): principal G possesses object x. 

¶ P(G, x, 𝑆𝑟): principal G possesses object x at step 𝑆𝑟. 

¶ K(G, a, 𝑆𝑟): G knows formula a is true at step 𝑆𝑟.  

¶ Res(𝑆𝑝, 𝑆𝑜): 𝑆𝑝 is a response step to initiation step 𝑆𝑜. 

¶ Gen(G, x, 𝑆𝑟): principal G generated x in step 𝑆𝑟 ð x 
cannot appear prior to step 𝑆𝑟. By convention, the gen-
erator is the sender of the step 𝑆𝑟, in which x appears 
for the first time. 

¶ Rint(G, x, 𝑆𝑟): G is the intended recipient of x in step 
𝑆𝑟. If x is a cryptographic expression, then this implies 
that G possesses the keys to decrypt x.  

¶ Symmetric(x,y): objects x and y are symmetric. Two 
components x, y are symmetric if both contain compo-
nents of the same type (but not necessarily of the same 
value) that appear in the same order. Neither x nor y 
is a cryptographic expression.  

¶ clear(x, 𝑆𝑟): object x is transmitted in cleartext in step 
𝑆𝑟. This also includes cases where x can be decrypted 
or derived from 𝑆𝑟 using known public key(s). 

¶ onlyPriv(x, 𝑆𝑟): object x is transmitted in step 𝑆𝑟 only 
encrypted using private keys. If onlyPriv(x, 𝑆𝑟) is true, 
then any principal possessing the corresponding pub-
lic key can retrieve component x from 𝑆𝑟. 

¶ KMaterial(x): x is key material, i.e. object x or some of 
its components are used in the generation of a key. 

¶ 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦ 𝑅, 𝑥, 𝑆𝑟
𝑛): intruder I impersonating G 

can replay component x in step 𝑆𝑟 of 𝑃𝑛 to principal R, 
where x is recorded from a previous protocol run 𝑃𝑚 
(with m < n). 

¶ FA(𝐸𝑛(𝑃)): a freshness attack (as outlined in defini-
tion 8) can be mounted on the message exchange 

 𝐸𝑛(𝑃), that is the following holds: ∃𝑐 ∈ 𝐶𝑇(𝑆𝑛
𝑚−𝑖): 𝑖 >

0 ∧ ¬𝑟(𝑆𝑛
𝑚−𝑖) = 𝐼 ∧ ¬𝑠(𝑆𝑛

𝑚−𝑖) = 𝐼 ∧  𝑟(𝑆𝑛
𝑚) = 𝑅 ∧

𝑠(𝑆𝑛
𝑚) = 𝐺 ∧ 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦ 𝑅, 𝑐, 𝑆𝑛

𝑚)  
¶ ISA( 𝐸𝑛(𝑃)): an interleaving session attack (as outlined 

in definition 9) can be mounted on the message ex-
change  𝐸𝑛(𝑃), that is the following holds: 

∃𝑃𝑛1 , … , 𝑃𝑛𝑘 , 𝑃𝑚: 𝑛 ≠ 𝑚 ∧ (∃𝑐𝑖 ∈ 𝐶𝑇(𝑃
𝑛𝑗): 𝑐𝑖 ∈ 𝑆𝑜

𝑛𝑗 ∧

 𝑟(𝑆𝑝
𝑚) = 𝑅 ∧ 𝑠(𝑆𝑝

𝑚) = 𝐺 ∧  𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦ 𝑅, 𝑐𝑖 , 𝑆𝑝
𝑚)   

3.5 Axioms of the Attack Detection Logic 

The proposed Attack Detection Logic includes axioms 
((A1) – (A21)) that facilitate reasoning about message char-
acteristics in cryptographic protocols. These axioms com-
bine predicates to define data component properties, such 
as fresh (A1) and shared secret (A3). Additionally, novel 
properties such as freshness protected (A4), principal value 
type equivalent (A7), strong sender/receiver bound ((A12)-
(A14)) and traveling in opposite direction (A16) are intro-
duced. The properties defined by the axioms are used by 
the detection rules of the logic to describe situations that 
can be exploited by attacks.  Axioms (A18) – (A21) outline 
circumstances where components can be replayed, if they 
are not fresh, not receiver bound, not sender bound or if 
they are transmitted as cleartext. 
(𝑨𝟏)𝑭𝒓𝒆𝒔𝒉(𝒙): x is fresh if no one possessed x before the 
current protocol run.  
𝐹𝑟𝑒𝑠ℎ(𝑥) ↔ ∀𝑠, ∀𝐺 ∈ 𝐸𝑁𝑇(𝑃𝑠): (∃𝑡: 𝑠 < 𝑡 ∧ ¬𝑃(𝐺, 𝑥) ∧

∃𝑅 ∈ 𝐸𝑁𝑇(𝑃𝑡): 𝑃)(𝑅, 𝑥))   
(𝑨𝟐)𝚪(𝑹, 𝒙): x is fresh for recipient R if x is a timestamp and 
R can check this timestamp for timeliness or if x is a func-
tion of a component wR freshly generated by R in the same 
protocol run.  

Γ(𝑅, 𝑥) ↔ ∃𝑆𝑟 ∈ 𝑃: (𝐶(𝑚(𝑆𝑟), 𝑥) ∧ 𝑠(𝑆𝑟) = 𝐺 ∧ 𝑟(𝑆𝑟) = 𝑅 ∧

 𝑥 ∈ 𝑇 ∧ 𝐺𝑒𝑛(𝐺, 𝑥, 𝑆𝑟) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥)) ∨ (𝑟(𝑆𝑟) = 𝑅 ∧ ∃𝑆𝑝 ∈

𝑅𝑆(𝑃): 𝐶(𝑚(𝑆𝑝), 𝑥) ∧ 𝑥 = 𝐹(𝑤𝑅) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑤𝑅) ∧ (∃𝑆𝑜 ∈

𝐼𝑆(𝑃): 𝑜 < 𝑝 ∧ 𝐺𝑒𝑛(𝑅, 𝑤𝑅 , 𝑆𝑜)))  
(𝑨𝟑)𝚯(𝐆, 𝐑, 𝐱): x is a shared secret between G and R. 
Θ(𝐺, 𝑅, 𝑥) ↔ ∃So, Sr, ∈ En(𝑃): 𝐺𝑒𝑛(𝐺, 𝑥, 𝑆𝑜) ∧ 𝑅𝑖𝑛𝑡(𝑅, 𝑥, 𝑆𝑟) ∧

𝑃(𝐺, 𝑥) ∧ 𝑃(𝑅, 𝑥) ∧ (∀𝑆𝑞 ∈ 𝑃:¬𝑐𝑙𝑒𝑎𝑟(𝑠, 𝑆𝑝) ∧

¬𝑜𝑛𝑙𝑦𝑃𝑟𝑖𝑣(𝑥, 𝑆𝑞))  
(𝑨𝟒)𝚽({𝒙}𝒌): {x}k is freshness protected if there exists a step 
Sp in En(P) where {x}k is concatenated with H(y*) and y* 
contains either a secret shared between sender and recipi-
ent of Sp, a component that is fresh for recipient or {x}k. 

Φ({𝑥}𝑘) ↔ (∃𝑧: 𝐶({𝑥}𝑘, 𝑧) ∧ Γ(𝑅, 𝑧)) ∨  

(∃𝑆𝑝 ∈ 𝐸𝑛(𝑃): 𝐶(𝑚(𝑆𝑝), ({𝑥}𝑘, 𝐻(𝑦
∗)) ∧ (∃𝑤: 𝐶(𝑦∗, 𝑤) ∧

Θ(𝐺, 𝑅, 𝑤) ∧ Γ(𝑅, 𝑦∗) ∧ 𝐶(𝑦∗, {𝑥}𝑘)))  

(𝑨𝟓)𝑴𝜿(𝒌𝟏, 𝒌𝟐): k1 and k2 are matching keys if either:  

¶ k1, k2 are identical 

¶ k1, k2 are both symmetric and shared with a TTP 

¶ k1, k2 are different public keys 

¶ k1, k2 are different private keys. 

𝑀𝜅(𝑘1, 𝑘2) ↔ (𝑘1 = 𝑘2) ∨ (𝑘1, 𝑘2 ∈ 𝑆𝑦𝑚𝐾 ∧ ∃𝐺, 𝑅, 𝑇𝑇𝑃 ∈

𝐸𝑁𝑇: 𝑃(𝐺, 𝑘1) ∧ 𝑃(𝑅, 𝑘2) ∧ 𝑃(𝑇𝑇𝑃, 𝑘1) ∧ 𝑃(𝑇𝑇𝑃, 𝑘2)) ∨
(𝑘1, 𝑘2 ∈ 𝑃𝑢𝑏𝐾 ∧ 𝑘1 ≠ 𝑘2) ∨ (𝑘1, 𝑘2 ∈ 𝐾𝑃𝑟𝑖𝑣 ∧ 𝑘1 ≠ 𝑘2)  

(𝑨𝟔)𝑺𝑪𝑬({𝒙}𝒌𝟏, {𝒚}𝒌𝟐): {x}k1, {y}k2 are symmetric crypto-
graphic expressions if x,y are symmetric and keys k1,k2 
are matching keys. 
𝑆𝐶𝐸({𝑥}𝑘1, {𝑦}𝑘2) ↔ 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑥, 𝑦) ∧ 𝑀𝜅(𝑘1, 𝑘2)  
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(𝑨𝟕)𝑷𝒗𝒕𝒆(𝒙, 𝒚): x and y are principal value type equivalent, 
if for each subcomponent xi at position i of x that is of type 
principal there is a corresponding subcomponent yi of y  
that is also of type principal and either: 

¶ xi is a TTP and yi is a TTP 

¶ xi and yi are generators of x and y, respectively  

¶ xi and yi are not generators of x and y, respectively  

¶ xi and yi are intended recipients of x and y, respectively 

¶ xi and yi are not intended recipient of x and y, respec-
tively 

𝑃𝑣𝑡𝑒(𝑥, 𝑦) ↔ ∀𝐺𝑖 , 𝑅𝑖 ∈ 𝐸𝑁𝑇(𝑃)| 𝐶(𝑥, 𝐺𝑖 , 𝑖), 𝐶(𝑦, 𝑅𝑖 , 𝑖):  

 (𝐺𝑖 = 𝑇𝑇𝑃 ∧ 𝑅𝑖 = 𝑇𝑇𝑃) ∨ (∃𝑆𝑙 , 𝑆𝑞 ∈ 𝑃: (𝐺𝑒𝑛(𝐺𝑖 , 𝑥, 𝑆𝑙) ∧

𝐺𝑒𝑛(𝑅𝑖, 𝑦, 𝑆𝑞)) ∨ (¬𝐺𝑒𝑛(𝐺𝑖 , 𝑥, 𝑆𝑙) ∧ ¬𝐺𝑒𝑛(𝑅𝑖, 𝑦, 𝑆𝑞)) ∨

(𝑅𝑖𝑛𝑡(𝐺𝑖 , 𝑥, 𝑆𝑙) ∧ 𝑅𝑖𝑛𝑡(𝑅𝑖 , 𝑦, 𝑆𝑞)) ∨ (¬𝑅𝑖𝑛𝑡(𝐺𝑖 , 𝑥, 𝑆𝑙) ∧

¬𝑅𝑖𝑛𝑡(𝑅𝑖 , 𝑦, 𝑆𝑞)))   

(𝑨𝟖𝒂) At the time of generation of xG only the generator 
possesses xG. 
𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑟) → ∃𝑆𝑟 ∈ 𝑃: (𝑃(𝐺, 𝑥𝐺 , 𝑆𝑟) ∧ ∀𝑅 ∈ 𝐸𝑁𝑇 ∖ 𝐺:  

¬𝑃(𝑅, 𝑥𝐺 , 𝑆𝑟)   
(𝑨𝟖𝒃) The generator of {x}k possesses the key k and com-
ponent x. 
𝐺𝑒𝑛(𝐺, {𝑥}𝑘, 𝑆𝑟) → 𝑃(𝐺, 𝑘, 𝑆𝑟) ∧ 𝑃(𝐺, 𝑥, 𝑆𝑟)  
(𝑨𝟗)𝐏𝚿(𝐱, 𝐑): x is a ReceiverIdentifier if x is a component 
that identifies the intended recipient of a message.  
𝑃Ψ(𝑥, 𝑅) ↔ ∃𝑥 ∈ 𝑚(𝑆𝑟): 𝐶(𝑥, 𝑅) ∨ 𝑥 = {𝑦}𝐾𝑅+  
(𝑨𝟏𝟎)𝚺𝚿(𝒙): x is a SenderIdentifier if x is a component that 
identifies the sender of a message.  
ΣΨ(𝑥, 𝐺) ↔ ∃𝑥 ∈ 𝑚(𝑆𝑟): 𝐶(𝑥, 𝐺) ∨ 𝑥 = {𝑦}𝐾𝐺−  
(𝑨𝟏𝟏)𝚺𝑷(𝑮,𝑹, {𝒙}𝒌): {x}k is a sender-receiver component if it 
is encrypted with a symmetric key shared between the 
sender and recipient. Further, some component of x must 
be previously possessed by both principals.  
Σ𝑃(𝐺, 𝑅, {𝑥}𝐾𝐺𝑅 ↔ ∃𝑆𝑜 ∈ 𝑃: 𝐶(𝑚(𝑆𝑜), {𝑥}𝐾𝐺𝑅) ∧ 𝑃(𝐺, 𝐾𝐺𝑅) ∧

𝑃(𝑅,𝐾𝐺𝑅) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧ 𝑟(𝑆𝑜) = 𝑅 ∧ (∃𝑆𝑞 , 𝑆𝑟 , 𝑧: 𝑞 ≤ 𝑜 ∧

𝑟 ≤ 𝑜 ∧ 𝐶(𝑥, 𝑧) ∧ 𝑃(𝐺, 𝑧, 𝑆𝑞) ∧ 𝑃(𝑅, 𝑧, 𝑆𝑟))  

(𝑨𝟏𝟐)𝚺(𝑮, 𝒄): c is a strong sender bound cryptographic trans-

formation of sender G if it is either: 

¶ a cryptographic expression that contains at least 
one SenderIdentifier that identifies G  

¶ a component encrypted with the private key of G. 

¶ H(y*), where y* contains a shared secret and one or 
more SenderIdentifier that identify G. 

Σ(𝐺, 𝑐) ↔ (𝑐 = {𝑥}𝑘 ∧ ((∃𝑦: 𝐶({𝑥}𝑘, 𝑦) ∧ ΣΨ(𝑦, 𝐺)) ∨ 𝑘 =

𝐾𝐺−)) ∨ (∃𝑦
∗: 𝑐 = 𝐻(𝑦∗) ∧ (∃𝑤: 𝐶(𝑦∗, 𝑤) ∧ 𝑟(𝑆𝑟) = 𝑅 ∧

Θ(𝐺, 𝑅, 𝑤)) ∧ (∃𝑢: 𝐶(𝑦∗, 𝑢) ∧ ΣΨ(𝑢, 𝐺))  

(𝑨𝟏𝟑)𝝇(𝑮, 𝒄): c is a sender bound cryptographic transfor-
mations of sender G if it is either: 

¶ a strong sender bound cryptographic transformation  

¶ a sender-receiver component 

¶ H(y*), where y* contains a shared secret and one or 
more sender-receiver components. 

𝜍(𝐺, 𝑐) ↔ Σ(𝐺, 𝑐) ∨ (∃{𝑦}𝑘: 𝐶(𝑐, {𝑦}𝑘) ∧ Σ𝑃(𝐺, 𝑅, {𝑦}𝑘)) ∨

(∃𝑦∗: 𝑐 = 𝐻(𝑦∗) ∧ (∃𝑤: 𝐶(𝑦∗, 𝑤) ∧ 𝑟(𝑆𝑟) = 𝑅 ∧

Θ(𝐺, 𝑅, 𝑤)) ∧ (∃𝑢: 𝐶(𝑦∗, 𝑢) ∧ Σ𝑃(𝑢, 𝐺)))  

(𝑨𝟏𝟒)𝛀(𝑹, 𝒄): c is a strong receiver bound cryptographic trans-
formation of receiver R if it is either: 

¶ a cryptographic expression that contains at least 
one ReceiverIdentifier that identifies R  

¶ a component encrypted with the public key of R 

¶ H(y*), where y* contains a shared secret and one or 
more ReceiverIdentifier that identify R. 

Ω(𝑅, 𝑐) ↔ (𝑐 = {𝑥}𝑘 ∧ ((∃𝑦: 𝐶({𝑥}𝑘, 𝑦) ∧ 𝑃Ψ(𝑦, 𝑅)) ∨ 𝑘 =

𝐾𝑅+)) ∨ (∃𝑦
∗: 𝑐 = 𝐻(𝑦∗) ∧ (∃𝑤: 𝐶(𝑦∗, 𝑤) ∧ 𝑠(𝑆𝑟) = 𝐺 ∧

Θ(𝐺, 𝑅, 𝑤)) ∧ (∃𝑢: 𝐶(𝑦∗, 𝑢) ∧ 𝑃Ψ(𝑢, 𝑅)))  

(𝑨𝟏𝟓)𝝈(𝑹, 𝒄): c is a receiver bound cryptographic transfor-
mation of receiver R if it is either:  

¶ strong receiver bound cryptographic transformation  

¶ sender-receiver component 

¶ H(y*), where y* contains a shared secret and one or 
more sender-receiver components. 

𝜎(𝑅, 𝑐) ↔ Ω(𝑅, 𝑐) ∨ (∃{𝑦}𝑘: 𝐶(𝑐, {𝑦}𝑘) ∧ Σ𝑃(𝐺, 𝑅, {𝑦}𝑘)) ∨

(∃𝑦∗: 𝑐 = 𝐻(𝑦∗) ∧ (∃𝑤: 𝐶(𝑦∗, 𝑤) ∧ 𝑠(𝑆𝑟) = 𝐺 ∧

Θ(𝐺, 𝑅, 𝑤)) ∧ (∃𝑢: 𝐶(𝑦∗, 𝑢) ∧ Σ𝑃(𝐺, 𝑅, 𝑢)))  

(𝑨𝟏𝟔): ↑↓ (𝒄𝟏, 𝒄𝟐): c1,c2 are traveling in opposite direction  if 
they are exchanged between two principals as defined by 
A16a-d. 
 ↑↓ (𝑐1, 𝑐2) ↔   ↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷1 ∨  ↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷2 ∨   

 ↑↓  (𝑐1, 𝑐2)𝑇𝑂𝐷3 ∨  ↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷4 
(𝑨𝟏𝟔𝒂) ↑↓ (𝒄𝟏, 𝒄𝟐)𝑻𝑶𝑫𝟏: Exchange c1, c2 directly. 

↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷1 ↔ ∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝑃): 𝐶(𝑚(𝑆𝑞), 𝑐1) ∧

𝐺𝑒𝑛(𝐺, 𝑐1, 𝑆𝑞) ∧ 𝑅𝑖𝑛𝑡(𝑅, 𝑐1, 𝑆𝑞) ∧ 𝐶(𝑚(𝑆𝑟), 𝑐2) ∧

𝐺𝑒𝑛(𝑅, 𝑐2, 𝑆𝑟  ) ∧ 𝑅𝑖𝑛𝑡(𝐺, 𝑐2, 𝑆𝑟)  
(𝑨𝟏𝟔𝒃) ↑↓ (𝒄𝟏, 𝒄𝟐)𝑻𝑶𝑫𝟐: Exchange c1, c2 via TTP. 

↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷2 ↔ ∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝑃): 𝐶(𝑚(𝑆𝑞), 𝑐1) ∧

𝐺𝑒𝑛(𝐺, 𝑐1, 𝑆𝑞) ∧ 𝑅𝑖𝑛𝑡(𝑇𝑇𝑃, 𝑐1, 𝑆𝑞) ∧ 𝐶(𝑚(𝑆𝑟), 𝑐2) ∧

𝐺𝑒𝑛(𝑅, 𝑐2, 𝑆𝑟  ) ∧ 𝑅𝑖𝑛𝑡(𝑇𝑇𝑃, 𝑐2, 𝑆𝑟)  
(𝑨𝟏𝟔𝒄) ↑↓ (𝒄𝟏, 𝒄𝟐)𝑻𝑶𝑫𝟑: TTP creates c2, but not c1. 

↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷2 ↔ ∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝑃): 𝐶(𝑚(𝑆𝑞), 𝑐1) ∧

𝐺𝑒𝑛(𝐺, 𝑐1, 𝑆𝑞) ∧ 𝑅𝑖𝑛𝑡(𝑇𝑇𝑃, 𝑐1, 𝑆𝑞) ∧ 𝐶(𝑚(𝑆𝑟), 𝑐2) ∧

𝐺𝑒𝑛(𝑇𝑇𝑃, 𝑐2, 𝑆𝑟  ) ∧ 𝑅𝑖𝑛𝑡(𝑅, 𝑐2, 𝑆𝑟)  
(𝑨𝟏𝟔𝒅) ↑↓ (𝒄𝟏, 𝒄𝟐)𝑻𝑶𝑫𝟒: TTP creates c1 and c2. Intended 
recipient of c1 is different from intended recipient of c2. 

↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷4 ↔ ∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝑃): 𝐶(𝑚(𝑆𝑞), 𝑐1) ∧

𝐺𝑒𝑛(𝑇𝑇𝑃, 𝑐1, 𝑆𝑞) ∧ 𝑅𝑖𝑛𝑡(𝐺, 𝑐1, 𝑆𝑞) ∧ 𝐶(𝑚(𝑆𝑟), 𝑐2) ∧

𝐺𝑒𝑛(𝑇𝑇𝑃, 𝑐2, 𝑆𝑟  ) ∧ 𝑅𝑖𝑛𝑡(𝑅, 𝑐2, 𝑆𝑟) ∧ 𝐺 ≠ 𝑅  
(𝑨𝟏𝟕)𝚷(𝒄): c is a parent cryptographic transformation if it is 
not a component of any cryptographic transformation. 
Π(𝑐) ↔ ∀𝑐1 ∈ 𝐶𝑇(𝑃) ∖ 𝑐:¬𝐶(𝑐1, 𝑐)  
(𝑨𝟏𝟖) Any cryptographic transformation that is not fresh 
can be replayed. 

∀𝑐 ∈ 𝐶𝑇(𝑆𝑟
𝑚): ∀𝑛 > 𝑚: (¬𝐹𝑟𝑒𝑠ℎ(𝑐) → 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦

𝑅, 𝑐, 𝑆𝑟
𝑛))  

(𝑨𝟏𝟗): Any cryptographic transformation that is not re-
ceiver bound can be replayed. 

∀𝑐 ∈ 𝐶𝑇(𝑆𝑟
𝑚): ∀𝑛 > 𝑚:∀𝐽 ∈ 𝐸𝑁𝑇 ∖ 𝑅: ((𝑟(𝑆𝑟

𝑚) = 𝑅 ∧

¬𝜎(𝑅, 𝑐)) → 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦ 𝐽, 𝑐, 𝑆𝑟
𝑛)   

(𝑨𝟐𝟎): Any cryptographic transformation that is not 
sender bound can be replayed. 
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∀𝑐 ∈ 𝐶𝑇(𝑆𝑟
𝑚): ∀𝑛 > 𝑚: (𝑠(𝑆𝑟

𝑚) = 𝐺 ∧ ¬𝜍(𝑅, 𝑐) →
𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐽) ↦ 𝑅, 𝑐, 𝑆𝑟

𝑛))   
(𝑨𝟐𝟏): Components transmitted in clear can be replayed. 

∀𝑥 ∈ 𝑚(𝑆𝑞
𝑚): ∀𝑛 > 𝑚: (𝑐𝑙𝑒𝑎𝑟(𝑥, 𝑆𝑞

𝑚) → 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦

𝑅, 𝑥, 𝑆𝑟
𝑛))   

3.6 Rules of the Attack Detection Logic 

The proposed Attack Detection Logic incorporates twenty-
two detection rules. These are classified into four categories 
that address problems related to: message freshness, message 
symmetries, challenge-response handshake construction and 
signed messages. Each category comprises of rules, which de-
tect weaknesses in the design of protocol message exchanges 
that can be exploited in freshness or interleaving session at-
tacks. All rules have the form: prerequisites → conclusion.  

The objective of the logical analysis is to establish 
whether the prerequisites of any of the attack detection 
rules can be derived from the formalized protocol. If such 
a derivation exists, the analysed protocol is vulnerable to 
an attack (i.e. the rules of the Attack Detection Logic are 
sound, cf. Section 3.8). On the other hand, if no such deri-
vation exists, the protocol is deemed secure against fresh-
ness and interleaving session attacks (i.e. the rules of the 
Attack Detection Logic are complete, cf. Section 3.9). 

3.6.1 Freshness Rules  

Freshness rules are based on the properties fresh component 
for recipient and freshness protected. The following weak-
nesses are detected by these rules:  
¶ None of the cryptographic expressions in a message 

exchange step contain a fresh component. 

¶ None of the cryptographic expressions in a response 
step of a message exchange is freshness protected. 

¶ Key material in a step of a message exchange is not 
sent at least once as a component of a freshness pro-
tected cryptographic expression.  

Consider rule (R1.1) Cryptographic expression lacking 
fresh component                                                  

(∃𝑆𝑟 ∈ 𝐸𝑛(𝑃): ∀{𝑥}𝑘 ∈ 𝑚(𝑆𝑟): ¬𝐹𝑟𝑒𝑠ℎ({𝑥}𝑘)) → 𝐹𝐴(𝐸𝑛(𝑃))    

If no cryptographic expression in a step 𝑆𝑟 contains a fresh 
component, then a freshness attack can be mounted on 
𝐸𝑛(𝑃). This identifies a situation where a message can be 
replayed in a later protocol run. The fault can be eradicated 
by adding a component that is fresh for the recipient of 𝑆𝑟.  
 
Remaining Freshness Rules 
(R1.2) Cryptographic expression of a response step not 
freshness protected 

(∃𝑆𝑝 ∈ 𝐸𝑛(𝑃): 𝑆𝑝 ∈ 𝑅𝑆(𝑃) ∧ ∀{𝑥}𝑘 ∈ 𝑚(𝑆𝑝): ¬Φ({𝑥}𝑘)) →

𝐹𝐴(𝐸𝑛(𝑃))  
(R1.3) Non-freshness protected cryptographic expression 
containing key material 
(∃𝑆𝑟 ∈ 𝐸𝑛(𝑃):  (∀{𝑥}𝑘 ∈ 𝑚(𝑆𝑟): 𝐶({𝑥}𝑘,𝑤) ∧ 

K𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑤) ∧ ¬Θ({𝑥}𝑘))) → 𝐹𝐴(𝐸𝑛(𝑃))  

3.6.2 Symmetry Rules  

Symmetry rules detect the presence of weaknesses exploit-
able by interleaving session attacks if parent cryptographic 
transformations are symmetric and principal value type 
equivalent when traveling in opposite directions. The four 

rules in this category deal with different cases of traveling 
in opposite directions. Consider rule (R2.1) Direct ex-
change of symmetric & principal value type equivalent 
parent cryptographic transformations  

(∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝐸𝑛(𝑃)): Π(𝑐1) ∧ Π(𝑐2) ∧ 𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) ∧

(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)) ∧↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷1) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
If two principals exchange symmetric parent crypto-

graphic transformations c1, c2 directly, which are princi-
pal value type equivalent pairs and are traveling in oppo-
site directions, then an interleaving session attack can be 
can be mounted on 𝐸𝑛(𝑃). This rule identifies a situation 
where a cryptographic transformation cm can be used in a 
different position in a parallel protocol run. The fault can 
be eradicated by breaking the symmetry of c1 and c2. 
 
Remaining Symmetry Rules 
 (R2.2) Pair of symmetric & principal value type equivalent 
cryptographic transformations exchanged indirectly, as 
described by axiom (A16b) 

(∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝐸𝑛(𝑃)): Π(𝑐1) ∧ Π(𝑐2) ∧ 𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) ∧

(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)) ∧↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷2) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
(R2.3) Pair of symmetric & principal value type equivalent 
cryptographic transformations exchanged indirectly, as 
described by axiom (A16c) 

(∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝐸𝑛(𝑃)): Π(𝑐1) ∧ Π(𝑐2) ∧ 𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) ∧

(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)) ∧↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷3) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
(R2.4) Pair of symmetric & principal value type equivalent 
cryptographic transformations exchanged indirectly, as 
described by axiom (A16d) 

(∃𝑐1, 𝑐2 ∈ 𝐶𝑇(𝐸𝑛(𝑃)): Π(𝑐1) ∧ Π(𝑐2) ∧ 𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) ∧

(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)) ∧↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷4) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  

3.6.3 Signed Statement Rules  

Signed statement rules detect the presence of weaknesses 
exploitable by interleaving session attacks if a signed state-
ment is not receiver bound. The rules in this category con-
sider cases where the signed statement is a parent crypto-
graphic transformation or a component of another crypto-
graphic transformation, as well as the case of signed state-
ments used for public key distribution. Consider rule 
(R3.1) Signed parent cryptographic expression that is not 
receiver bound 

(∃𝑆𝑟 ∈ 𝐸𝑛(𝑃): 𝑠(𝑆𝑟) = 𝐺 ∧ 𝑟(𝑆𝑟) = 𝑅 ∧ (∀{𝑥}𝐾𝐺− ∈

𝑚(𝑆𝑟): Π({𝑥}𝐾𝐺−) ∧ ¬𝜎(𝑅, {𝑥}𝐾𝐺−))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

Assuming that G is the sender of step 𝑆𝑟 and R is the 
receiver of 𝑆𝑟: If for all signed statements {𝑥}𝐾𝐺− in 𝑆𝑟 that 
are contained in a parent cryptographic transformation 
{𝑦}𝐾𝑅+, such that all of the components c of y are not re-
ceiver bound, then an interleaving session attack can be 
mounted on En(P). This rule identifies a situation where a 
signed statement {𝑥}𝐾𝐺− intended for principal A can be 
sent to principal B, without B being able to detect that 
{𝑥}𝐾𝐺− was intended for A. The fault can be eradicated by 
ensuring that all the components of y are receiver bound.  
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Remaining Signed Statements Rules  
(R3.2) Signed message within non-receiver bound parent 
cryptographic expression encrypted with a public key 

(∃𝑆𝑟 ∈ 𝐸𝑛(𝑃): 𝑠(𝑆𝑟) = 𝐺 ∧ 𝑟(𝑆𝑟) = 𝑅 ∧ (∀{𝑥}𝐾𝐺− ∈

𝑚(𝑆𝑟): (∃{𝑦}𝐾𝑅+ ∈ 𝑚(𝑆𝑟): 𝐶(𝑦}𝐾𝑅+, {𝑥}𝐾𝐺−) ∧

Π({𝑦}𝐾𝑅+) ∧ (∀𝑐 | 𝐶(𝑦, 𝑐): ¬𝜎(𝑅, 𝑐))))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

(R3.3) Signed message within parent cryptographic ex-
pression encrypted with a symmetric key 

(∃𝑆𝑟 ∈ 𝐸𝑛(𝑃): 𝑠(𝑆𝑟) = 𝐺 ∧ 𝑟(𝑆𝑟) = 𝑅 ∧ (∀{𝑥}𝐾𝐺− ∈

𝑚(𝑆𝑟): (∃{𝑦}𝐾𝐺𝑅 ∈ 𝑚(𝑆𝑟): 𝐶({𝑦}𝐾𝐺𝑅 , {𝑥}𝐾𝐺−) ∧

Π({𝑦}𝐾𝐺𝑅) ∧ (∀𝑐|𝐶(𝑦, 𝑐): ¬𝜎(𝑅, 𝑐)) ∧ (∃𝑆𝑞 ∈ 𝐸𝑛(𝑃): 𝑞 <

𝑟 ∧ 𝑠(𝑆𝑞) = 𝐽 ∧ 𝑟(𝑆𝑞) = 𝑅 ∧ 𝐺𝑒𝑛(𝐽, 𝐾𝐺𝑅 , 𝑆𝑞) ∧

𝐺𝑒𝑛(𝐽, {𝑧}𝐾𝑅+, 𝑆𝑞) ∧ 𝐶(𝑧, 𝐾𝐺𝑅) ∧

(∀{𝑤}𝐾𝐽−|𝐶(𝑧, {𝑤}𝐾𝐽−): ¬𝜎(𝑅, {𝑤}𝐾𝐽−)))))) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
(R3.4) Signed statement for public key distribution 
(∃𝑆𝑜 , 𝑆𝑝 ∈ 𝐸𝑛(𝑃): 𝑅𝑒𝑠(𝑆𝑝 , 𝑆𝑜) ∧ 𝐶(𝑚(𝑆𝑜), 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑅) ∧ (∀𝑅 ∈

𝑚(𝑆𝑜): 𝑐𝑙𝑒𝑎𝑟(𝑅, 𝑆𝑜) ∧ 𝐶(𝑚(𝑆𝑝), {𝐾𝑅+, 𝑧}𝐾𝑇𝑇𝑃−) ∧
¬𝐶({𝐾𝑅+, 𝑧}𝐾𝑇𝑇𝑃−, 𝑅))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

3.6.4 Handshake Rules  

The attack detection rules in this category deal with differ-
ent structures of nonce handshakes using symmetric or 
asymmetric keys: 
¶ POSH - Public Out Secret Home ð the nonce is sent out 

in the clear and returns encrypted. 

¶ SOPH - Secret Out Public Home ð the nonce is sent out 
encrypted and returns in the clear.  

¶ SOSH- Secret Out Secret Home ð the nonce is sent out 
encrypted and returns encrypted.  

Handshake rules detect weaknesses exploitable by inter-
leaving session attacks if insufficient sender and/or re-
ceiver identification information is included in the crypto-
graphic transformations of the handshake. The proposed 
handshake rules are only applicable if the set(s) Yxxx re-
ferred to by the rule are not empty. Further, each rule uses 
the same So, Sp, xG, {y}k and z as defined in the correspond-
ing set(s) Yxxx. Consider rule (R4.1.1): Let the set 𝑌𝑃𝑂𝑆𝐻 con-
tain all parent cryptographic expressions c of a response 
step Sp of 𝐸𝑛(𝑃) that are encrypted under symmetric keys 
possessed by G and where: 
¶ c contains a component 𝑥𝐺, 
¶ G is sender of initiation step So corresponding to Sp, 
¶ xG is freshly generated by G in step So, 

¶ xG is sent in clear at least once in So. 

𝑌𝑃𝑂𝑆𝐻 = {{𝐹(𝑥𝐺), 𝑧}𝑘 ∈ 𝑚(𝑆𝑝) |  𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧ Π({𝐹(𝑥𝐺), 𝑧}𝑘 ∧

𝑘 ∈ 𝑆𝑦𝑚𝐾 ∧  𝑃(𝐺, 𝑘) ∧ (∃𝑆𝑜 ∈ 𝐸𝑛(𝑃): 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧

𝑠(𝑆𝑜) = 𝐺 ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧   𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧

𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑜))}    

(R4.1.1) Direct POSH 
((∀{𝑦}𝑘 ∈ 𝑌𝑃𝑂𝑆𝐻: 𝑃(𝑅, 𝑘) ∧ 𝑅 = 𝑟(𝑆𝑜) = 𝑠(𝑆𝑝) ∧

𝐺𝑒𝑛(𝑅, {𝑦}𝑘, 𝑆𝑝)) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜): ¬Σ(𝐺, 𝑐1) ∧ ¬Ω(R, c1)) ∧
(∀𝑐2 ∈ 𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2) ∧ ¬Ω(𝐺, 𝑐2))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

Assuming that principals G and R share the symmetric 
key(s) k and that R is recipient of So and sender of Sp and 
that all {y}k in YPOSH are generated by R in step Sp. Then an 
interleaving session attack can be mounted on 𝐸𝑛(𝑃), if So 
and Sp are free of any strong sender bound or strong re-
ceiver bound cryptographic transformations. This implies 
that the {y}k are neither strong sender bound nor strong 
receiver bound. This rule identifies situations where insuf-
ficient sender/receiver identification components are in-
cluded in a POSH handshake. The fault can be eradicated 
by adding appropriate identification information. 

All Handshake Rules are presented below by category.  
 

POSH Handshakes using symmetric encryption 

𝑌𝑃𝑂𝑆𝐻 = {{𝐹(𝑥𝐺), 𝑧}𝑘 ∈ 𝑚(𝑆𝑝)| 𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧ Π({𝐹(𝑥𝐺), 𝑧}𝑘) ∧

𝑘 ∈ 𝑆𝑦𝑚𝐾 ∧ 𝑃(𝐺, 𝑘) ∧ (∃𝑆𝑜 ∈ 𝐸𝑛(𝑃): 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) =

𝐺 ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧

𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑜))}  

(R4.1.1) Direct POSH 

((∀{𝑦}𝑘 ∈ 𝑌𝑃𝑂𝑆𝐻: 𝑃(𝑅, 𝑘) ∧ 𝑟(𝑆𝑜) = 𝑠(𝑆𝑝) = 𝑅 ∧

𝐺𝑒𝑛(𝑅, {𝑦}𝑘, 𝑆𝑝)) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜): ¬Σ(𝐺, 𝑐1) ∧

¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈ 𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2) ∧ ¬Ω(𝐺, 𝑐2))) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
(R4.1.2) Indirect POSH, using a TTP 

((∀{𝑦}𝑘 ∈ 𝑌𝑃𝑂𝑆𝐻: 𝑃(𝑇𝑇𝑃, 𝑘)) ∧ (∃𝑆𝑙 ∈ 𝐸𝑛(𝑃), ∃{𝑦}𝑘 ∈

𝑌𝑃𝑂𝑆𝐻: 𝑜 < 𝑙 ≤ 𝑝 ∧ 𝐺𝑒𝑛(𝑇𝑇𝑃, {𝑦}𝑘, 𝑆𝑙)) ∧ (∃𝑆𝑚 ∈ 𝐸𝑛(𝑃): 𝑜 ≤

𝑚 < 𝑝 ∧ 𝑟(𝑆𝑚) = 𝑅) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜): ¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈

𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

 
SOPH Handshakes using symmetric encryption 

𝑌𝑆𝑂𝑃𝐻 = {{𝑥𝐺 , 𝑧}𝑘 ∈ 𝑚(𝑆𝑜)| 𝑆𝑜 ∈ 𝐸𝑛(𝑃) ∧ Π({𝑥𝐺 , 𝑧}𝑘) ∧ 𝑘 ∈

𝑆𝑦𝑚𝐾 ∧ 𝑃(𝐺, 𝑘) ∧ 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧
𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ ¬𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑜) ∧

𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ (𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑝) ∨ 𝐶(𝑚(𝑆𝑝), 𝐻(𝑥𝐺)))}  

(R4.2.1) Direct SOPH 

((∀{𝑦} ∈ 𝑌𝑆𝑂𝑃𝐻: 𝑃(𝑅, 𝑘) ∧ 𝑟(𝑆𝑜) = 𝑠(𝑆𝑝) = 𝑅 ∧

𝐺𝑒𝑛(𝐺, {𝑦}𝑘, 𝑆𝑜)) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜): ¬Σ(𝐺, 𝑐1) ∧

¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈ 𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2) ∧ ¬Ω(𝑐2, 𝐺))) →

𝐼𝑆𝐴(𝐸𝑛(𝑃))  
 (R4.2.2) Indirect SOPH, using a TTP 

((∀{𝑦}𝑘 ∈ 𝑌𝑆𝑂𝑃𝐻: 𝑃(𝑇𝑇𝑃, 𝑘)) ∧ (∃𝑆𝑚 ∈ 𝐸𝑛(𝑃): 𝑜 ≤ 𝑚 < 𝑝 ∧

𝑠(𝑆𝑚) = 𝑅) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜): ¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈

𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃)  

 
SOSH Handshakes using symmetric encryption 

Let the sets YSOSHo and YSOSHp be defined for the same xG 
and same pair of steps So and Sp such that Res(Sp,So). 

𝑌𝑆𝑂𝑆𝐻𝑜 = {{𝑥𝐺 , 𝑧}𝑘
𝑜 ∈ 𝑚(𝑆𝑜)|𝑆𝑜 ∈ 𝐸𝑛(𝑃) ∧ Π({𝑥𝐺 , 𝑧}𝑘

𝑜) ∧

𝑘𝑜 ∈ 𝑆𝑦𝑚𝐾 ∧ 𝑃(𝐺, 𝑘𝑜) ∧ 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧

𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥𝐺)}  
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𝑌𝑆𝑂𝑆𝐻𝑝 = {{𝐹(𝑥𝐺), 𝑤}𝑘
𝑝 ∈ 𝑚(𝑆𝑝)| 𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧

Π({𝐹(𝑥𝐺), 𝑤}𝑘
𝑝) ∧ 𝑘𝑝 ∈ 𝑆𝑦𝑚𝐾 ∧ 𝑃(𝐺, 𝑘𝑝) ∧

𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜)}  

(R4.3.1) Direct SOSH 

((∀{𝑥𝐺 , 𝑧}𝑘
𝑜 ∈ 𝑌𝑆𝑂𝑆𝐻𝑜, ∀{𝐹(𝑥𝐺), 𝑤}𝑘

𝑝 ∈ 𝑌𝑆𝑂𝑆𝐻𝑝: 𝑘
𝑜 = 𝑘𝑝 ∧

𝑃(𝑅, 𝑘𝑜) ∧ 𝑟(𝑆𝑜) = 𝑠(𝑆𝑝) = 𝑅 ∧

𝐺𝑒𝑛(𝑅, {𝐹(𝑥𝐺), 𝑤}𝑘
𝑝, 𝑆𝑝)) ∧ (∄𝑣𝑅: 𝐶(, 𝑣𝑅) ∧

𝐺𝑒𝑛(𝑅, 𝑣𝑅 , 𝑆𝑗) ∧ 𝑗 < 𝑜 ∧ 𝑆𝑗 , 𝑆𝑜 ∈ 𝐸𝑛(𝑃)) ∧ (∀𝑐1 ∈

𝐶𝑇(𝑆𝑜): ¬Σ(𝐺, 𝑐1) ∧ ¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈

𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2) ∧ ¬Ω(𝐺, 𝑐2))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃) )  

(R4.3.2) Indirect SOSH, using a TTP 

((∀{𝑥𝐺 , 𝑧}𝑘
𝑜 ∈ 𝑌𝑆𝑂𝑆𝐻𝑜: 𝑃(𝑇𝑇𝑃, 𝑘

𝑜)) ∧ (∃{𝐹(𝑥𝐺), 𝑤)𝑘
𝑝 ∈

𝑌𝑆𝑂𝑆𝐻𝑝: 𝑃(𝑇𝑇𝑃, 𝑘
𝑝) ∧ (∃𝑆𝑙 ∈ 𝐸𝑛(𝑃): 𝑜 < 𝑙 ≤ 𝑝 ∧

𝐺𝑒𝑛(𝑇𝑇𝑃, {𝐹(𝑥𝐺), 𝑤}𝑘
𝑝, 𝑆𝑙))) ∧ (∃𝑆𝑚 ∈ 𝐸𝑛(𝑃): 𝑜 ≤ 𝑚 <

𝑝 ∧ 𝑟(𝑆𝑚) = 𝑅) ∧ (∄𝑆𝑗 ∈ 𝐸𝑛(𝑃): 𝑗 < 𝑜 ∧ 𝐺𝑒𝑛(𝑅, 𝑣𝑟 , 𝑆𝑗) ∧

𝐶(𝑧, 𝑣𝑟)) ∧ (∀𝑐1 ∈ 𝐶𝑇(𝑆𝑜):¬Ω(𝑅, 𝑐1)) ∧ (∀𝑐2 ∈

𝐶𝑇(𝑆𝑝): ¬Σ(𝑅, 𝑐2))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

 
POSH Handshakes using private keys 

𝑌𝑃𝑂𝑆𝐻− = {{𝐹(𝑥𝐺), 𝑧}𝐾𝑅− ∈ 𝑚(𝑆𝑝)| 𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧

Π({𝐹(𝑥𝐺), 𝑧}𝐾𝑅−) ∧ 𝑃(𝐺, 𝐾𝑅+) ∧ (∃𝑆𝑜 ∈ 𝐸𝑛(𝑃): 𝑆𝑜 ∈

𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧

𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ 𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑜))}  

(R4.4) Direct POSH  

((∀{𝑦}𝐾𝑅− ∈ 𝑌𝑃𝑂𝑆𝐻−: 𝑟(𝑆𝑜) = 𝑠(𝑆𝑝) = 𝑅 ∧ 𝐺𝑒𝑛(𝑅, {𝑦}𝐾𝑅−, 𝑆𝑝)) ∧

∧ (∀𝑐 ∈ 𝐶𝑇(𝑆𝑝): ¬𝜎(𝐺, 𝑐))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

SOSH Handshakes using private keys 
Let the sets YSOSHo and YSOSHp be defined for the same xG 
and same pair of steps So and Sp such that Res(Sp,So). 

𝑌𝑆𝑂𝑆𝐻𝑜− = {{𝑥𝐺 , 𝑧}𝐾𝐺− ∈ 𝑚(𝑆𝑜)| 𝑆𝑜 ∈ 𝐸𝑛(𝑃) ∧

Π({xG, z}𝐾𝐺−) ∧ 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧

𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ (𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ 𝑠(𝑆𝑝) =

𝑅 ∧ 𝑃(𝑅,𝐾𝐺+) ∧ 𝐶(𝑚(𝑆𝑝), {𝐹(𝑥𝐺), 𝑤}𝐾𝑅−) }  

𝑌𝑆𝑂𝑆𝐻𝑝− = {{𝐹(𝑥𝐺), 𝑤}𝐾𝑅− ∈ 𝑚(𝑆𝑝)|𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧

Π({𝐹(𝑥𝐺), 𝑤}𝐾𝑅−) ∧ 𝑅𝑒𝑠(𝑆𝑝𝑆𝑜) ∧ 𝑠(𝑆𝑝) = 𝑅 ∧ 𝑠(𝑆𝑜) =

𝐺 ∧ 𝑃(𝐺,𝐾𝑅+) ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧

𝐶(𝑚(𝑆𝑜), {𝑥𝐺 , }𝐾𝐺−)}  

(R4.5.1) Direct SOSH for set YSOSHo- 
(𝑌𝑆𝑂𝑆𝐻𝑜− ≠ ∅ ∧ ∀𝑐 ∈ 𝐶𝑇(𝑆𝑜): ¬𝜎(𝑅, 𝑐)) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))  
(R4.5.2) Direct SOSH for set YSOSHp- 

(𝑌𝑆𝑂𝑆𝐻𝑝− ≠ ∅ ∧ ∀𝑐 ∈ 𝐶𝑇(𝑆𝑝): ¬𝜎(𝐺, 𝑐)) → 𝐼𝑆𝐴(𝐸𝑛(𝑃)) 

 
 
SOPH Handshakes using public keys 

 𝑌𝑆𝑂𝑃𝐻+ = {{𝑥𝐺 , 𝑧}𝐾𝑅+ ∈ 𝑚(𝑆𝑜)|𝑆𝑜 ∈ 𝐸𝑛(𝑃) ∧ Π({𝑥𝐺 , 𝑧}𝐾𝑅+) ∧

𝑃(𝐺, 𝐾𝑅+) ∧ 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑂) ∧

𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ (𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑝) ∨

𝐶(𝑚(𝑆𝑝), 𝐻(𝑥𝐺))}  

(R4.6) Direct SOPH 
((∃{𝑥𝐺 , 𝑧}𝐾𝑅+ ∈ 𝑌𝑆𝑂𝑃𝐻+: 𝑐𝑙𝑒𝑎𝑟(𝑥𝐺 , 𝑆𝑜)) ∨ ((∀{𝑦}𝐾𝑅+ ∈

𝑌𝑆𝑂𝑃𝐻+: ¬𝜍(𝐺, 𝑦)) ∧ (∀𝑐1 ∈  𝐶𝑇(𝑆𝑜) ∖ {𝑐 ∈
𝐶𝑇(𝑆𝑜)|𝐶(𝑐, {𝑤}𝐾𝐺− ∧ ¬𝐶(𝑤, 𝑥𝐺)}:¬𝜍(𝐺, 𝑐1)) ∧ (∀𝑐2 ∈
𝐶𝑇(𝑆𝑝): ¬𝜎(𝐺, 𝑐2)))) → 𝐼𝑆𝐴(𝐸𝑛(𝑃))   

 
SOSH Handshakes using public keys 

Let the sets YSOSHo- and YSOSHp- be defined for the same xG 
and same pair of steps So and Sp such that Res(Sp,So). 

𝑌𝑆𝑂𝑆𝐻𝑜+ = {{𝑥𝐺 , 𝑧}𝐾𝑅+ ∈ 𝑚(𝑆𝑜)|𝑆𝑜 ∈ 𝐸𝑛(𝑃) ∧ Π({𝑥𝐺 , 𝑧}𝐾𝑅+) ∧

𝑃(𝐺, 𝐾𝑅+) ∧ 𝑆𝑜 ∈ 𝐼𝑆(𝑃) ∧ 𝑠(𝑆𝑜) = 𝐺 ∧ 𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧

𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ 𝑅𝑒𝑠(𝑆𝑝, 𝑆𝑜) ∧ 𝐶(𝑚(𝑆𝑝), {𝐹(𝑥𝐺), 𝑤}𝐾𝐺+}  

𝑌𝑆𝑂𝑆𝐻𝑝+ = {{𝐹(𝑥𝐺), 𝑤}𝐾𝐺+ ∈ 𝑚(𝑆𝑝)|𝑆𝑝 ∈ 𝐸𝑛(𝑃) ∧

Π({𝐹(𝑥𝐺), 𝑤}𝐾𝐺+) ∧ 𝑅𝑒𝑠(𝑆𝑝 , 𝑆𝑜) ∧ 𝑠(𝑆𝑝) = 𝑅 ∧ 𝑠(𝑆𝑜) = 𝐺 ∧

𝐺𝑒𝑛(𝐺, 𝑥𝐺 , 𝑆𝑜) ∧ 𝐹𝑟𝑒𝑠ℎ(𝑥𝐺) ∧ 𝐶(𝑚(𝑆𝑜), {𝑥𝐺 , 𝑧}𝐾𝑅+)}  

(R4.7) Direct SOSH 

((∃{𝑥𝐺 , 𝑧}𝐾𝑅+ ∈ 𝑌𝑆𝑂𝑆𝐻𝑜+: 𝑐𝑙𝑒𝑎𝑟(𝑥𝐹 , 𝑆𝑜)) ∨ ((∀{𝑦1}𝐾𝑅+ ∈

𝑌𝑆𝑂𝑆𝐻𝑜+: ¬𝜍(𝐺, {𝑦1}𝐾𝑅+)) ∧ (∀𝑐1 ∈  𝐶𝑇(𝑆𝑜) ∖ {𝑐 ∈

𝐶𝑇(𝑆𝑜)|𝐶(𝑐, {𝑤}𝐾𝐺− ∧ ¬𝐶(𝑤, 𝑥𝐺)}:¬𝜍(𝐺, 𝑐1)) ∧

(∀{𝑦2}𝐾𝑅+ ∈ 𝑌𝑆𝑂𝑆𝐻𝑜+: 𝐶({𝑦2}𝐾𝑅+, 𝑢) ∧ ¬Σ𝑃(𝑅, 𝐺, 𝑢)) ∧

(∀𝑐2 ∈ 𝐶𝑇(𝑆𝑝) ∖ {𝑐 ∈ 𝐶𝑇(𝑆𝑝)|𝐶(𝑐, {𝑤}𝐾𝐺−}: ¬𝜎(𝐺, 𝑐2))))  

→ 𝐼𝑆𝐴(𝐸𝑛(𝑃))  

3.7 Semantics of Attack Detection Logic 

The semantics for the Attack Detection Logic are based on 
Kripkeõs work [31]. This allows reasoning about the capa-
bilities of a dishonest agent I at different runs of a protocol. 
In cases where dishonest agent I impersonates a specific 
principal G, it is denoted I(G).  

The proposed semantics use a multiple runs model, 
which is defined as a tuple Mn = (W,W1,...,Wn,  R

1
, ..., R

z
, I, 

D, d, d1,é,dn). W is the non-empty set of all possible worlds 
(i.e. all possible protocol histories) to which the logic ap-
plies. W1,...,Wn are the subsets of possible worlds W (𝑊 =
𝑊1 ∪𝑊2 ∪ …∪𝑊𝑛), where each Wi corresponds to a run 
of the protocol. R1, ..., Rz are accessibility relations between 
all possible worlds from W. I is an interpretation function 
that assigns values to the components of the language. The 
set D is the domain of components of a protocol P for all 
worlds. The domain mapping function d specifies the com-
ponents from D that are relevant to each world from W 
and the sub-domain mapping functions di specify subsets 
of components from D which are relevant to each world 
Wi. Further, the domain di(w) consists of all components of 
D that are relevant in world w ÍWi. The notation Iw repre-
sents the restriction of the interpretation function I to do-
main d(w), for wÍW, while 𝐼𝑤

𝑖  represents the restriction of 
𝐼𝑤 to domain di(w), for wÍWi. 

A possible world is defined as a pair (Mn,w) where Mn 
is the multiple runs model, wÍW describing a particular 
state of a world. If a formula a is true for such a world 
(Mn,w), then (Mn,w) is said to satisfy a (written as 
(𝑀𝑛 , 𝑤)  ⊨ 𝑎). Further, this semantics model allows indi-
vidual or sets of possible worlds to be accessible at a step 
Sr. In the Attack Detection Logic definition indices of steps 
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indicate time i.e. steps {𝑆1, 𝑆2, … , 𝑆𝑟}, 𝑟 ≤ 1 correspond to 
the timeline 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑟}. Furthermore, the model Mn 

enables describing the state of the system at a step Sr be-
longing to run i of the protocol, denoted as 𝑆𝑟

𝑖 . 

3.7.1Semantics of Logical Connectives 

Let ǣ be the set of well-formed formulas of L. The satisfac-
tion relation for a formula aÍǣ is defined as: 

(𝑀𝑛 , 𝑤) ⊨ 𝑎 iff 𝐼𝑤(𝑎) = true 
(𝑀𝑛 , 𝑤) ⊭ 𝑎 iff 𝐼𝑤(𝑎) = false  

The semantics of the standard logical conjunction con-
nective 'Ø' and the unary negation connective '×' are de-
fined as follows, where a, bÍ ǣ:  

(𝑀𝑛 , 𝑤) ⊨ 𝑎 ∧ 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ 𝑎 and (𝑀𝑛 , 𝑤) ⊨ 𝑏 
(𝑀𝑛 , 𝑤) ⊭ 𝑎 ∧ 𝑏 iff (𝑀𝑛 , 𝑤) ⊭ 𝑎 or (𝑀𝑛 , 𝑤) ⊭ 𝑏 
(𝑀𝑛 , 𝑤) ⊨ ¬𝑎 iff (𝑀𝑛 , 𝑤) ⊭ 𝑎  
It is possible to define the disjunction connective 'Ù' us-

ing the semantics of ôØõ and ôâõconnectives, as follows: 
(𝑀𝑛 , 𝑤) ⊨ 𝑎 ∨ 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ ¬(¬𝑎 ∧ ¬𝑏) 
(𝑀𝑛 , 𝑤) ⊭ 𝑎 ∨ 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ ¬𝑎 ∧ ¬𝑏  
Further, considering the tautology 𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏. Se-

mantics for the material implication connective ô→õ are de-
fined using that defined for ôÙõ connective: 

(𝑀𝑛 , 𝑤) ⊨ 𝑎 → 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ ¬(𝑎 ∧ ¬𝑏) 
(𝑀𝑛 , 𝑤) ⊭ 𝑎 → 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ 𝑎 ∧ ¬𝑏 
Finally, considering the tautology  𝑎 ↔ 𝑏 ≡ 𝑎 → 𝑏 ∧

𝑏 → 𝑎. Semantics for the equivalence connective ôƄõare de-
fined using that defined for 'Ø' connective: 
(𝑀𝑛 , 𝑤) ⊨ 𝑎 ↔ 𝑏 iff (𝑀𝑛 , 𝑤) ⊨ 𝑎 → 𝑏 and (𝑀𝑛 , 𝑤) ⊨ 𝑏 → 𝑎  
(𝑀𝑛 , 𝑤) ⊭ 𝑎 ↔ 𝑏 iff (𝑀𝑛 , 𝑤) ⊭ 𝑎 → 𝑏 and (𝑀𝑛 , 𝑤) ⊭ 𝑏 → 𝑎 

3.7.2 Semantics of Predicates 

The semantic interpretation of predicate C(x,y) is I(C) and 
is defined as the set of all pairs of objects (x,y)ÍD such that 
x contains y. That is, (x,y)ÍI(C) holds if one of the follow-
ing conditions holds: 
¶ the sequence of bits of y and x are equal or 
¶ the sequence of bits of y is a sub-sequence of x or 
¶ there exists a sequence of bits of z which is equal to or 

is a sub-sequence of bits of x such that z is the result of 
the application of some cryptographic operations on y 
or on a sequence of bits of which y is a sub-sequence. 

The satisfaction relation for C(x,y) is defined as follows: 
(𝑀𝑛 , 𝑤) ⊨ 𝐶(𝑥, 𝑦) iff 𝐼(𝑥), 𝐼(𝑦) ∈ 𝑑(𝑤) ∧ 𝐼(𝑥, 𝑦) ∈ 𝐼(𝐶) 
(𝑀𝑛 , 𝑤) ⊭ 𝐶(𝑥, 𝑦) iff 𝐼(𝑥), 𝐼(𝑦) ∈ 𝑑(𝑤) ∧ 𝐼(𝑥, 𝑦) ∉ 𝐼(𝐶) 
The predicate C(x,y,i) is similar to C(x,y). The interpre-

tation of C(x,y,i) is I(Cõ) and is defined as the set of all tu-
ples (x,y,i)ÍD such that x contains y as the i-th subcompo-
nent. The satisfaction relation for C(x,y,i)  has the same 
structure as the satisfaction relation for C(x,y).. 

The interpretation of predicate Res(Sp,So) is I(Res) and is 
defined as the set of all pairs of steps (Sp,So)ÍD such that 
Sp is a response step to the initiation step So. That is, 
(Sp,So)ÍI(Res) is true if the following two conditions hold: 
¶ So is an initiation step and therefore can be any step in 

the protocol, where any principal that is not a trusted 
third party (TTP) is the sender  

¶ Sp is the first step after So, where the recipient of Sp is 
the sender of So. 
The satisfaction relation for Res(Sp,So) has the same 

structure as the satisfaction relation for C(x,y). 

The semantic interpretation of  predicate Rint(G,x,Sr) is 
I(Rint) and is defined as the set of all tuples (G,x,Sr)ÍD 
where G is the intended recipient of x in step Sr. That is, 
(G,x,Sr)ÍI(Rint) holds if all the following conditions hold: 
¶    G is the recipient of step Sr  
¶ x is a sequence of bits of message sent in Sr  
¶ G can extract x from message Sr 

The satisfaction relation for Rint(G,x,Sr) has the same 
structure as the satisfaction relation for C(x,y). 

The interpretation of Symmetric(x,y) is I(Sym) and is de-
fined as the set of all pairs of objects (x,y)ÍD such that nei-
ther x and y are cryptographic expressions, but have both 
the same number of atomic data of the same type and ap-
pearing in the same order. The satisfaction relation for 
Symmetric(x,y) has the same structure as the satisfaction re-
lation for C(x,y). 

The interpretation of clear(x,Sr) is I(Cl) and is defined as 
the set of all pairs of objects (x,Sr)ÍD where x is transmitted 
in cleartext in Sr. That is, (x,Sr)ÍI(Cl) is true if one of the 
following conditions holds: 
¶ the sequence of bits of x can be derived from Sr without 

the application of any cryptographic operations 
¶ the sequence of bits of x can be decrypted from step Sr 

using public keys. 
The satisfaction relation for clear(x,Sr) is defined analo-

gous to the satisfaction relation for C(x,y). 
The interpretation of predicate onlyPriv(x,Sr) is I(oP) 

and is defined as the set of all pairs of objects (x,Sr)ÍD such 
that component x is transmitted in Sr encrypted only with 
private keys. That is, (x,Sr)ÍI(oP) is true if there exists a se-
quence of bits y, where y is the result of cryptographic op-
erations using private key(s) on x or on a sequence of bits 
of which x is a subsequence. The satisfaction relation for 
onlyPriv(x,Sr) has the same structure as the satisfaction re-
lation for C(x,y). 

The interpretation of KMaterial(x) is I(KM) and is de-
fined as the set of all objects x ÍD such that x contributes 
to the composition of the key. That is, xÍI(KM) holds if x 
or any subsequence of x is used in the generation of a new 
key. The satisfaction relation for KMaterial(x) has the same 
structure as the satisfaction relation for C(x,y). 

The interpretation of P(G,x) is I(P) and is defined as the 
set of all pairs (G,x)ÍD such that G possesses component 
x.  The satisfaction relation is as follows: 
(𝑀𝑛 , 𝑤) ⊨ 𝑃(𝐺, 𝑥) iff 𝐼(𝐺, 𝑥) ∈ 𝐼(𝑃) ∧ 𝐼(𝐺), 𝐼(𝑥) ∈ 𝑑(𝑤′) 

for all wõ such that (𝑤, 𝑤′) ∈ 𝑅𝑖  
(𝑀𝑛 , 𝑤) ⊭ 𝑃(𝐺, 𝑥) iff 𝐼(𝐺, 𝑥) ∉ 𝐼(𝑃) ∨ (𝐼(𝐺), 𝐼(𝑥) ∈ 𝑑(𝑤) 
∧ 𝐼(𝐺), 𝐼(𝑥) ∉ 𝑑(𝑤′)) for any wõ such that (𝑤,𝑤′) ∈ 𝑅𝑖.  
The semantics of P(G,x,Sr) is similar to P(G,x). The in-

terpretation of P(G,x,Sr) is I(Põ) and is defined as the set of 
all tuples (G,x,Sr)ÍD such that component x  is possessed 
by G at step Sr. The satisfaction relation has the same struc-
ture as the satisfaction relation for P(G,x). 

The interpretation of K(G,a,Sr) is I(K) and is defined as 
the set of all tuples (G,a,Sr)ÍD, where G knows that for-
mula a is true at step Sr. This implies that a is indeed true 
for all possible worlds. The satisfaction relation has the 
same structure as the satisfaction relation for P(G,x). 

The interpretation of Gen(G,x,Sr) is I(Gen) and is de-
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fined as the set of all tuples (G,x,Sr)ÍD such that G gener-
ates component x in step Sr.  That is, (G,x,Sr)ÍI(Gen) holds 
if G is the sender of step Sr and x does not appear prior to 
Sr in the protocol. The satisfaction relation has the same 
structure as the satisfaction relation for P(G,x). 

The interpretation of 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) → 𝑅, 𝑥, 𝑆𝑟
𝑖) is I(Rep) 

and is defined as the set of all tuples (𝐼(𝐺) → 𝑅, 𝑥, 𝑆𝑟
𝑖) such 

that intruder I(G) impersonating principal G records x in a 
step 𝑆𝑞

ℎ of run h and replays x in step 𝑆𝑟
𝑖  of run i to R, where 

h<i.  The satisfaction relation is given below: 
(𝑀𝑛 , 𝑤) ⊨ 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) → 𝑅, 𝑥, 𝑆𝑟

𝑖) iff (𝑀𝑛 , 𝑤) ⊨
𝑃(𝐼(𝐺), 𝑥) for some ℎ < 𝑖  such that 𝑥 ∈ 𝑑ℎ ∧
𝐼(𝐼(𝐺), 𝑅, 𝑥, 𝑆𝑟

𝑖) ∈ 𝐼(𝑅𝑒𝑝) ∧ 𝐼(𝐺), 𝐼(𝑅), 𝐼(𝑥), 𝐼(𝑆𝑟
𝑖) ∈

𝑑𝑖(𝑤′) for all wõ such that (𝑤, 𝑤′) ∈ 𝑅𝑖  
(𝑀𝑛 , 𝑤) ⊭ 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) → 𝑅, 𝑥, 𝑆𝑟

𝑖) iff (𝑀𝑛 , 𝑤) ⊭
𝑃(𝐼(𝐺), 𝑥) for any ℎ ≤ 𝑖  such that 𝑥 ∈ 𝑑ℎ ∧
𝐼(𝐼(𝐺), 𝑅, 𝑥, 𝑆𝑟

𝑖) ∉ 𝐼(𝑅𝑒𝑝) ∨ (𝐼(𝐺), 𝐼(𝑅), 𝐼(𝑥), 𝐼(𝑆𝑟
𝑖) ∈

𝑑𝑖(𝑤) ∧ 𝐼(𝐺), 𝐼(𝑅), 𝐼(𝑥), 𝐼(𝑆𝑟
𝑖) ∉ 𝑑𝑖(𝑤′) for any wõ 

such that (𝑤, 𝑤′) ∈ 𝑅𝑖  
The interpretation of FA(En(P)) is I(FA) and is defined 

as the set of all message exchanges of a protocol En(P)ÍD 
such that a freshness attack can be mounted on En(P). That 
is, for any message exchange En(P)ÍI(FA) a valid data 
transmission can be maliciously repeated by an attacker, 
who recorded the data from an earlier legitimate ex-
change. The satisfaction relation for FA(En(P)) is: 
(𝑀𝑛 , 𝑤) ⊨ 𝐹𝐴(𝐸𝑛(𝑃)) iff 𝐼(𝐸𝑛(𝑃)) ∈ 𝑑(𝑤) ∧ 𝐼(𝐸𝑛(𝑃)) ∈ 𝐼(𝐹𝐴)  
(𝑀𝑛 , 𝑤) ⊭ 𝐹𝐴(𝐸𝑛(𝑃)) iff 𝐼(𝐸𝑛(𝑃)) ∈ 𝑑(𝑤) ∧ 𝐼(𝐸𝑛(𝑃)) ∉ 𝐼(𝐹𝐴)  
The interpretation of ISA(En(P)) is I(ISA) and is defined as 
the set of all message exchanges of a protocol En(P)ÍD 
such that an interleaving session attack can be mounted on 
En(P). That is, for any message exchange En(P)ÍI(ISA), the 
interleaved execution of multiple protocol runs enables an 
intruder to use message components from one run to syn-
thesize messages in other runs. The satisfaction relation for 
ISA(En(P)) is defined as: 
(𝑀𝑛 , 𝑤) ⊨ 𝐼𝑆𝐴(𝐸𝑛(𝑃)) iff 𝐼(𝐸𝑛(𝑃)) ∈ 𝑑(𝑤) ∧ 𝐼(𝑥) ∈ 𝐼(𝐼𝑆𝐴)  
(𝑀𝑛 , 𝑤) ⊭ 𝐼𝑆𝐴(𝐸𝑛(𝑃)) iff 𝐼(𝐸𝑛(𝑃)) ∈ 𝑑(𝑤) ∧ 𝐼(𝑥) ∉ 𝐼(𝐼𝑆𝐴)  

3.8 Soundness of the Attack Detection Logic 

Here the proof of soundness of the Attack Detection Logic 
is presented by showing that if a detection rule is activated 
(i.e. all prerequisites are satisfied), then a corresponding 
freshness or interleaving session attack can be mounted. In 
addition to the proof, the general structure of the corre-
sponding detectable attack is provided. However, due to 
space limitations, we only provide details for two out of 22 
rules, namely Freshness Rule R1.1 and Symmetry Rule R2.1. 

3.8.1 Proving Soundness of Freshness Rule R1.1 

Assume ∃𝑆𝑟
𝑎 ∈ 𝐸𝑛

𝑎(𝑃) such that 𝑠(𝑆𝑟
𝑎) = 𝐺 and 𝑟(𝑆𝑟

𝑎) = 𝑅. 
If ∀{𝑥}𝑘 ∈ 𝑆𝑟

𝑎: ¬𝐹𝑟𝑒𝑠ℎ({𝑥}𝑘) then axiom A18 holds for each 
{𝑥}𝑘 in step 𝑆𝑟

𝑎 and hence ∀{𝑥}𝑘 ∈ 𝑆𝑟
𝑎: 𝑟𝑒𝑝𝑙𝑎𝑦(𝐼(𝐺) ↦

𝑅, {𝑥}𝑘, 𝑆𝑟
𝑏) for any 𝑏 > 𝑎. Thus, as all cryptographic ex-

pressions in step 𝑆𝑟
𝑎 can be replayed, the entire message 𝑆𝑟

𝑎 
can be replayed in a subsequent protocol run 𝑆𝑟

𝑏. Hence, 
𝐹𝐴(𝐸𝑛(𝑃)) holds. 

The general structure of the attack is shown in Fig. 2. In 
this attack, R has no way to establish that 𝑆𝑟

1 belongs to 
𝐸𝑛
1(𝑃) rather than 𝐸𝑛

2(𝑃), as all the cryptographic expres-
sions in 𝑆𝑟

1 are not fresh. 

 

𝐸𝑛
1(𝑃) {

 ⋮
𝑆𝑟
1: 𝐺 → 𝐼(𝑅):… , {𝑥}𝑘

⋮
  

⋮

𝑆𝑟
2: 𝐼(𝐺) → 𝑅:… , {𝑥}𝑘 

 ⋮

}𝐸𝑛
2(𝑃) 

Fig. 2: Structure of the attack detected by R1.1 

3.8.2 Proving Soundness of Symmetry Rule R2.1 

Assume ∃𝑆𝑞
𝑎 ∈ 𝐸𝑛

𝑎(𝑃) such that 𝐶(𝑚(𝑆𝑞
𝑎), 𝑐1) and 

𝐶(𝑚(𝑆𝑟
𝑎), 𝑐2). If ↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷1 then it follows by axiom 

A16a 𝐺𝑒𝑛(𝐺, 𝑐1, 𝑆𝑞
𝑎)  ∧  𝑅𝑖𝑛𝑡(𝑅, 𝑐1, 𝑆𝑞

𝑎)  ∧  𝐺𝑒𝑛(𝑅, 𝑐2, 𝑆𝑟
𝑎) ∧

𝑅𝑖𝑛𝑡(𝐺, 𝑐2, 𝑆𝑞
𝑎). If either 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) (in case of 

hashed expressions) or 𝑆𝐶𝐸(𝑐1, 𝑐2) (in case of crypto-
graphic expressions) and 𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) hold, then the for-
mat of 𝑐2 in step 𝑆𝑟

𝑎 is identical to the format of 𝑐1 in step 
𝑆𝑞
𝑏 in a parallel run of message exchange 𝐸𝑛

𝑏(𝑃). Further, if 
𝑐1 and 𝑐2 are both parent cryptographic expressions 
(Π(𝑐1) ∧ Π(c2)) then an intruder can substitute 𝑐2 of 𝑆𝑟

𝑎 as 
component 𝑐1′ in 𝑆𝑟

𝑏 to impersonate principal R. Therefore, 
𝐼𝑆𝐴(𝐸𝑛(𝑃)) holds. 

The general structure of the attack is shown in Fig. 3. An 
attacker can impersonate R in a parallel run, 𝐸𝑛

2(𝑃), where 
the cryptographic transformation 𝑐2 obtained in step 𝑆𝑟

1 is 
used as component 𝑐1′ in 𝑆𝑞

2. As the parent cryptographic 
transformation required in  𝑆𝑞

2 is symmetric and principal 
type value equivalent with 𝑐2 of step  𝑆𝑟

1, principal G can-
not distinguish the replayed 𝑐2 in  𝑆𝑞

2 sent by the intruder 
from a parent cryptographic transformation 𝑐1′ sent by R 
in a genuine message exchange.  

 

𝐸𝑛
1(𝑃)

{
 
 

 
 

⋮
𝑆𝑞
1: 𝐺 → 𝑅:… , 𝑐1

⋮
𝑆𝑟
1: 𝑅 → 𝐼(𝐺):… , 𝑐2

⋮

  
⋮

𝑆𝑞
2: 𝐼(𝑅) → 𝐺:… , 𝑐2

⋮
𝑆𝑟
2: 𝐺 → 𝐼(𝑅):… , 𝑐2′

⋮ }
 
 

 
 

𝐸𝑛
2(𝑃)

 

Fig. 3: Structure of the attack detected by R2.1 

3.9 Completeness of the Attack Detection Logic 

The presented Attack Detection Logic is complete with re-
gard to the vulnerabilities in the set of analyzed security 
protocols as outlined in Section 3.1. Completeness is 
proven by demonstrating that if a detection rule is not ac-
tivated, then the analyzed protocol does not contain the 
design weakness addressed by that detection rule. Due to 
space limitations, we only provide details for Freshness 
Rule R1.1 and Symmetry Rule R2.1. 

3.9.1 Proving Completeness of Freshness Rule R1.1 

Rule R1.1 addresses design flaws where a message con-
tains cryptographic expressions without fresh compo-
nents. This is a proof by contradiction: Assume ∃𝑆𝑟

𝑎 ∈
𝐸𝑛
𝑎(𝑃) such that 𝑠(𝑆𝑟

𝑎) = 𝐺 and 𝑟(𝑆𝑟
𝑎) = 𝑅.  Further, assume 

at least one cryptographic expression {𝑘}𝑘 in step 𝑆𝑟
𝑎 is 

fresh (∃{𝑥}𝑘 ∈ 𝑆𝑟
𝑎: 𝐹𝑟𝑒𝑠ℎ({𝑥}𝑘)). If Rule R1.1 is not com-

plete, then 𝐹𝐴(𝐸𝑛(𝑃)) holds. However, for 𝐹𝐴(𝐸𝑛(𝑃)) to 
hold, it must be feasible to replay step 𝑆𝑟

𝑎 as 𝑆𝑟
𝑏 in a subse-

quent message exchange 𝐸𝑛
𝑏(𝑃) with 𝑏 > 𝑎. This is the case 

only if the recipient 𝑅 of 𝑆𝑟
𝑏 is not able to detect that the 

replayed message belongs to exchange 𝐸𝑛
𝑎(𝑃). However, 
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as 𝐹𝑟𝑒𝑠ℎ({𝑥}𝑘) is true, the cryptographic expression {𝑥}𝑘 
is tied to message exchange 𝐸𝑛

𝑎(𝑃). Hence, principal 𝑅 is 
able to detect that 𝑆𝑟

𝑎 belongs to 𝐸𝑛
𝑎(𝑃) and not to 𝐸𝑛

𝑏(𝑃). 
This is a contradiction to the hypothesis 𝐹𝐴(𝐸𝑛(𝑃)). Thus, 
∃{𝑥}𝑘 ∈ 𝑆𝑟

𝑎: 𝐹𝑟𝑒𝑠ℎ({𝑥}𝑘) → ¬𝐹𝐴(𝐸𝑛(𝑃)) and therefore rule 
R1.1 is complete.  

3.9.2 Proving Completeness of Symmetry Rule R2.1 

Rule 2.1 addresses design flaws in message exchanges 
where cryptographic transformations c1 from one protocol 
run is used as c2 in another protocol run. 

This is a proof by contradiction: Assume ∃𝑆𝑞 , 𝑆𝑟 ∈ 𝐸𝑛(𝑃) 
with parent cryptographic transformations 𝑐1 ∈ 𝑆𝑞 and 
𝑐2 ∈ 𝑆𝑟. If R2.1 is not complete, then in the following cases 
𝐼𝑆𝐴(𝐸𝑛(𝑃) holds: 
Case 1: ¬(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)). If c1, c2 are 

not symmetric, then the internal structure of both expres-
sions is different and c1 cannot be used instead of c2. 
Thus, 𝐼𝑆𝐴(𝐸𝑛(𝑃) does not hold. Hence, 
¬(𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐(𝑐1, 𝑐2) ∨ 𝑆𝐶𝐸(𝑐1, 𝑐2)) → ¬𝐼𝑆𝐴(𝐸𝑛(𝑃)). 

Case 2: ¬𝑃𝑣𝑡𝑒(𝑐1, 𝑐2). The appearance of principal compo-
nents within c1 and c2 does not match. Analogous to 
Case 1, c1 cannot be used instead of c2. Thus, 𝐼𝑆𝐴(𝐸𝑛(𝑃) 
does not hold. Hence, ¬𝑃𝑣𝑡𝑒(𝑐1, 𝑐2) → ¬𝐼𝑆𝐴(𝐸𝑛(𝑃)). 

Case 3: ¬↑↓ (𝑐1, 𝑐2)𝑇𝑂𝐷1.  As c1, c2 are not exchanged be-
tween the same principals (in opposite direction), they 
contain identity information that will reveal the at-
tempted use of c1 instead of c2 in a different run (cases 
where this information is not present are covered by 
other rules). Thus, 𝐼𝑆𝐴(𝐸𝑛(𝑃) does not hold. Hence, (¬↑↓
(𝑐1, 𝑐2)𝑇𝑂𝐷1 → ¬𝐼𝑆𝐴(𝐸𝑛(𝑃)). 

As all cases lead to ¬𝐼𝑆𝐴(𝐸𝑛(𝑃)), which is a contradiction 
to the hypothesis 𝐼𝑆𝐴(𝐸𝑛(𝑃)), R2.1 is complete. 

4 EFFECTIVENESS OF THE ATTACK DETECTION 

LOGIC IN DETECTING PROTOCOL DESIGN FLAWS 

Here we present a study that evaluates the effectiveness of 
the presented Attack Detection Logic. Before the logic can 
be applied to a security protocol it is necessary to formalise 
the initial assumptions (statements defining what each 
principal possesses and knows at the beginning of a pro-
tocol run) and the protocol steps in the language of the 
logic. Then a process of deductive reasoning is used that 
applies the axioms and rules of the logic in an attempt to 
derive the conclusion FA(En(P)) or ISA(En(P)). 

Firstly, we demonstrate how the Attack Detection Logic 
can be used as part of the design process of a security pro-
tocol. Secondly, we present a summary analysis on a range 
of protocols. As the effectiveness of the logic can only be 
evaluated against security protocols where the expected 
outcome of applying the detection rules is already known, 
we apply the logic to protocols with known weaknesses 
and those that are known to be secure. The detection rules 
can be considered effective if: 
¶ Protocols with known weaknesses activate at least one 

detection rule, revealing that either a freshness attack 
or an interleaving session attack is possible. 

¶ Protocols without weaknesses do not activate any de-
tection rule.  

4.1 Using the Attack Detection Logic in the Design 
Process of Security Protocols 

In this section, we demonstrate how the Attack Detection 
Logic can be used in the design process of security proto-
cols to ensure they are free of weaknesses that are exploit-
able by freshness or interleaving session attacks. 

4.1.1 Specification of Initial Assumptions  

Assume that a security protocol for smart-card based 
authentication is to be designed and that the Lee-Kim-Yoo 
Protocol (LKY) [32] is the current state of the protocol de-
sign. Then, the initial assumptions of the LKY protocol are 
specified as follows: 

A1: P(A,H({A}datax,S0) 

A2: K(A,P(TTP,H({A}datax, S0),S0) 

A3: P(A,NA,S0) 

A4: K(A,Fresh(NA),S0) 

A5: P(TTP,H({A}datax),S0) 

A6: K(TTP,P(A,H({A}datax,S0),S0) 

A7: P(TTP,NTTP,S0) 

A8: K(TTP,Fresh(NTTP),S0) 

Statements A1-A4 define the initial assumptions for 
principal A before a protocol run (i.e. at time 𝑡0). Assump-
tion A1 states that A possesses symmetric key 
òH({A}datax)ó. A2 specifies that A is aware of the fact that 
TTP possesses òH({A}datax)ó. A3 specifies that A pos-
sesses the nonce Na and A4 states that A knows that nonce 
Na is fresh for the current run of the protocol. Statements 
A5-A8 define the initial assumptions of TTPõs possessions 
and knowledge before the start of the protocol run. A5 
states that TTP possesses key òH({A}datax)ó. A6 specifies 
that TTP is aware of the fact that principal A possesses 
òH({A}datax)ó. A7 expresses that TTP possesses the nonce 
Nttp and A8 states that TTP knows that Nttp is fresh for 
the current protocol run. 

4.1.2 Specification of Protocol Steps 

The steps of the LKY protocol are specified as: 
S1: A→TTP: A, {NA}H({A}datax) 

S2: TTP→A: H({NA}H({A}datax), NA),  

  {NTTP}H({A}datax) 

S3: A→TTP: H({NTTP}H({A}datax),NTTP) 

4.1.3 Analysis Results 

Applying the Attack Detection Logic reveals the follow-
ing weaknesses: 
W1. As {NTTP}H({A}datax) in step S2 is not freshness pro-

tected rule R1.2 is activated. This reveals the replay at-
tack by Jurcut, Coffey and Dojen [17]. 

W2. As {NA}H({A}datax) in step S1 and {NTTP}H({A}datax) 
in step S2 are symmetric and also principal value type 
equivalent rule R2.3 is activated. This weakness has 
been identified by Jurcut, Coffey and Dojen [17].  

W3. As H({NA}H({A}datax), NA) in step S2 and 
H({NTTP}H({A}datax),NTTP) in step S3 are symmetric 
and also principal value type equivalent rule R2.3 is 
activated. This reveals the parallel session attack by 
Nam et al. [6].  

As weaknesses in the protocol design have been de-
tected, it is necessary to amend the protocol as follows: 



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2725831, IEEE Transactions on Dependable and Secure Computing

12 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

¶ To eradicate W1, a component that A recognises as be-
ing fresh needs to be added to the cryptographic ex-
pression {NTTP}H({A}datax) in step S2. One option is to 
utilise the nonce NA and change the cryptographic ex-
pression to {NTTP, NA}H({A}datax). 

¶ To eradicate W2, the symmetry between 
{NA}H({A}datax) in step S1 and {NTTP}H({A}datax) in 
step S2 needs to be broken. The same solution as for W1 
can be used, where {NTTP}H({A}datax) is changed to 
{NTTP, NA}H({A}datax)  

¶ To eradicate W3, the symmetry between 
H({NA}H({A}datax), NA) in step S2 and 
H({NTTP}H({A}datax), NTTP) in step S3 needs to be bro-
ken. One option is to add nonce NA to change 
H({NTTP}H({A}datax), NTTP) in step S3 to H({NTTP, 
NA}H({A}datax), NTTP). 

After eradicating these weaknesses, the amended protocol 
is expressed in the language of the logic as follows: 

S1: A→TTP: A, {NA}H({A}datax) 

S2: TTP→A: H({NA}H({A}datax), NA),  

   {NTTP, NA}H({A}datax) 

S3: A→TTP: H({NTTP, NA}H({A}datax),NTTP) 
Applying the Attack Detection Logic to this protocol 

design establishes that no detection rules are activated. 
Therefore, no weaknesses are present that can be exploited 
by freshness or interleaving session attacks.  

4.2 Applying the Attack Detection Logic to Security 
Protocols  

Here we apply the Attack Detection Logic to a range of 
protocols ð some with known weaknesses and some that 
are known to be secure. Due to space limitations, we only 
present specification of the protocol steps. 

4.2.1 Needham-Schroeder Public Key Protocol 

The Needham Schroeder Public Key Protocol [33] can be 
expressed in the language of the logic as follows:  

S1: A→TTP: A,B 

S2: TTP→A: {KB+,B}KTTP- 

S3: A→B: {NA,A}KB+ 

S4: B→TTP: B,A 

S5: TTP→B: {KA+,A}KTTP- 

S6: B→A: {NA,NB}KA+ 

S7: A→B: {NB}KB+ 

Applying the Attack Detection Logic reveals the follow-
ing weaknesses: 
¶ As {KB+,B}KTTP- in S2 and {KA+,A}KTTP- in S5 do not con-

tain a fresh component and are not freshness protected, 
rules R1.1 and R1.2 are activated. This reveals the com-
promised key attack by Denning and Sacco [2] and 
Coffey and Saidha [34]. 

¶ As {Nb}KB+ in S7 is not sender bound, rule R4.7 is acti-
vated. This reveals the man-in-the-middle attack by 
Lowe [35].  

4.2.2 Station-to-Station Protocol 

The MAC variant of the Station-to-Station Protocol [36] 
can be expressed in the language of the logic as follows: 
S1: A→B: A,KADH+ 

S2: B→A: {B,KB+,TSttp1}KTTP-,KBDH+,{KBDH+,KADH+}KB-, 

   H({KADH+}KBDH-, {KBDH+,KADH+}KB-) 

S3: A→B: {A,KA+,TSttp2}KTTP-,{KADH+,KBDH+}KA-, 

   H({KBDH+}KADH-, {KADH+,KBDH+}KA-) 

Applying the Attack Detection Logic reveals the fol-
lowing weaknesses: 
¶ As {KBDH+,KADH+}KB- from step 2 is symmetric in oppo-

site direction to {KADH+,KBDH+}KA- from step 3, rule R2.1 
is activated. As {KBDH+,KADH+}KB- and {KADH+,KBDH+}KA- 
are also not receiver bound, rule 3.1 is activated twice. 
This reveals the unknown-key-share attack by Blake-
Wilson and Menezes [37]. 

4.2.3 SSH Public Key Protocol 

The SSH Public Key Protocol [38] can be expressed in the 
language of the logic as follows: 

S1: A­B: NA 

S2: B­A: NB 

S3: B­A: KB1+, KB2+ 

S4: A­B: {{H(NA,NB,KB1+,KB2+),KAB}KB2+}KB1+ 

S5: A­B: {A,KA+,{H(A,NA,NB)}KA-}KAB 

Applying the Attack Detection Logic reveals the fol-
lowing weakness: 
¶ As {H(A,NA,NB)}KA- in S5 is not receiver bound rule 

R3.3 is activated. This reveals the parallel session attack 
by Abadi [3]. 

4.2.4 Abadi SSH Public Key Protocol 

Abadiõs amended SSH Public Key Protocol [3] can be ex-
pressed in the language of the logic as follows: 

S1: A­B: NA 

S2: B­A: NB 

S3: B­A: KB1+, KB2+ 

S4: A­B: {{H(NA,NB,KB1+,KB2+),KAB}KB2+}KB1+ 

S5: A­B: {A,KA+,{H(A,NA,NB,B)}KA-}KAB 

Applying the Attack Detection Logic establishes that no 
detection rules are activated. Therefore, no weaknesses are 
present that can be exploited by freshness or interleaving 
session attacks.  

4.2.5 KJKW Protocol – Initial Phase 

The Initial Phase of the Kim-Jo-Kim-Won Protocol [39] can 
be expressed in the language of the logic as follows: 

S1: U­S: U,H(g,NU),H(H(g,NU),KUTTP) 

S2: S­TTP: U,H(g,NU),H(H(g,NU),KUTTP),S, 

H(g,NS),H(H(g,NS),KSTTP) 

S3: TTP­S: {H(g,NS),n,H(NTTP), 

{H(g,NU),H(g,NS),n,H(NTTP)}KUTTP}KSTTP 

S4: S­U: {H(g,NU),H(g,NS),n,H(NTTP)}KUTTP, 

{H(g,NU),H(g,NS)}H(H(g,NU),H(g,NS))  

Applying the Attack Detection Logic reveals the follow-
ing weaknesses: 
¶ Rule R2.2 is activated twice, as H(g,NU) and 

H(H(g,NU),KUTTP) from S1 are symmetric in opposite 
direction to H(g,NS) and H(H(g,NS),KSTTP) from S2. 
Also, R4.1 is activated twice, as  {H(g,NU) ,H(g,NS), 
n,H(NTTP)}KUTTP and {H(g,NU), H(g,NS)}H(H(g,NU), 
H(g,NS)) from S4 are not strong sender bound. These 
reveal the man-in-the-middle attack by Lv et al. [13]. 

4.2.6 LMLM amended KJKW Protocol – Initial Phase 

The Initial Phase of the LMLM amended KJKW Protocol 
[13] can be expressed in the logic as follows: 

S1: U­S: U,{U,H(g,NU)}KUTTP 



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2017.2725831, IEEE Transactions on Dependable and Secure Computing

AUTHOR ET AL.:  TITLE 13 

 
 

 

S2: S­TTP: U,{U,H(g,NU)}KUTTP,S, 

{S,F(NS)}KSTTP 

S3: TTP­S: {U, H(g,NU),F(NS),n,H(NTTP), 

{S,H(g,NU),F(NS),n,H(NTTP)}KUTTP}KSTTP 

S4: S­U: {S,H(g,NU),F(NS),n, 

H(NTTP)}KUTTP,{S, H(g,NU),F(NS)} 

{H(g,NU),H(g,NS)}{KS+}KU-  

Applying the Attack Detection Logic establishes that no 
detection rules are activated. Therefore, no weaknesses are 
present that can be exploited by freshness or interleaving 
session attacks.   

4.2.7 Results for Other Security Protocols  

In addition to the analyses detailed above, the detection 
logic has been applied to the following protocols: 
¶ KZ Authentication Protocol [40]: Violates R2.2, R4.1, re-

vealing parallel session attack [7]. 
¶ Cluster Based Key Management (CBKM) Protocol [41]: 

Initial Clustering and Role Changing sub-protocol both 
activate R1.1, R1.2 revealing freshness attack [8].  

¶ Dojen, Zhang, Coffey fix of CBKM Protocol [8]: No 
rules activated and therefore no attacks are detected. 

¶ Yoon-Ryu-Yoo user authentication scheme [42]: Acti-
vates R2.1, revealing parallel session attack [10]. 

¶ HCH Protocol [43]: Activates R2.1, revealing parallel 
session attack [14]. 

¶ Nam, Kim, Park and Won fixed Lee, Kim and Yong Au-
thentication Protocol [6]: Activates R1.2, R2.3, reveal-
ing replay attack [17]. 

¶ JSXLC RFID Authentication Protocol [44]: Activates 
R1.1, revealing freshness attack [15]. 

4.3 Summary of Effectiveness Study 

The study shows that for all evaluated security protocols 
with known attacks at least one of the detection rules is 
activated. Thus, the logic is able to detect these design 
weaknesses in the chosen set of exploitable security proto-
cols. Further, for protocols which are known to be secure, 
none of the detection rules are triggered. 

A prototype tool implementing the proposed Attack 
Detection Logic is available at [45], enabling the auto-
mated detection of weaknesses leading to freshness and 
interleaving session attacks, as well as the identification of 
the reasons for these weaknesses. This tool can be used to 
duplicate the results of this effectiveness study. 

5 CONCLUSION 

This paper proposed a new logic-based technique for de-
tecting design weaknesses in security protocols that are ex-
ploitable by freshness and interleaving session attacks. 
This logic-based technique can be used at the design stage 
of a security protocol to establish the presence of such 
weaknesses. If any design weaknesses are revealed, the 
technique also identifies the reasons for these weaknesses. 
This information can then be used to eradicate the design 
weaknesses.  

The approach we have taken in the design of the Attack 
Detection Logic is to characterize the general circum-
stances under which potential attacks may exist and to de-
fine logical formulae that describe such possibilities. The 

logic analyses the security protocols by examining the 
structure of the exchanged cryptographic messages. For-
mulas that make statements about properties of crypto-
graphic transformations, as well as properties of the mes-
sage exchanges and the knowledge of the principals in-
volved are derived and matched against the set of detec-
tion rules.  

The components of the proposed Attack Detection 
Logic, including the language, predicates, axioms and 
rules, were presented. Semantics for the proposed logic 
were introduced and the soundness and completeness of 
the logic were demonstrated. The logicõs ability to detect 
weaknesses exploitable by freshness and interleaving ses-
sion attacks was demonstrated by applying it to an authen-
tication protocol with known weaknesses. Further, the re-
sults of an evaluation study of the effectiveness proposed 
technique on a range of selected protocols revealed that: (i) 
For all the protocols evaluated those with known freshness 
or interleaving session attacks trigger at least one of the 
logic detection rules. (ii) Detection of all known design 
weaknesses exploitable by freshness and interleaving ses-
sion attacks. (iii)  None of the detection rules were trig-
gered for protocols that are known to be secure against 
freshness and interleaving session attacks.  

An automated implementation of the proposed detec-
tion logic is available at http://www.dcsl.ul.ie [45]. 
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