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Summary. The Weibull multi-parameter regression (MPR) model with frailty
is developed for interval censored survival data. The basic MPR model which is
wholly parametric with non-proportional hazards was developed by Burke and
MacKenzie in their 2016 Biometrics paper. We describe the basic model, develop
the interval-censored likelihood and extend the model to include Gamma frailty.
We present a simulation study and re-analyse data from the Signal Tandmo-
biel study. The MPR model is shown to be superior to a proportional hazards
competitor.
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1 Introduction

The concept of multi-parameter regression (MPR) survival modelling was introduced
by Burke & MacKenzie (2013) and developed in Burke & MacKenzie (2017). MPR
survival models model the scale and shape parameters simultaneously: they are para-
metric and more flexible than classical proportional hazards (PH) survival models. In
their first papers the technique was developed for right-censored survival data. Burke &
MacKenzie (2017) reanalysed the survival of 855 incident cases of lung cancer (Wilkin-
son, 1995) and the MPR Weibull provided a better fit to the data. Here we develop
MPR models for interval censored survival data arising in longitudinal studies and use
a MPR model with frailty to analyse data from the Signal Tandmobiel study (Gomez
et al., 2009).

2 MPR Models

There is a wide class of two-parameter parametric survival models with scale and shape
parameters. Here, we specialize to the MPRWeibull model because it has proved useful
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in other work and has the advantage of defaulting to a standard proportional hazards
model when the shape parameter is a constant.

2.1 Weibull MPR survival model

The Weibull multi-parameter survival regression model is defined by

λ(ti; β, α) = λγtγ−1
i , (1)

where, λ is the scale parameter and γ is the shape parameter (Collett, 2003). It follows
that the basic survival function is S(ti; β, α) = exp

[
− λtγi

]
. Next let

λi = exp(xTi β) and γi = exp(zTi α) (2)

where x0i = 1 = z0i ∀i are intercept terms in each regression and x and z are same
covariates, in the same order, but labelled differently in the two linear predictors, for
ease of exposition.

2.2 Interval Censoring

From MacKenzie and Peng (2013) a general likelihood for interval censored data is

L1(θ) = Πn
i=1[S(ti,k−1; θ)− S(tik; θ)]

δi [S(tci; θ)]
1−δi , (3)

where the actual times at which the ith patient presents for examination are utilized
in the likelihood. Here, θ = (βT , αT )T , from equation (2), and typically the ith patient
fails in the interval (ti,k−1, tik] such that there are nic interval censored patients and nc

censored or withdrawn at specific times such that nic + nc = n, the total sample size.
In (3), the interval censored observations play the role of “failures”.

2.3 Frailty Extension

The Weibull multi-parameter survival regression model with Gamma frailty is de-
fined by λ(ti;α, β, u) = uλγtγ−1

i , whence, S(ti;α, β, u) = exp
[
− uλtγi

]
, where, λ =

exp(xTβ), γ = exp(zTα), and u is an unobserved frailty term and the random vari-
able U ∼ Gamma(a, b). When a = b = 1/ϕ, E(U) = 1 and V (U) = ϕ. Then, after
some algebra, we may show that S(ti;α, β) = [1 + ϕΛ(ti)]

−1/ϕ, where, Λ(ti) = λtγ,
λ = exp(xTβ), γ = exp(zTα), whence

L(θ|ti, δi, xi, zi) =
n∏

i=1

{
[1+ϕΛ(ti,k−1)]

−1/ϕ−[1+ϕΛ(tik)]
−1/ϕ

}δi
×
{
[1+ϕΛ(tic)]

−1/ϕ
}1−δi

.
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Table 1: Simulation: MPR Weibull Model: 50% censoring

Covariates β̂ SE %bias α̂ SE %bias

n = 200
Intercept 2.0612 0.1658 3.0612 2.0483 0.1050 2.4140
x1 0.5167 0.2533 3.3469 0.2496 0.1469 -0.1485
x2 0.3263 0.2600 8.7530 -0.0883 0.1498 -11.7465
n = 500
Intercept 2.0330 0.0981 1.6487 2.0188 0.0626 0.9397
x1 0.5072 0.1577 1.4425 0.2532 0.0924 1.2604
x2 0.2999 0.1484 -0.0223 -0.1014 0.0873 1.4095
n = 1000
Intercept 2.0099 0.0720 0.4965 2.0101 0.0461 0.5066
x1 0.5067 0.1097 1.3426 0.2498 0.0649 -0.0749
x2 0.3062 0.1076 2.0646 -0.0979 0.0631 -2.1102

True values: scale=(2, 0.5, 0.3), shape=(2, 0.25, -0.1)

2.4 Structural Dispersion

In the structural dispersion (SD) paradigm we allow the frailty variance to be person-
specific via another regression model. Thus

ϕi = exp(wT
i ψ), (4)

where the vector wi contains the same covariates as x and z and the w0i = 1∇i is the
intercept term.

When the frailty variance is unstructured the model defaults to the standard SPR
or MPR Weibull gamma frailty model with ϕ = exp(ψ0)

3 Simulation study

We conducted a simulation study to assess the performance of the interval-censored
Weibull MPR model. Emergence times were generated from the Weibull regression
model (with or without frailty) with two covariates: x1, a binary covariate (1 = New
treatment and 0 = Old treatment: 50% split) mimicking the treatment effect, and x2
a continuous baseline covariate distributed as N(0, 0.25). The results in Table 1 are
based on λ = 2.0, β1 = 0.5, β2 = 0.3;α = 2.0, α1 = 0.25, α2 = −0.1;ϕ = 1.0, for sample
sizes (n = 200, 500, 1000) and a censoring rate of 50%. The number of replications
is 1000. The results show that the bias of the mle estimators is acceptably low. The
results for the frailty model were similar (not shown). There was some bias in the
frailty variance for n = 200 which disappeared at the larger sample sizes. Overall, the
results suggest that the underlying MPR model is recoverable for reasonable sample
sizes.

4 Data Analysis

The Signal Tandmobiel study is a longitudinal prospective oral health study conducted
in Flanders (Belgium) from 1996 to 2001. The response was time (yrs.-5) to the
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Table 2: Selected models fitted and information criteria

Model Scale Shape SD ℓ(θ̂) AIC

M5 SPR c,full c - -5520.08 11048.34
M6 SPR +GF c,full c c -5486.08 10982.15
M7 SPR+GF+SD c,full c c, full -5483.46 10982.91
M11 MPR c,main c,main - -5501.69 11011.39
M13 MPR c,full c,full - -5493.68 11003.36
M14 MPR+GF c,full c,full c -5466.07 10950.13
M15 MPR+GF+SD c,full c,full c,full -5465.62 10943.24
Separate Sexes
M18 MPR+GF+SD Girls c,dmf c,dmf c,dmf -2742.16 5494.32
M6 SPR+GF Boys c,dmf c c -2740.17 5490.35

NB: c=intercept, full=gender+dmf+interaction, main=gender+dmf
GF=Gamma Frailty, SD= Structural Dispersion

Some 24 models fitted overall

emergence of the permanent upper left first premolars. Two covariates were analysed
gender (sex): 0 = boy (52%), 1 = girl (48%) and dmf coded: 0 (57%) if the primary
predecessor was sound and 1 (43%) if it was decayed, missing or filled. The data were
analysed using R programmes and packages including nlm and icfit (R Development
Team, 2012; Fay and Shaw, 2010 ).

Table 2 shows a selection of models fitted to the data. In general, as judged by
the AIC, the MPR models were superior to the equivalent SPR models. Gamma
frailty models were superior to the equivalent non-frailty models and the SD models
sometimes outperformed the equivalent Gamma frailty model. Overall, Model 15 (M15)
provided the best fit as judged by the AIC. This is the “full” model containing three
separate regressions - scale, shape and structural dispersion - with gender, dmf and
their interaction in each model. The fit obtained by Model 15 is shown in Figure 1.

Thus, it transpires that within each sex, the time to emergence does not follow a
proportional hazard model. It is fortunate that the toothdata are sufficiently extensive
to allow these additional investigations and tests of model fit against non-parametric
alternatives to be undertaken. We conclude that both sex and dmf are important
and that time to emergence of the permanent upper left first premolars is significantly
earlier in girls and those children in whom the predecessor was decayed, missing, or
filled and that, likely, there are other unmeasured covariates.

5 Discussion

MPR models are relatively new and are of increasing interest to statisticians working
in survival analysis. To the best of our knowledge this is the first time that the effect
of interval censoring has been investigated in the MPR survival model setting and the
first time that MPR models have been used with Gamma frailty and SD. The models
performed well yielding an interesting analysis of the Signal Tandmobiel study data.
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Figure 1 Comparisons of survival curves: Model 15 v NPMLE; left panel girls and right panel boys
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