
Modelling Flash Devices with FDR: Progress and Limits∗

Arshad Beg
School of Computer Science & Statistics

Trinity College Dublin
Rep. of Ireland

begm@scss.tcd.ie

Andrew Butterfield
School of Computer Science & Statistics

Trinity College Dublin
Rep. of Ireland

Andrew.Butterfield@scss.tcd.ie

ABSTRACT
We present our experience of working with the Failures-
Divergence Refinement (FDR) toolkit while extending our
modelling of the behaviour of Flash Memory. This effort
is a step towards the low-level modelling of data-storage
technology that is the target of the POSIX filestore mini-
challenge. The key objective was to advance previous work
presented in [4, 2] to cover the full Open Nand-Flash In-
terface (ONFi) 2.1 model. The previous work covered a
sub-model of the mandatory features of ONFi 1.0. The
FDR toolkit was used for refinement/model-checking. In
addition to the compression techniques available in FDR,
we also experimented with FDR Explorer - an application-
programming interface (API) that allowed us to get a better
picture of FDR performance. This paper summarises the
progress we made, and the limits we encountered. We are
now able to verify many of the operations in ONFi 2.1 model
using full Failures-Divergence refinement checking, rather
than just trace refinement. Through the use of compression
techniques available in the FDR toolkit and in particular by
hiding the events deeper in the model, we were able to get
compression of the state-space. The work also reports the
number of attempts to compile the full ONFi 2.1 model.

1. INTRODUCTION
The “Grand Challenge in Computing” [10] on Verified Soft-
ware [23, 11], has a stream focussing on mission-critical
filestores, as required, for example, in space-probe missions
[14]. Of particular interest are filestores based on the NAND
Flash Memory technology, very popular in portable datas-
torage devices such as MP3 players and datakeys.

This paper follows on from initial formal models of NAND
Flash Memory, reported in [3, 1] and then [2] based on the

∗This research was supported by the Programme for Re-
search in Third-Level Institutions (PRTLI4) funded by the
Higher Education Authority (HEA),Ireland, through the
Lero Graduate School of Software Engineering (LGSSE).

specification published by the “Open NAND Flash Interface
(ONFi)” consortium [12]. The first two works looked at the
formal model of flash memory in terms of its internal data
storage architecture, and the top-level operations that ma-
nipulate that storage.

The work in [2] reports on modelling and analysing the
finite-state machines in [12] that describe the internal be-
haviour of flash devices. The modelling was done using
machine-readable Communicating Sequential Processes
(CSPM) [21] and the FDR2 tool [8] for the analysis, and was
reported in detail in an M.Sc dissertation [4]. The works [4,
2] also describe a methodology for model data-entry based
on the “state-chart” dialect of XML (SCXML) using XSLT
to translate into CSP. Using XSLT to convert the intermedi-
ate XML to CSP saved time and reduced error-proneness in
the semi-automatically generated CSP code. The key objec-
tive of recent work was to advance the work presented in [4,
2] to cover the full ONFi 2.1 model [13] and to get stronger
and more complete results from FDR.

In the next section (§2) we describe the relevant aspects of
ONFi flash devices, and look at related work (§3). We then
proceed to present the development of the CSP model (§4)
the analyses performed with it (§5) – main contribution lies
in this section, and conclude (§6).

2. BACKGROUND
A flash memory device is best viewed as a hierarchy of nested
arrays of bytes/words, plus additional state and storage fa-
cilities at various levels. At the bottom we have pages, ar-
rays of bytes, which comprise the basic unit for both writing
(programming) and reading (operations PageProgram and
Read). The next level up is the block, an array of pages, that
is the smallest level at which erasure (operation BlockErase)
can take place. Blocks are aggregated together under the
control of a logical unit (LUN), which is the smallest en-
tity capable of independent (concurrent) execution. A LUN
also has one or more local registers the same size as a page
(page-registers), used as temporary storage when transfer-
ring data to/from block pages, and a status register record-
ing key information about ongoing operations, or those just
completed. The status register has 8 bits, of which only bit 6
(a.k.a“SR[6]”), is of interest, used to indicate the ready/busy
status of a LUN. LUNs are collected together into targets,
which have their own means of communication off-chip. A
physical flash memory chip (or device) may have several tar-
gets, depending on the number of available I/O pins. This

paper focusses on the target level and below, with a partic-
ular emphasis on the interactions between LUNs and their
containing target.

2.1 Flash Memory Operations
The ONFi standard defines a collection of operations that
are to be supported by flash devices. Some of the oper-
ations are mandatory and must be provided in any ONFi-
compliant implementation. The operations, Read, PagePro-
gram, BlockErase and ReadStatus, have already been intro-
duced. The other operations include: Change . . . Column
operations that support access to part of a page; Reset to
allow software to reset a device; WriteProtect to direct LUNs
to be locked/unlocked against changes; and ReadID and
ReadParameterPage that return data specific to a device
such as manufacturer’s name, and sizing information.

Other optional operations are also specified, typically pro-
viding enhanced performance-improving features that ex-
ploit the parallelism provided by the LUNs — in ONFi2.1
there are about 17 of these so we do not list them here. Keep-
ing the size of the model in mind, our CSP model comes in
two versions, one covering only the mandatory behaviour,
whilst the other also includes the optional operations.

2.2 Host-Target Communication
We use the term host to refer to any entity interacting with
a flash memory device. Most communication between a host
and target is mediated through a single bi-directional byte-
wide I/O port, so the hardware interface is essentially serial.
Conceptually, four types of transfer take place across this
port: Command Write CW (opcode), a single byte denoting
a command is sent by the host to the target; Address Write
AW (addr), a byte denoting part of an address is sent to
the target; Data Write DW (byte), a data-byte is sent to the
target; and Data Read DR(byte), A data-byte is received
from the target.

Executing a typical operation involves a series of transfers
of the four types listed above, typically with some waiting
inbetween. For example, a Read operation involves the fol-
lowing (typical) initial series of transfers:

CW (readOpcode); AW (addr4); . . . ; AW (addr0); CW (confirm)

The host has then to wait whilst the addressed data is pulled
from the relevant page into the selected LUN’s page-register,
as signalled by the LUN status register. LUN status can be
read either directly via an output pin (“hardware” status) or
by performing a ReadStatus operation (“software” status).

2.3 The ONFi state machines
The internal behaviour of ONFi devices is described by two
finite-state machines (FSMs) [13, §7], one describing the be-
haviour of a target, the other capturing the actions of a
LUN. An example state entry, for the target state
T_RPP_ReadParams (for the ReadParameterPage operation)
is shown in Fig.1. The box at on the top-right describes
the events that occur on entry to the state. The three rows
below describe the subsequent conditional behaviour in this
state. The left of each row describes a input event or condi-
tion whilst the right indicates the resulting state transition,
with the conditions being evaluated in the order in which
they appear.

3. RELATED WORK
Formal model-checking techniques have been applied to the
verification of the Samsung OneNAND flash device driver
[17], with particular emphasis on a multi-sector read op-
eration implemented within the FTL. The model-checkers
explored were NuSMV, Spin and CBMC. The best tool was
reported as CBMC[5], a SAT-solver based model-checker,
that works directly with C source code. Follow-on work [18]
described the use of a concolic testing method applied to
the multi-sector read operation for the flash memory. This
method combines a concrete dynamic analysis and a sym-
bolic static analysis to automatically generate test cases and
an accordingly exhaustive path testing was performed. Fur-
thermore, the authors compared concolic testing method
with other model checking techniques applied to the flash
file system domain.

A fully automatic analysis, using Alloy, of a flash filesystem
is described in [15, 16]. This was built on top of a simple
flash model (at roughly the same level of abstraction as [3]).
The basic file operations as well as crucial design features,
such as wear leveling and erase-unit reclamation, of NAND
flash memory were included in the design. This design also
includes a recovery mechanism for unexpected hardware fail-
ures. The design was analysed by checking trace inclusion
of the flash file system against a POSIX-compliant abstract
file system. Similar work, but very much a tools-integration
approach to modelling (VDM/HOL/Alloy), was reported in
[6, 7]. The key issue here was matching specific tools to
specific verification tasks, and the need to translate between
tool notations, in order to have a complete formal verifica-
tion lifecycle. VDM was used as the main modelling tool,
with Alloy and HOL called upon to verify proof obligations
that arose.

4. THE CSP MODEL
The main objective of this and previous efforts [4, 2] was
to formalise the Target/LUN FSM descriptions in machine-
readable CSP and then use this as a basis for checking their
correctness using the FDR2 refinement checker [8].

The main criteria for correctness was that the behaviours
possible for the interconnected FSMs was consistent with
the behaviour patterns for the operations mandated by that
same standard.

The state machine notation of the ONFi specification allows
for a relatively direct conversion into CSP: there is a close
correspondence between ONFi states and CSP processes.
The separation of target from LUNs also echoes the parallel
composition features of CSP. Multiple LUN processes can
be interleaved: required to synchronize on events with the
target, but not with each other. The target-LUN commu-
nication events (TLEvts) are then hidden and this is put in
parallel with a HOST process that models the behaviour of
the environment that communicates with the flash device.
In CSP notation this is written (for a single target and two
LUNs) as:

SYSTEM =̂ HOST ‖ ((TARGET ‖ (LUN (0) ||| LUN (1)))

\ TLEvts)

Modelling the communication between host and target was

T_RPP_ReadParams The target performs the following actions:
1. Request LUN tLunSelected clear SR[6] to zero.
2. R/B# is cleared to zero.
3. Request LUN tLunSelected make parameter page data

available in page register.
4. tReturnState set to T_RPP_ReadParams.

1. Read of page complete → T RPP Complete
2. Command cycle 70h (Read Status) received → T RS Execute
3. Read request received and tbStatusOut set to TRUE → T Idle Rd Status

Figure 1: ONFi Target State example [13], Page 175.

straightforward as this is well documented as the external
interface of ONFi devices, and had already been modelled
in Z at an abstract level[3, 1]. In CSPM we used events
with names of the form ht_XXXX to model these communi-
cations, which basically consisted of the byte-level transfers
of commands, addresses, data and the single-bit signals (e.g.
write-protect input, ready/busy output).

Certain abstractions and simplifications had to be made so
that the FDR2 model-checker could perform analysis with-
out running out of memory. So, most data and address items
were modelled as single bits, while the command datatype
was restricted to the set of known command types, rather
than being a full byte. An exception is the column address
(address of byte within page), which was modelled as two
bits to support the ChangeXXXXColumn operations.

The 8 state variables of the target had also to be abstracted,
and augmented with implicit state data, such as the state of
the write protect pin, and the data and address information
temporarily in transit, as well as a counter for the number
of address chunks expected. This resulted in the addition
of a further 13 state components. A similar exercise in aug-
menting the state had to be done for the LUN FSM as well,
to a lesser degree (9 ONFi variables were augmented by a
further 3).

4.1 CSP Data-Entry
Instead of writing CSP directly, the ONFi finite state ma-
chines specifications are described using Statechart XML
(SC–XML). This was then automatically converted into CSP
via XML Transforms (XSLT) as described in [4, 2]. The
model has two versions: the full and mandatory version,
covering all the operations and only the mandatory ones re-
spectively. The auto-generated CSP files for the host, target
and LUN state-machines vary between the full and manda-
tory specifications. The other CSP files are hand-crafted
and do not vary with the model version. These files are:
declarations of datatypes and CSP channels (header.csp);
status register implementation (SR6.csp); internal LUN be-
haviour (lun-innards.csp); and combining all the processes
to describe various systems (footer.csp). At the top-level,
we include all the above files in ONFI.csp, (or use ONFI-

mandatory.csp if only the mandatory model is required).

5. MODEL ANALYSIS
The model analysis fell conceptually into two phases: the
first focussed on debugging and validating the model, to en-
sure that it captured the intent of the ONFi specification.
The second phase was using the model to analyse the consis-

Description ONFi 1.0 ONFi 2.1
Target FSM state variables 7 8
Target FSM state entries 77 88
LUN FSM state variables 8 9
LUN FSM state entries 62 68

Table 1: Comparison of State Variables and Entries
for Two Models

tency of the entire ONFi document. The model validation is
described in detail in [2, §5.1]. The verification process un-
dertaken for the FSMs of ONFi 1.0 document is described
in [2, §5.2].

5.1 Moving from ONFi 1.0 to ONFi 2.1
First of all, the pre-existing SCXML files of ONFi 1.0 model
were updated according to the ONFi 2.1 document [13], af-
ter noting the differences between the two versions. This
step was straightforward. The comparison of state variables
and state entries of the two models are in table 1. This
clearly indicates that the ONFi 2.1 model is bigger than the
previous version.

5.2 Running the Model in FDR
After conversion, we initially tried to check the model on
a Core Duo machine with processor speeds of 2.00GHz and
1.06GHz and 1.75GB of RAM running Ubuntu Linux, and
then on a machine having Core 2 Duo Processors of 2.66GHz
and 4.00GB of RAM also running Ubuntu Linux. But in
each case FDR stopped during its compilation process and
halted all the processes running on the CPU. The model ran
successfully on a Quad Processor UltraSPARC-IIIi machine
with processor speeds of 1.28GHz and 16GB RAM under
Solaris. After this experimentation, all the tests were run
on this machine. In addition to this, in order to compile the
indexed state machines (ISMs) of the model in FDR2, we
had to increase the stack size using the command ulimit -

s 262144. With these settings we were able to compile and
verify all required properties on the mandatory-only version
of the model. However, all attempts to handle the full model
failed, with a compile-time failure. We now describe various
attempts made to get the full ONFi model to run through
FDR.

5.3 Initial Checks Performed on the Model
The host model in which the status check is done through
software was setup as follows:

TARGET_TWOLUNS = TARGET [| tl_events |]

(LUN(lun0) ||| LUN(lun1))

HOST_SW_TARGET_TWOLUNS = INITAL_HS_POWERON

[| ht_sw_events |] TARGET_TWOLUNS

In the case of mandatory ONFi 2.1, when checking the
HOST_SW_TARGET_TWOLUNS process for deadlock freedom us-
ing failures refinement, the comparison of state space of two
models reported by FDR is shown in table 2. We see an
increase of about 50% in all model-checking size measures
reported by the tool.

5.4 More Concrete Tests through Failures Re-
finement Checks on the Model

In previous work the implementations of Read, Page Pa-
rameter, MultiRead and Block Erase operations were tested
against their specifications using CSP’s Traces model. The
implementations of these operations were now tailored so
that we could do refinement checks in the more powerful
Failures model. As all our models were shown to be divergence-
free initially, we did not need to perform full Failures-Divergences
refinement checks. For these, the implementation of a pro-
cess looped back to its specification. For example, the Read
operation was checked as follows.

In the READ_SPEC process we took the HOST_SW_TARGET_TWOLUNS
process, hid all the events except the host-target read-related
commands and data transfers. The timing diagram of these
commands and data transfers are specified on Page 127 of
[13]. The POWERON behaviour is specified as a sequence of
first a reset command (FFh) followed by a read status com-
mand (70h). The implementation of the Read operation was
defined as a process that performed an expected sequences
of host target protocol events for a Read (preceded by a
POWERON behaviour).

READ_SPEC = HOST_SW_TARGET_TWOLUNS

\ diff(Events,union

({ht_ioCmd.cmds |

cmds <-{cmd30h,cmd00h,cmd70h,cmdFFh}}

,{|ht_ioDataOut|}))

POWERON = ht_ioCmd.cmdFFh -> ht_ioCmd.cmd70h

-> ht_ioDataOut.true

-> SKIP -- poweron events

READ_F_IMPL0 = POWERON;

ht_ioCmd.cmd00h -> ht_ioCmd.cmd30h

-> ht_ioCmd.cmd70h -> ht_ioDataOut.true

-- read status returned ready, so read

-> ht_ioCmd.cmd00h -> ht_ioDataOut.false

-> ht_ioCmd.cmd70h -> ht_ioDataOut.true

-> READ_SPEC

assert READ_SPEC [F= READ_F_IMPL0

The complete list of tests undertaken are in the source file
footer.csp available on the project website indicated in
the acknowledgement section. The specifications and the
process implementations have their basis in the ONFi docu-
ment. All the tests performed on the failures model took 10
to 22 minutes to complete with exception of the first check

which took 29 minutes. Some of the important tests per-
formed on the model are listed below:
1. Deadlock and Livelock Freedom Checks using Failures
and Failures Divergence Refinement respectively:
HOST_SW_TARGET_TWOLUNS :[deadlock free [F]]

HOST_HW_TARGET_TWOLUNS :[deadlock free [F]]

HOST_SW_TARGET_TWOLUNS :[livelock free [FD]]

HOST_SW_TARGET_LUNHIDDEN :[livelock free [FD]]

HOST_HW_TARGET_TWOLUNS :[livelock free [FD]]

HOST_SW_ANYCMD_HIDDEN :[livelock free [FD]]

HOST_SW_ANYCMD :[livelock free [FD]]

2. Correctness Tests for Read , PageParameter , BlockErase
and MultiRead Operation using Failures Refinement:
READ_SPEC [F= READ_F_IMPL0

READ_SPEC [F= READ_F_IMPL1

PP_SPEC [F= PP_F_IMPL0

PP_SPEC [F= PP_F_IMPL1

BE_SPEC [F= BE_F_IMPL0

BE_SPEC [F= BE_F_IMPL1

MULTIREAD_SPEC [F= MULTIREAD_F_IMPL0

MULTIREAD_SPEC [F= MULTIREAD_F_IMPL1

3. Wrong Implementations to ensure that the tests which
should fail must fail:
BE_SPEC [F= BE_IMPL_F_WRONG0

BE_SPEC [F= BE_IMPL_F_WRONG1

READ_SPEC [F= READ_IMPL_F_WRONG1

MULTIREAD_SPEC [F= MULTIREAD_IMPL_F_WRONG0

5.5 “Deep Hiding” alongwith Model Compres-
sion Techniques available in FDR

While dealing with the state space problem, the FDR man-
ual [8] on Page 35 suggests: “Hide all events at low a level as
is possible . . . any event that is to be hidden should be hidden
the first time (in building up the process) that it no longer
has to be synchronised at a higher level”. The way the model
was setup previously, was as follows:

LUN(lunID) = diamond(INITIAL_L_IDLE(lunID)

[| li_events |] LI_IDLE(lunID))

TWOLUNS = LUN(lun0) ||| LUN(lun1)

TARGET = INITIAL_T_POWERON [| tr_events |]

READYBUSY(true,true)

TARGET_TWOLUNS = TARGET [| tl_events |] TWOLUNS

This clearly shows that the hiding of events was not applied
at the first instant of the process setup. We changed the
setup of the model as follows:

LUN(lunID) = diamond(INITIAL_L_IDLE(lunID)

[| li_events |] LI_IDLE(lunID)) \ li_events

TWOLUNS = LUN(lun0) ||| LUN(lun1)

TARGET = (INITIAL_T_POWERON [| tr_events |]

READYBUSY(true,true)) \ tr_events

TARGET_TWOLUNS = (TARGET [| tl_events |]

TWOLUNS) \ tl_events

Furthermore, by careful investigation we also found that
there were two compression techniques i.e. model_compress

and normalise which were neither applied automatically by

Description ONFi 1.0 ONFi 2.1 Increment Factor
Transitions in ISM 4490300 7023100 156.4%

States Refined 32,338 47,787 147.7%
Transitions during Refinement 78,469 117,473 149.7%

Table 2: Comparison of State Space of Two Models reported by FDR

Description of Model Setting Time (min) Nodes Transitions
High Level Hiding + No Compression Applied 20.6 47787 117473

High Level Hiding + Normalise 18.5 11869 29452
High Level Hiding + ModelCompress 21.5 14696 39455

Low Level Hiding + Normalise 21.76 2393 5292
Low Level Hiding + ModelCompress 23.7 3827 9660

Table 3: Hiding and Compression Techniques Effect on State Space

FDR and nor by us. The remaining compression techniques
i.e. explicate, sbsim, tau_loop_factor and diamond were
already being used in the refinement step of states either
by FDR or being manually applied. The details of these
compression techniques i.e. how these techniques actually
compress the model, are discussed in chapter 5 of [8]. Table
3 lists the impact of these compressions and hiding of events
on the state space. Here ‘High Level Hiding’ refers to the
fact that hiding is applied at the top level while ‘Low Level
Hiding’ refers to the hiding being as close to the point of
definition of the relevant process as possible. We did these
tests using FDR Explorer [9]. These tests were run on a
multi-user timeshared machine, but one whose utilisation
was pretty low. So, the timings mentioned here are just
to indicate that these tests completed in a reasonable time
limit.

The use of FDR Explorer was quite straightforward. For
example, the commands used for testing
HOST_SW_TARGET_TWOLUNS were:

$FDRHOME/bin/fdr2tix -insecure -nowindow

% source FDRExplorer.tcl

% inspectProcs ONFI-mandatory.csp

HOST_SW_TARGET_TWOLUNS 0 0

After the application of hiding at low level, all the checks
were again run to ensure the continued correctness of the
model.

5.6 Tackling Full ONFi 2.1 Model
After having confidence that use of FDR Explorer and com-
pression techniques could possibly be helpful in the compila-
tion of the full model, hiding and compression were applied.
But it again failed to compile. This is due to the fact that
FDR is setup in such a way that it always performs complete
ISM generation at the start, and it applies all compressions
at a later stage. The failures we encountered occurred in
the ISM generation phase. This fact came to our notice
when FDR always reported 7023100 transitions (in the case
of mandatory ONFI 2.1) in ISM generation in order to per-
form the first check and after that it started to compress
the state-space during each of test runs. So, the applica-
tion of hiding and compression techniques did not affect the

performance.

After this failure, FDR support was contacted to get a 64-
bit built of FDR so that we could possibly break the barrier
of 32-bit limit for FDR paging. FDR support thankfully
provided us with 64-bit built of the tool for solaris machine.
But even on 64-bit version of FDR, the ISM generation phase
could not complete successfully, giving up after 6 hours of
test running whereas the number of transitions at the point
of failure was above 23 Million. The status of memory usage
was investigated on the solaris machine during the test, just
before dying. The machine was consuming more than 30 GB
of memory on the local disk as well as 10 GB on the physical
memory. This clearly reflects that the full ONFi 2.1 model
ISM is too large to handle in present state.

6. CONCLUSIONS & FUTURE WORK
6.1 Conclusions
We are now able to cover many of the operations in ONFi
2.1 model using full Failures-Divergence refinement check-
ing, rather than just trace refinement. For ONFi 1.0, the
total count of the CSP code was 1922 of which 1346 were
automatically generated from the SCXML sources. Having
upgraded to ONFi 2.1, the number of auto-generated lines
of CSP has risen to 2070. Through the use of compression
techniques available in the FDR toolkit and in particular
by hiding the events deeper in the model, we were able to
get compression of the state-space, i.e. low level hiding and
normalise gave approximately 20 times more compression
while in case of model_compress, this was a factor of about
12. However despite compression tricks and the use of FDR
explorer, we still have not been able to compile the full ONFi
model, which may represent the current limit of this model-
checking technology. This is due to the fact that FDR does
full compilation before any compressions are applied.

6.2 Future Work
One possible solution for the full model compilation is to
try it on a larger machine with more physical and virtual
memory, to handle the high demands made by initial ISM
generation.

Another way for dealing with this problem is to analyse the
model to see if it can be re-factored into independent chunks
as suggested by FDR technical support:

“Very large individual state machines aren’t re-
ally FDR’s forte: decompose the problem into
smaller interacting machines where possible”.

The model analysis may require moving away from the SCXML
encoding to one that is easier to analyse. The objective of
the analysis would be to see if the FSM models can be fac-
tored into independent chunks, possibly parametrised, that
could be individually checked. More closer liason with the
FDR developers might also be helpful.

Yet another unexplored option is converting this model into
other related formal languages like CSP|B [22], TCOZ[19],
CCS [20]. At the moment the model i.e. SCXML files are
far too CSP specific, and would need to be generalised in
some fashion.

6.3 Acknowledgments
We’d like to thank Phil Armstrong of Formal Methods (Eu-
rope) Ltd., for his assistance with FDR2. This research was
supported by the Programme for Research in Third-Level
Institutions (PRTLI4) funded by the Higher Education Au-
thority (HEA),Ireland, funded through the Lero Graduate
School of Software Engineering (LGSSE).

Sources of the updated model mentioned in this paper are
available at the URL: https://www.cs.tcd.ie/Andrew.But
terfield/Research/FlashMemory.

7. REFERENCES
[1] A. Butterfield, L. Freitas, and J. Woodcock.

Mechanising a formal model of flash memory. Science
of Computer Programming, 74(4):219 – 237, 2009.
Special Issue on the Grand Challenge.

[2] A. Butterfield and A. Ó Catháin. Concurrent models
of flash memory device behaviour. Formal Methods:
Foundations and Applications: 12th Brazilian
Symposium on Formal Methods, SBMF 2009
Gramado, Brazil, August 19-21, 2009Revised Selected
Papers, pages 70–83, 2009.

[3] A. Butterfield and J. Woodcock. Formalising flash
memory: First steps. In ICECCS, pages 251–260.
IEEE Computer Society, 2007.

[4] A. O. Catháin. Modelling flash memory device
behaviour using CSP. Taught M.Sc dissertation,
School of Computer Science and Statistics, Trinity
College Dublin, 2008. Also published as techreport
TCD-CS-2008-47.

[5] E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In K. Jensen and
A. Podelski, editors, TACAS, volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer,
2004.

[6] M. Ferreira, S. Silva, and J. Oliveira. Verifying intel
flash file system core specification. In P. L.
J.S. Fitzgerald and S. Sahara, editors, Modelling and
Analysis in VDM: Proceedings of the Fourth
VDM/Overture Workshop, pages 54–71, School of
Computing Science, Newcastle University, 2008.
Technical Report CS-TR-1099.

[7] M. A. Ferreira and J. N. Oliveira. An integrated
formal methods tool-chain and its application to

verifying a file system model. Formal Methods:
Foundations and Applications: 12th Brazilian
Symposium on Formal Methods, SBMF 2009
Gramado, Brazil, August 19-21, 2009 Revised Selected
Papers, pages 153–169, 2009.

[8] Formal Systems (Europe) Ltd. Failures-Divergence
Refinement, FDR2 User Manual, 6th edition, June
2005.

[9] L. Freitas and J. Woodcock. FDR explorer. Formal
Asp. Comput, 21(1-2):133–154, 2009.

[10] T. Hoare. The verifying compiler: A grand challenge
for computing research. Journal of the ACM,
50(1):63–69, 2003.

[11] T. Hoare, G. T. Leavens, J. Misra, and N. Shankar.
The verified software initiative: A manifesto.
http://qpq.csl.sri.com/vsr/manifesto.pdf, 2007.

[12] Hynix Semiconductor et al. Open NAND Flash
Interface Specification. Technical Report Revision 1.0,
ONFI, www.onfi.org, 28th December 2006.

[13] Hynix Semiconductor et al. Open NAND Flash
Interface Specification. Technical Report Revision 2.1,
ONFI, www.onfi.org, 14th January 2009.

[14] R. Joshi and G. J. Holzmann. A mini challenge: Build
a verifiable filesystem. In Proc. Verified Software:
Theories, Tools, Experiments (VSTTE), Zürich, 2005.

[15] E. Kang and D. Jackson. Formal modeling and
analysis of a flash filesystem in alloy. In E. Börger,
M. J. Butler, J. P. Bowen, and P. Boca, editors, ABZ,
volume 5238 of Lecture Notes in Computer Science,
pages 294–308. Springer, 2008.

[16] E. Kang and D. Jackson. Designing and analyzing a
flash file system with alloy. International Journal of
Software and Informatics (IJSI) 2009, Vol 3, No. 1,
2009.

[17] M. Kim, Y. Choi, Y. Kim, and H. Kim. Pre-testing
flash device driver through model checking techniques.
In ICST, pages 475–484. IEEE Computer Society,
2008.

[18] M. Kim and Y. Kim. Concolic testing of the
multi-sector read operation for flash memory file
system. Formal Methods: Foundations and
Applications: 12th Brazilian Symposium on Formal
Methods, SBMF 2009 Gramado, Brazil, August 19-21,
2009 Revised Selected Papers, pages 251–265, 2009.

[19] B. Mahony and J. S. Dong. Timed Communicating
Object Z. IEEE Transactions on Software
Engineering, 26(2):150–177, Feb. 2000.

[20] R. Milner. A calculus of communicating systems.
LNCS, 92, 1980.

[21] A. Roscoe. The Theory and Practise of Concurrency.
Prentice-Hall (Pearson), 1997. revised to 2000 and
lightly revised to 2005.

[22] S. Schneider and H. Treharne. Csp theorems for
communicating b machines. Formal Asp. Comput.,
17(4):390–422, 2005.

[23] J. Woodcock. First steps in the verified software grand
challenge. IEEE Computer, 39(10):57–64, 2006.

