
0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E 	 May/June 2010 I E E E S O F T W A R E � 89

E d i t o r : F o r r e s t S h u l l n F r a u n h o f e r C e n t e r f o r E x p e r i m e n t a l S o f t w a r e E n g i n e e r i n g ,
M a r y l a n d n f s h u l l @ f c - m d . u m d . e d u

voice of evidence

A
software product line (SPL) is a set of soft-
ware-intensive systems that share a com-
mon set of features for satisfying a par-
ticular market segment’s needs. SPLs can
reduce development costs, shorten time-to-
market, and improve product qual-

ity by reusing core assets for project-specific
customizations.1,2 To enable reuse on a large

scale, SPL engineer-
ing (SPLE) identifies
and manages com-
monalities and varia-
tions across a set of
system artifacts such
as requirements, archi-
tectures, code compo-
nents, and test cases.
Many companies have

adopted this development approach: Nokia, Phil-
ips, Bosch, Toshiba, Ericsson, Boeing, Hewlett-
Packard, and Cummins are among the companies
recognized in the Product Line Hall of Fame (http://
splc.net/fame.html) for their success with SPLE.

Variability management (VM) is a fundamen-
tal SPLE activity that explicitly represents soft-
ware artifact variations for managing dependencies
among variants and supporting their instantiations
throughout the SPL life cycle.3 Managing variabil-
ity involves extremely complex and challenging
tasks, which must be supported by effective meth-
ods, techniques, and tools.4,5 Researchers have
studied these challenges and proposed solutions to
them for nearly 20 years.

We recently undertook a study to systemati-
cally review this research. Our purpose was to
synthesize and assess the evidence regarding the
effectiveness of proposed solutions.

Challenges and Solutions
In 2001, researchers and industry representatives

met to identify SPLE’s main issues and problem
areas.4 To update these findings for our study, we
organized group interviews with practitioners in
2008, asking them to identify the issues they expe-
rience on a daily basis. As a third data source, we
reviewed the research literature published through
January 2008. This review initially identified 261
papers that reported an approach to some aspect
of VM in SPLE or an evaluation of an existing VM
approach. The study assessed 97 papers that either
claimed or provided some kind of evaluation of a
VM approach, technique, or tool. (Details are avail-
able in a Web appendix to this article at www.com-
puter.org/software/webextra.html.)

We grouped the issues from all three sources
into 12 categories. Table 1 on p. 60 lists these is-
sues, along with our subjective rating of how im-
portant each source ranked them. The table shows
some changes in practitioner-identified issues
from 2001 to 2008.

Although practitioners reported several chal-
lenges related to nontechnical issues, such as so-
cial, organizational, and human factors, we found
no proposed solutions to these issues in our re-
search. In our discussions of the approaches we
found for the other 11 issues, we cite one review
paper to represent each approach.

Commonality and Variability Identification
To identify SPL commonalities and variabili-
ties, stakeholders must analyze and negotiate
the meanings of domain concepts. This activity
often proceeds informally, relying on personal
domain experience. However, our study re-
vealed four main approaches: feature-oriented
domain analysis (FODA),6 feature-oriented reuse
method (FORM),7 an approach we call domain
requirements commonality and variability anal-
ysis,8 and another we call domain requirements
modeling.9

Muhammad Ali Babar, Lianping Chen, and Forrest Shull

Managing Variability
in Software Product Lines

Authorized licensed use limited to: University of Limerick. Downloaded on April 26,2010 at 22:13:48 UTC from IEEE Xplore. Restrictions apply.

90	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

VOICE OF EVIDENCE

All these approaches claim to help do-
main engineers systematically identify the
common and variable features in a prod-
uct family. FODA and FORM represent
early work in applying feature-modeling
techniques.

Binding Decisions
Early decisions to bind variation points
reduce the flexibility of product lines, and
late binding can be expensive. When prac-
titioners lack a tool for investigating trade-
offs, they tend to make ad hoc and expe-
rience-based decisions. Our data analysis
from the group interviews and literature
review suggested that this approach is usu-
ally suboptimal.

Despite the importance of binding is-
sues, only one study proposed a solution
addressing them explicitly.10 Specifically,
it proposes an infrastructure—that is, a
representation mechanism and tools—for
specifying variability at design time and re-
solving it anytime.

Variability Modeling
We found more research addressing vari-
ability modeling than any of the other is-
sues, not only in VM but also in SPLE
overall.

Modeling issues concern the ability to

satisfactorily capture, organize, and repre-
sent variability. FODA and several dozens
of its derivates were the main approaches.
A FODA approach that we call cardinality-
based feature modeling combines fea-
ture modeling with staged configuration
to achieve model specialization through a
sequence of steps.11 Other approaches in-
cluded COVAMOF, a framework for vari-
ability modeling, orthogonal variability
modeling, and decision modeling.12

Architectural Design
Software architects must select mecha-
nisms for modeling variation points or
choosing the best instantiation. The main
proposed VM approaches for architectural
design and evolution are integrated prod-
uct- and component-based approaches such
as SPL integrated technology (SPLIT)13
and Kobra.14

Our study also revealed a decision-
model approach15 and an approach to in-
tegrate variability into IEEE Standard 1471
recommended practices for architectural
description.16

Product Derivation
Product-derivation issues attracted the sec-
ond-most research efforts, after variability
modeling. The main issues relate to meth-

odological and tool support for building a
system based on existing assets.

To derive different products, an SPL
system must implement appropriate varia-
tion mechanisms at different points in its
processes. The main proposed approaches
are COVAMOF; Koalish,17 an architec-
ture-centric product derivation approach;
and a tool-based approach for product
configuration at the file-system level.18

Variability Evolution
Variability evolves as a result of adding,
deleting, or updating variation points and
variants. However, we found little sup-
port for systematically and sufficiently
supporting evolution in variability models
and other related artifacts.

A few studies claim to address the issues
explicitly. For example, Feature Descrip-
tion Language (FDL) claims to support
evolution of variability models.19 Another
study proposes using two views to model
feature variability and dependencies,20
and another describes a method for detect-
ing and removing obsolete variabilities.21

Tool Support
SPL systems have far too many variation
points, associated variants, and interdepen-
dencies for engineers to manage manually.
That’s why SPL researchers have invested
huge efforts developing several dozen VM
tools—too many to list here. Some of the
tools have entered the commercial arena.
However, the practitioners in our study
still reported the lack of integrated, stan-
dardized, and end-to-end tool support.

Process Support
VM tasks, inputs, and outputs require
process support throughout an SPL life
cycle. FAST (family-oriented abstraction,
specification, and translation) and SPLIT
are two prominent approaches to explic-
itly address VM process-related issues,
but nothing yet provides full end-to-end
process support. Our data indicated that
practitioners recognize this challenge and
are keen to find a complete solution.

Scalability
A VM approach should not only handle
extremely large numbers of variabilities
without compromising intuitiveness and
comprehensiveness but also support small
systems without incurring a huge over-

Table 1
Comparison of variability management issues

VM issues

Sources and ratings*

2001 study 2008 study
2009 literature

review

Commonality and variability
identification

+ + + + + + +

Binding decisions + + + + + + + +

Variability modeling + + + + + + + +

Architectural design + + + + + + +

Product derivation + + ++

Variability evolution + + + + + + +

Tool support + + + + + + + + +

Process support + + + +

Scalability + + + + +

Quality assurance techniques + + + +

Shared knowledge and rationales + + +

Nontechnical issues + + + +

*Degree of importance ranges from “+” for topics that a source merely acknowledged “+++” to for topics that a source deemed very important.

Authorized licensed use limited to: University of Limerick. Downloaded on April 26,2010 at 22:13:48 UTC from IEEE Xplore. Restrictions apply.

	 May/June 2010 I E E E S O F T W A R E � 91

VOICE OF EVIDENCE

head. Scalability must be a vital property
of any VM approach, but the published
literature hasn’t emphasized it. We found
only 19 of 261 papers concerned with it.

A few approaches claim to address one
or more scalability dimensions. For exam-
ple, two studies address separation of con-
cerns,12,21 another looks at organizing in-
formation into a hierarchical structure,22
and orthogonal variability modeling of-
fers a way to model variability separately
from other artifacts.23 However, no com-
prehensive solution yet exists.

Quality Assurance Techniques
Researchers have given little attention to
QA techniques such as testing, inspec-
tions, and reviews of variability mod-
els and artifacts. FAST addresses some
questions related to product line testing.
Inspections and reviews have been com-
pletely ignored, although QA techniques
for single systems don’t help determine de-
fects specific to SPL variants.

Shared Knowledge and Rationales
Failing to capture VM decisions and ra-
tionales makes subsequent product deri-
vations and evolutionary tasks more diffi-
cult and risk prone. Our literature review
found nothing specifically focused on
sharing knowledge about VM decisions.
However, practitioners reported severe
problems arising from the lack of such
knowledge. Our analysis of the interview
data indicated a vital need for an approach
that explicitly captures and sufficiently
represents VM decision rationales.

Assessing the Evidence
More than just listing possible solutions to
the technical issues, we also assessed the
claimed or reported evaluations of VM
approaches in 97 papers selected from 20
years of research. Figure 1 provides an
overview of the temporal distribution of
evidence types reported in these studies.
An overall drop in the studies for which
there was no evidence indicates that em-
pirical evaluation improved slightly over
the last decade. Still, in 2007, a majority
(58 percent) of the studies provided no evi-
dential support.

Looking at the kinds of evidence, we
found that two-thirds of the studies were
conducted in a laboratory environment
with toy systems or a simple example from

literature. We characterized these evidence
types mostly as example applications, lab
experiments-software, lab experiments-
human subjects, or simulations, although
the mapping isn’t exact. VM is primarily
intended to solve the issues of large num-
bers of variations in commercial-scale ap-
plications and their complex dependen-
cies, so approaches relying on these kinds
of evidence might be quite challenging to
transition into real project use.

W e’d like to suggest that SPLE research
focus not only on developing effec-
tive methods, techniques, and tools

but also on rigorously and systematically
evaluating them in industrial settings. In
the meantime, because domains often have
specific VM requirements, practitioners
might want to evaluate a VM approach for
domain suitability before selecting it for
their project.

References
	 1.	 J. Bosch, Design & Use of Software Architec-

tures: Adopting and Evolving a Product-Line
Approach, Addison-Wesley, 2000.

	 2.	 P. Clements and L. Northrop, Software Prod-
uct Lines: Practices and Patterns, Addison-
Wesley, 2002.

	 3.	 K. Schmid and I. John, “A Customizable Ap-
proach to Full Lifecycle Variability Manage-
ment,” Science of Computer Programming,
vol. 53, no. 3, 2004, pp. 259–284.

	 4.	 J. Bosch et al., “Variability Issues in Software
Product Lines,” Proc. 4th Int’l Workshop
on Software Product-Family Eng., Springer,
2002, pp. 13–21.

	 5.	 M. Sinnema and S. Deelstra, “Classifying
Variability Modeling Techniques,” Informa-
tion and Software Technology, vol. 49, no. 7,
2007, pp. 717–739.

	 6.	 K.C. Kang et al., Feature-Oriented Domain
Analysis (FODA) Feasibility Study, tech.
report CMU/SEI-90-TR-21, Carnegie Mellon
Software Eng. Inst., 1990.

	 7.	 K.C. Kang et al., “FORM: A Feature-Oriented
Reuse Method with Domain-Specific Refer-
ence Architectures,” Annals of Software Eng.,
vol. 5, no. 1, 1998, pp. 143–168.

	 8.	 M. Moon, K. Yeom, and H.S. Chae, “An Ap-
proach to Developing Domain Requirements
as a Core Asset Based on Commonality and
Variability Analysis in a Product Line,” IEEE
Trans. Software Eng., vol. 31, no. 7, 2005, pp.
551–569.

	 9.	 S. Park, M. Kim, and V. Sugumaran, “A
Scenario, Goal and Feature-Oriented Domain
Analysis Approach for Developing Software
Product Lines, Industrial Management + Data
Systems, vol. 104, no. 4, 2004, pp. 296–308.

	10.	 A. van der Hoek, “Design-Time Product Line
Architectures for Any-Time Variability,” Sci-
ence of Computing Programming, vol. 53, no.
3, 2004, pp. 285–304.

120

100

80

60

40

20

0

Pe
rc

en
t o

f s
tu

di
es

1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

Example application
Experience report
Case study
Laboratory experiment, software

Simulation
Laboratory experiment, human subjects
Field experiment
No evidence

Figure 1. Distribution over time of evidence types in variability management
studies. The percentage of studies for which there was no evidence dropped
from 100 percent in 1996 to 58 percent in 2007, indicating some improvement
over the decade.

Continued on p. 94

Authorized licensed use limited to: University of Limerick. Downloaded on April 26,2010 at 22:13:48 UTC from IEEE Xplore. Restrictions apply.

94	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

CAREER DEVELOPMENT

organization hidden behind a complex
acronym and rather purely commercial
practices. Also, maximizing the number
of obscure certifications on your resume
may simply backfire. But even with a big
name, if it offers an enormous palette of
certifications driven mostly by commer-
cial interests, the prestige might vanish.
So, if you know how to reinstall Win-
dows, you’re not alone.

M y final bits of advice: Be clear with
yourself why you want a given cer-
tificate, for what purpose. And an

objective of just personal growth is per-
fectly laudable. Prefer the certifications
that set the bar high rather than the easy
ones, or the cheap ones. Look at the lon-
ger-term rewards, not only the immediate
low-hanging fruit.

Acknowledgments
This is IEEE Software, a publication of the
IEEE Computer Society, which sponsors the
Certified Software Development Professional
and Certified Software Development Associ-
ate programs (www.computer.org/portal/
web/certification).

References
	 1.	 ACM/IEEE Software Engineering Code of

Ethics and Professional Practice, v.5.2, ACM
and IEEE, 1999, section 8.01; www.acm.org/
about/se-code.

	 2.	 S.E. Dreyfus and H.L. Dreyfus, A Five-Stage
Model of the Mental Activities Involved in
Directed Skill Acquisition, Operations Re-
search Center, UC Berkeley, tech. report ORC
80-2, Feb. 1980; http://handle.dtic.mil/100.2/
ADA084551.

	 3.	 R. Fox, “Shu Ha Ri,” The Iaido Newsletter,
vol. 7, no. 2, 1995; www.aikidofaq.com/
essays/tin/shuhari.html.

	 4.	 A. Cockburn, Agile Software Development,
Addison-Wesley, 2002, p. 17.

	 5.	 B.S. Bloom et al., eds., Taxonomy of Edu-
cational Objectives: The Classification of
Educational Goals: Handbook I, Cognitive
Domain, Longmans Green, 1956.

Philippe Kruchten is an IEEE CSDP (Certified Software
Development Professional), part of the inaugural batch (# 99),
as well as a Professional Engineer in Canada. He’s currently
professor of software engineering at the University of British
Columbia, Vancouver, Canada, after retiring from a 33+ year
career in industry.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE
headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer So-
ciety Publications Office: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-
1314; +1 714 821 8380; fax +1 714 821 4010. IEEE Computer Society headquarters: 2001 L
St., Ste. 700, Washington, DC 20036. Subscription rates: IEEE Computer Society members get
the lowest rate of US$52 per year, which includes printed issues plus online access to all issues
published since 1988. Go to www.computer.org/subscribe to order and for more information
on other subscription prices. Back issues: $20 for members, $163 for nonmembers (plus ship-
ping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Pro-
cessing Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854-4141. Periodicals
Postage Paid at New York, NY, and at additional mailing offices. Canadian GST #125634188.
Canada Post Publications Mail Agreement Number 40013885. Return undeliverable Canadian
addresses to PO Box 122, Niagara Falls, ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permit-
ted without fee, provided such use: 1) is not made for profit; 2) includes this notice and a full
citation to the original work on the first page of the copy; and 3) does not imply IEEE endorse-
ment of any third-party products or services. Authors and their companies are permitted to
post their IEEE-copyrighted material on their own Web servers without permission, provided
that the IEEE copyright notice and a full citation to the original work appear on the first screen
of the posted copy.

Permission to reprint/republish this material for commercial, advertising, or promotional pur-
poses or for creating new collective works for resale or redistribution must be obtained from
IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscataway,
NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2010 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy for private use of patrons, provided the per-copy fee indicated in the
code at the bottom of the first page is paid through the Copyright Clearance Center, 222 Rose-
wood Drive, Danvers, MA 01923.

VOICE OF EVIDENCE

	11.	 K. Czarnecki, S. Helsen, and U. Eisenecker,
“Staged Configuration Using Feature Models,”
Proc. 3rd Int’l Conf. Software Product Lines
(SPLC 04), LNCS 3154, Springer, 2004, pp.
266–283.

	12.	 M. Sinnema et al., “COVAMOF: A Frame-
work for Modeling Variability in Software
Product Families,” Proc. 3rd Int’l Conf. Soft-
ware Product Lines (SPLC 04), LNCS 3154,
Springer, 2004, pp. 197–213.

	13.	 M. Coriat, J. Jourdan, and F. Boisbourdin,
“The SPLIT Method: Building Product Lines
for Software-Intensive Systems,” Proc. 1st
Int’l Software Product Line Conf. (SPLC
00), Kluwer Academic Publishers, 2000, pp.
147–166.

	14.	 C. Atkinson, J. Bayer, and D. Muthig, “Com-
ponent-Based Product Line Development: The
KobrA Approach,” Proc. 1st Int’l Software
Product Line Conf. (SPLC 00), Kluwer Aca-
demic Publishers, 2000, pp. 289–309.

	15.	 D. Muthig and C. Atkinson, “Model-Driven
Product Line Architectures,” Proc. 2nd Int’l
Conf. Software Product Lines (SPLC 02),
Springer, 2002, pp. 79–90.

	16.	 S. Thiel and A. Hein, “Systematic Integration
of Variability into Product Line Architecture
Design,” Proc. 2nd Int’l Conf. Software Prod-
uct Lines (SPLC 02), LNCS 2379, Springer,
2002, pp. 67–102.

	17.	 T. Asikainen, T. Soininen, and T. Männistö,
“A Koala-Based Approach for Modeling and
Deploying Configurable Software Product
Families,” Proc. 5th Workshop Software
Product-Family Eng. (PFE 03), LNCS 3014,
Springer, 2003, pp. 225–249.

	18.	 C. Krueger, “Variation Management for Soft-
ware Production Lines,” Proc. 2nd Int’l Conf.
Software Product Lines (SPLC 02), LNCS
2379, Springer, 2002, pp. 107–108.

	19.	 A. van Deursen, M. de Jonge, and T. Kuipers,
“Feature-Based Product Line Instantiation
Using Source-Level Packages,” Proc. 2nd Int’l
Conf. Software Product Lines (SPLC 02),
LNCS 2379, Springer, 2002, pp. 19–30.

	20.	 H. Ye and H. Liu, “Approach to Modeling
Feature Variability and Dependencies in Soft-
ware Product Lines,” IEE Proc. Software, vol.
152, no. 3, 2005, pp. 101–109.

	21.	 F. Loesch and E. Ploedereder, “Optimization
of Variability in Software Product Lines,”
Proc. 11th Int’l Conf. Software Product Lines
(SPLC 07), IEEE CS Press, 2007, pp. 151–162.

	22.	 M.-O. Reiser and M. Weber, “Multi-Level
Feature Trees: A Pragmatic Approach to
Managing Highly Complex Product Families,”
Requirements Eng., vol. 12, no. 2, 2007, pp.
57–75.

	23.	 F. Bachmann et al., “A Meta-Model for
Representing Variability in Product Family
Development,” Proc. 6th Software Product-
Family Eng. (PFE 04), LNCS 3014, Springer,
2004, pp. 66–80.

Muhammad Ali Babar is an associate professor at
the IT University of Copenhagen. Contact him at malibaba@
itu.dk.

Lianping Chen is a doctoral student with Lero, Univer-
sity of Limerick. Contact him at lianping.cehn@lero.ie.

Forrest Shull is a senior scientist at the Fraunhofer
Center for Experimental Software Engineering, Maryland,
and director of its Measurement and Knowledge Management
Division. Contact him at fshull@fc-md.umd.edu.

Continued from p. 91

Authorized licensed use limited to: University of Limerick. Downloaded on April 26,2010 at 22:13:48 UTC from IEEE Xplore. Restrictions apply.

