A systematic review of risk prediction models for falls after stroke

This is a pre-copyedited, author-produced version of an article accepted for publication in the Journal of Epidemiology and Community Health following peer review. The version of record "Walsh ME, Horgan NF, Walsh CD, Galvin R. A systematic review of risk prediction models for falls after stroke. Journal of Epidemiology and Community Health. 2016;70(5):513-9" is available online at: http://dx.doi.org/10.1136/jech-2015-206475).

1Mary E Walsh, BSc Physiotherapy

1N Frances Horgan, PhD

2Cathal D Walsh, PhD

3Rose Galvin, PhD

Affiliations

1School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland

2Department of Mathematics and Statistics, College of Science and Engineering, University of Limerick, Ireland

3Discipline of Physiotherapy, Department of Clinical Therapies, Faculty of Education and Health Sciences, University of Limerick, Ireland.

Corresponding Author

Ms Mary Walsh, School of Physiotherapy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland.

Tel: +353 1 402 2472, Fax: +353 1 402 2471, Email: maryewalsh@rcsi.ie
Keywords: Systematic reviews; Falls; Stroke; Decision Making PR

Word count: 2749

Number of Tables: 2
Number of Figures: 1
What is already known on this subject?

Current prognostic research for falls after stroke consists of individual and disparate studies that propose modifiable risk factors, prognostic factors, physical measure cut-off scores, or multivariable risk prediction models. There is little clarity or consensus on how results could inform clinical decision-making.

What this study adds?

This review identifies risk prediction models for falls after stroke that require validation and impact measurement. It will facilitate future researchers in the appropriate measurement of prognostic factors for model validation, a key step in the development process of models that can be incorporated into clinical decision-making post stroke.
ABSTRACT

Background: Falls are a significant cause of morbidity after stroke. The aim of this review was to identify, critically appraise, and summarise risk prediction models for the occurrence of falling after stroke.

Methods: A systematic literature search was conducted in December 2014 and repeated in June 2015. Studies that used multivariable analysis to build risk prediction models for falls early after stroke were included. Two reviewers independently assessed methodological quality. Data relating to model calibration, discrimination (C-statistic) and clinical utility (sensitivity and specificity) were extracted. A narrative review of models was conducted. PROSPERO reference: CRD42014015612

Results: The 12 included articles presented 18 risk prediction models. Seven studies predicted falls among inpatients only and five recorded falls in the community. Methodological quality was variable. A C-statistic was reported for seven models and values ranged from 0.62 to 0.87. Models for use in the inpatient setting most frequently included measures of hemi-inattention, while those predicting community events included falls (or near falls) history and balance measures most commonly. Only two studies reported any form of validation and none presented a validated model with acceptable performance.

Conclusion: A number of falls-risk prediction models have been developed for use in the acute and sub-acute stages of stroke. Future research should focus on validating and improving existing models, with reference to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis.
(TRIPOD) guidelines to ensure quality reporting and expedite clinical implementation.
INTRODUCTION

Falls are a frequent in-hospital complication post-stroke, accounting for up to 40% of adverse events.[1] Patients who fall in hospital have longer lengths of stay, are more likely to experience functional decline and have an increased risk of falling on returning home.[1-3] Stroke survivors fall at almost twice the rate of healthy peers post-discharge, with the first-year prevalence of falls estimated at 50%.[3,4] Serious injuries from falls occur in around 5% of stroke survivors over this period.[5] Fallers demonstrate higher levels of anxiety, depression and fear.[6] Furthermore, the economic burden of falls after stroke is significant.[1]

Falls-risk assessment tools are considered fundamental for falls-prevention among older adults.[7] Falls-prediction models validated for older adults have shown poor predictive power among individuals after stroke however, possibly because they do not account for specific stroke effects.[8,9] Several studies have proposed prognostic factors for falling after stroke but many report univariable associations only.[10,11] Using cut-off scores on physical measures has also been examined [4]. Neither of these methods consider the multi-factorial nature of falls. A number of risk prediction models for falling after stroke have been developed using multivariable methods.[12,13] Before a multivariable risk prediction model can facilitate clinical decision-making it should be validated in an independent sample (broad validation) and its impact should be evaluated (impact analysis).[14,15]

The aim of this systematic review is to describe prediction models that have been derived, with or without validation, to estimate the risk of occurrence of falls within
the first year after stroke. Secondary aims are to describe the differences in model content and performance across settings (hospital versus community) and outcomes, and to evaluate the methodological quality of these models.

METHODS

Study design

The protocol for this systematic review was registered with PROSPERO in December 2014 (Reference CRD42014015612).

Search strategy

A systematic literature search was conducted in December 2014 and repeated in June 2015. It included the following search engines from inception: MEDLINE, EMBASE, CINAHL, PsycINFO, Scopus, Web of Science, and the Cochrane Library. Keywords and MeSH terms were used to combine the topics of risk prediction, stroke and falls. Reference lists and citing articles were hand-searched. Please see the Online Supplemental Methods for the full search strings.

Study selection

Prospective and retrospective cohort studies and randomised control trials were included that recruited adults with stroke and measured a falls outcome. Studies were included that used multivariable methods to build a risk prediction model, and focused on the predictive ability of the whole model. Validation studies were included where the model had been derived in a stroke population. Studies that aimed to identify independent factors, or studies that focused on cut-off scores for
physical measures, adjusting for demographic variables were excluded. Studies were excluded if over 50% of their participants were more than three months post-stroke at the time of index assessment, as the majority of motor and functional gains are made within this phase of stroke recovery.[16] No limits were placed on language.

Data extraction
Results were screened and irrelevant articles were excluded based on title and abstract. Full texts of potentially eligible articles were screened independently by two authors (MW, RG). Authors were contacted where necessary to determine eligibility. A data-extraction form was developed and piloted with reference to the CHARMS checklist.[17] Two review authors (MW, RG) independently extracted data from eligible articles.

Methodological quality assessment
Two review authors (MW, RG) independently assessed the risk of bias using a checklist developed by McGinn and colleagues.[18] Please see the Online Supplemental Methods for guidance notes developed by the authors apriori for each criterion. Differences in opinion were resolved by consensus.

Statistical analysis
Meta-analysis was not carried out due to variability in the factors included in risk prediction models and heterogeneity of studies. A narrative summary was conducted. Data relating to model calibration, discrimination (c statistic) and clinical
utility (sensitivity and specificity) were extracted and presented where reported. The R^2 value was extracted as a measure of overall model performance.[19]

RESULTS

Study identification

The initial search yielded 4604 unique articles, of which 4424 were excluded based on title and abstract. Full texts of 180 articles were reviewed by two authors (RG, MW). Twelve articles were included in the final review.[3,12,13,20-28] Figure 1. shows the flow of studies and details of exclusion. Sixteen studies that focussed on independent risk factors/predictors for falls early after stroke were excluded from this review. Please see the Supplemental Table I (online only) for results of their multivariable analyses.

Study characteristics

Please see the Supplemental Table II (online only) for detailed characteristics of the included studies. The 12 included articles presented 18 risk prediction models. The geographic distribution of the studies was: Europe,[12,13,22,23] USA,[24,25,27,28] Australasia,[3,20] and Asia.[21,26] Sample sizes ranged from 32 [24] to 1104 [20] participants, with a total of 4315 participants across all studies. Eight of the models were developed to predict the occurrence of any fall,[13,20,21,24-26] while the remaining models focused on multiple or injurious falls, time taken to fall or number of falls.[3,12,20,22-24,27,28] Seven studies derived nine models in total to predict falls occurring in the inpatient setting after stroke, with the patients in most studies
being followed-up for the duration of their hospital stay.[21-26,28] The other five studies derived nine models that predicted falls in the community setting or in a combination of settings. These studies reported longer follow-up periods of between six and 12 months.[3,12,13,20,27]

Methodological quality assessment

Table 1 presents the results of a quality assessment.[18] Two studies reported seven of the eight quality criteria.[13,23] Five papers did not present clear methods for combining the final components of the model to estimate risk for individuals.[20,25-28] In addition one study included some measures from the six-month assessment in the model thus preventing its use at the point of discharge.[20] Five studies presented seven models based on small sample sizes (there were less than 10 fall events per final predictor), [3,12,22,24,28] increasing the potential for unreliable parameter estimates.[29] Reporting was poor in the area of blinding of the outcome assessors, which was discussed in only one study.[24] Seven studies did not report loss to follow-up.[21-27] Only community studies reported loss to follow-up ranging from 6% to 19%. [3,12,13,20]
Model development

Details of statistical analysis used in the studies to derive final models are presented in Table 2. The majority of studies categorised clinical measures before analysis, while two analysed all appropriate variables continuously.[12,24] Four studies presented information about missing values for important variables but none reported conducting imputations for these values.[12,13,26,27] Regression coefficients were reported in four studies.[12,13,24,26]
<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Outcome (no. with outcome)</th>
<th>Regression method</th>
<th>Multivariable analysis selection methods</th>
<th>Final Model(s)*</th>
<th>Model Performance†</th>
</tr>
</thead>
</table>
| Ashburn | 2008 [12] | Multiple falls (48) | Logistic | p-value<0.15 in univariable analysis | Model 1: 0.293 + 1.290 (if hospital near fall) - (0.094 x Rivermead upper limb), Cut-point: ≥ -0.4114 | AUC: 0.694
| | | | | Forward selection | Model 2: -0.455 + 1.421(if hospital near fall) + (0.149 x Rivermead leg and trunk) - (0.119 x Rivermead upper limb) + (0.024 x BBS) - (0.046 x mean functional reach) - (0.012 x NEADL), Cut-point: ≥ −0.3731 | AUC: 0.712
| | | | | | | Sn/Sp: 60%/70% |
| | | | | | | |
| Baetens | 2011 [13] | Any fall (38) | Logistic | p-value<0.10 in univariable analysis | General model:
| | | | | Selected within MV analysis for effect on other OR estimates in model | y = 3.21 (if FAC 3) −1.52 (if FAC 0–1–2) + 3.12 (if Star Cancellation Time >95 seconds) + 2.50 (if walking aid) + 1.28 (if unable to mobilise without 2 persons) - 2.22 Probability: e^{y}/(1+e^{y}), Cut-point: 0.5 probability | AUC: 0.87
| | | | | | Mobility model:
| | | | | | y =2.03 (if FAC 3) + 0.04 (if FAC 0-2) + 1.30 (if grip strength on unaffected side ≤0.55 bar) - 0.61 Probability: e^{y}/(1+e^{y}), Cut-point: 0.5 probability | R²: 0.54
| | | | | | 95% CI(0.75, 0.94)
| | | | | | HLT: 0.89
| | | | | | (X²=2.94-7 df)
| | | | | | Sn/Sp: 94%/56%
| | | | | | | |
| Chen | 2015 [28] | No. of falls (15 fell) | Poisson | Final model variables: p<0.1 in multivariable analysis | • Spatial neglect at admission (KF-NAP score >0)
| | | | | | • Increased age (protective) (Combination score N/R) | R²: 0.12
| | | | | | AUC, HLT: N/R
| | | | | | Sn/Sp: N/R
| Kerse | 2008 [20] | Any fall (407) | Logistic | p-value<0.10 in univariable analysis | All falls model: Age at stroke, female sex, prestroke falls history, previous stroke, HMT>6 at 6 months, Barthel Index, 6 month depression (Combination score N/R)
| | | | | Backward selection | Injurious falls model: Female sex, NZ/European ethnicity, poor cognitive function, High Frenchay Activity Index, Premorbid dependency (protective) (Combination score N/R) | AUC: 0.62
| | | | | | AUC: 0.73
| | | | | | R², HLT: N/R
| | | | | | Sn/Sp: N/R
| Mackintosh | 2006 [3] | Multiple falls (12) | Logistic | p-value<0.05 in univariable analysis | Model 1: (BBS <49) and (fall as inpatient), "Yes" to both= at risk of repeat falling
| | | | | Forward stepwise | Model 2: (Step test <7) and (fall as inpatient), "Yes" to both= at risk of repeat falling | AUC, R², HLT: N/R
| | | | | | Sn/Sp: 83%/91%
| | | | | | Sn/Sp: 83%/86%

† AUC, Sn, Sp: Area Under the Curve, Sensitivity, Specificity.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Method</th>
<th>Predictors</th>
<th>AUC: 0.73</th>
<th>Sn/Sp: 70%/69%</th>
<th>R², HLT: N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakagawa 2008 [21]</td>
<td>Any fall (270)</td>
<td>Proportional hazards</td>
<td>• Central paralysis= 1
• History of previous falls= 1
• Use of psychotropic medicines= 1
• Visual impairment = 1
• Urinary incontinence = 1
• Hasegawa’s Dementia Scale Score 0–26=1
• Walks with walker= 1 or In wheelchair=2
Cut-point: >4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyberg 1997 [22]</td>
<td>Time to fall (49 fell)</td>
<td>Proportional hazards</td>
<td>• Male sex= 2
• Katz ADL score of E or lower =2
• Urinary incontinence=2
• FMA postural stability score <10/14 =1
• Motricity index <96/100 bilaterally = 1
• Visuospatial hemineglect =1
• Bilateral cortical and white matter lesions = 1
• Use of Diuretics, antidepressants, or sedatives = 1
Risk: Low= 0-4, Intermediate= 5-7, High= 8-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olsson 2005 [23]</td>
<td>Time to fall (39 fell)</td>
<td>Proportional hazards</td>
<td>Index follows an accumulated model:
1 point = FMA postural stability score <10/14
2 points = FMA postural stability score <10/14 +Visuospatial hemi-inattention
3 points= FMA postural stability score <10/14 +Visuospatial hemi-inattention +male sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabadi 2008 [25]</td>
<td>Any fall (117)</td>
<td>Logistic</td>
<td>• Mini Mental State Exam <25/30
• Ambulation speed <0.5m/s (Combination score N/R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapport 1993 [24]</td>
<td>Any fall (15)</td>
<td>Regression type N/R</td>
<td>All falls model: 0.23 x (Falls Assessment Questionnaire) + 7.31 x (Failure to inhibit to left trials) - 0.34, Cut-point: >0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sze 2001 [26]</td>
<td>Any fall (78)</td>
<td>Logistic</td>
<td>Model 1: (Admission Barthel Index) and (Dysphasia) (Combination score N/R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilson 2012 [27]</td>
<td>Multiple or injurious falls (147)</td>
<td>Classification and Regression Tree (CART) method Twoing splitting rule</td>
<td>Single best predictor: BBS <43/56
Model reported to have poor generalisability‡: BBS, ABC, Alcohol Abuse, Age (Combination score N/R)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* FAC= Functional Ambulation Category, ADL= Activities of Daily Living, FMA= Brunnstrom Fugl-Meyer Assessment, KF-NAP= Kessler Foundation Neglect Assessment Process, BBS= Berg Balance Scale, HMT= Hodkinson Mental Test, NEADL= Nottingham Extended Activities of Daily Living, ABC= Activity-specific Balance Confidence Scale
‡ Sn/Sp= Sensitivity/ Specificity, AUC= Area Under the Curve/ C-Statistic, CI= Confidence Intervals, N/R= Not reported, HLT= Hosmer-Lemshow Test,
‡ Details of model obtained from author correspondence
Model performance

Model calibration (goodness of fit between prediction and observation) was reported using results from the Hosmer-Lemeshow test in two studies.[13,26] Discrimination was summarised with the C-statistic (AUC) for seven models in four studies.[12,13,20,21] Values ranged from 0.62 [20] to 0.87.[13] Only one study presented 95% confidence intervals for the AUC.[13] Overall model performance was summarised using the R2 value (explained variance) in three of the studies.[13,24,28] The three studies that used proportional hazards regression analysis presented risk groups on Kaplan Meier graphs with significant log rank statistics.[21-23]

Model evaluation

Only one study reported conducting broad validation.[23] Nyberg and colleagues’ original model was found to have good sensitivity (97%) but poor specificity (26%) in a new validation cohort studied in the same setting six years later.[22,23] Olsson and colleagues produced a re-modelled score and found it to be significantly associated with falls-risk in the original cohort (Hazard ratio= 1.8, 95%CI 1.4-2.4).[23] Tilson and colleagues carried out ten-fold cross-validation to prevent over-fitting of their model. Although their multivariable model showed better prediction accuracy than the Berg Balance Score alone within the original cohort, it had poor generalisability with validation.[27]
Predictors included in models

The majority of studies provided reproducible descriptions of valid outcome measures used to define their important predictors.[3,12,13,22-26,28] In the inpatient setting, the most common predictor incorporated into final prediction models was neglect/hemi-inattention, present in three studies.[22,23,28] Although several predictors were common to two studies in the inpatient setting, there was minimal overlap in definitions, with the exception of the study that aimed to validate a previous model.[23] In the community setting the predictors most commonly included in the final risk prediction model were falls (or near-falls) history and balance, each identified in three studies.[3,12,20,27] Balance was measured using the Berg Balance Scale in all three studies, however differences arose in how the variable was treated in analysis.[3,12,27] Please see Supplemental Table III (online only) for adjusted effect measures of predictors in the original analyses.

DISCUSSION

This is the first systematic review to summarise the totality of evidence in relation to falls-risk prediction models early after stroke. Models with two purposes have been identified: models intended for the short-term prediction of falls within the inpatient setting post-stroke, and models intended to predict falls in the longer term among stroke survivors being discharged home. Methodological quality was variable overall. The two risk prediction models that met most quality criteria included measures of physical function, stability and hemi-inattention.[13,23] Only four out of twelve studies reported C-statistics, with only one model reporting a value of >0.8, indicating good discrimination.[13,30] As only one author reported 95% confidence
intervals for C-statistics, and the values were wide, it was not possible to directly compare performance of models.[13] Only two studies reported validation, a critical step for model evaluation.[14,23,27]

A variety of fall outcome definitions were found across studies. Within the inpatient setting, the majority of studies focused on the occurrence or timing of the first fall.[21-23,25] With shorter follow-up time periods in this setting, it may have been difficult to account for multiple fall events. In addition, time to first fall may have been easier to record accurately than in the community setting, as falls are frequently noted by nursing staff routinely.[1] Disagreement about outcome was observed among community studies. Baetens and colleagues argue that the prediction of any fall is important because one fall can have serious consequences.[13] In contrast, two studies chose to predict repeat falls, explaining that this outcome is more likely to lead to injury and activity restriction.[3,12] The remaining studies differentiated between injurious and non-injurious falls.[20,27] This disagreement has been observed previously in falls prevention research among older adults.[31] A consensus group recommended that all outcomes including rate, faller categories and time to first fall should be reported, but that analysis should account for multiple events within individuals.[31] These recommendations may be relevant to falls prediction after stroke but this has not yet been established.

The time-point at which data was collected to derive prediction models varied across included studies. This was defined by some in terms of time since stroke,[20,22,23,25-27] or alternatively by a service transition including
rehabilitation admission [13,21,24] or discharge.[3,12] In order to minimise
heterogeneity, studies were excluded where the majority of participants were
measured after three months since stroke. The majority of motor and functional
gains are made within this phase of stroke recovery and so prediction at variable
time-points may be difficult.[16] A systematic review of prognostic studies for
functional outcomes suggested that participants should be tested at defined time-
points early after stroke to aid recovery prediction.[32] Acknowledging this, the
decision to implement falls prevention measures may be more clinically relevant at
the point of a service transition.[12]

The complexity of algorithms has been cited as a barrier to clinical application of
prognostic models within stroke rehabilitation.[32] Seven of the included studies in
the review provided a formula from which falls-risk could be calculated,[3,12,13,21-
24] while four of these provided a simplified score.[3,21-23] The categorisation of
continuous predictors has been justified in several previous prognostic studies, citing
the need for clinical simplicity and to avoid assumptions about linear
relationships.[33,34] Recent guidelines strongly caution against discarding
information through dichotomisation, and instead advise carrying out non linear
transformations where indicated.[15,17] Only two studies in this review analysed
appropriate variables continuously.[12,24] The successful translation of prognostic
models into clinical practice is not yet well understood and warrants further
investigation.[14]
As none of the included studies presented a validated model with acceptable performance, further research is required before clinical impact can be assessed. Poor reporting was found in several areas, which could hinder the validation and updating of models. Few studies reported standard performance measures with 95% confidence intervals making comparison difficult. Regression coefficients, necessary for model updating were also rarely reported.[35] This trend of poor reporting has been observed in several other systematic reviews in stroke and other fields.[14,32] For this reason, the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were recently developed to standardise the conduct and reporting of this research.[15]

Strengths and limitations of the review

This review was carried out using a robust methodology with reference to MOOSE and PRISMA guidelines, and up-to-date guidance from the Cochrane Prognosis Methods Group.[17,36,37] There are however some points to consider when interpreting the results of this review.

The CHARMS checklist was recently published to aid data extraction for systematic reviews of prognostic model studies.[17] Although early versions of this checklist have been used in previous reviews, it is not a formal risk of bias assessment tool.[32] At the time of writing, the Cochrane Prognosis Methods group are in the final stages of developing PROBAST (Prediction study Risk Of Bias Assessment Tool), which should fulfil this function.[38] A pragmatic approach was therefore taken to quality assessment within this review by using a short tool based on the McGinn
criteria.[18] The CHARMS checklist was used to ensure complete data extraction and to highlight additional points of quality.[17]

While this review details the variables that were included in predictive models, we did not aim to identify modifiable risk factors for falling in this population. Previous systematic reviews of prognostic studies have included a variety of studies that focus on both individual risk factors and multivariable models.[32,39] In contrast, this review focuses on prognostic model studies as defined by the Cochrane Prognosis Methods Group, with the aim of identifying models that require validation and impact measurement.[14,17] Due to the similarity in methodology between studies focusing on independent risk factors/predictors and those aiming to build a prediction model, we have made their details available in the Online Supplementary Material.

Clinical and research Implications

This review is a key step in the process of developing falls-risk prediction models that can be incorporated into stroke rehabilitation to aid clinical decision-making. The findings will facilitate researchers and clinicians to identify important prognostic factors, and standardise predictor assessment, in order to validate existing models.[17] Only when models have been broadly validated can we consider the clinical impact of identifying potential fallers both in an inpatient and community setting.[14] Risk-stratification may also improve trials of falls-prevention interventions in the stroke population, which have not yet shown effectiveness.[14,40]
CONCLUSION

Several risk prediction models for falling have been developed for use in the acute and sub-acute stages of stroke. Further research should focus on validating and improving existing models, with reference to the TRIPOD guidelines to ensure quality reporting.

Contributors

All authors were involved in study design, interpretation, manuscript review and final approval of the paper. In addition, MW conducted study selection, data extraction and quality appraisal and prepared the first draft of the manuscript. FH provided clinical advice. CW provided statistical advice. RG conducted study selection, data extraction and quality appraisal.

Funding

Funding was received from the Irish Research Council (Government of Ireland Postgraduate Scholarship Scheme 2013).

Licence For Publication

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in JECH and any other BMJPGL products and
sublicences such use and exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).

Competing Interest

None declared.

REFERENCES

Figure 1. Flow diagram of literature search

* Authors contacted for publication status of work. Only published journal articles were included
† Please see Supplemental Table I for details
A systematic review of risk prediction models for falls after stroke

M.E. Walsh (BSc)1; N.F. Horgan (PhD)1; C.D. Walsh, (PhD)2; R Galvin, (PhD)3

1. School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland

2. Department of Mathematics and Statistics, College of Science and Engineering, University of Limerick, Ireland

3. Discipline of Physiotherapy, Department of Clinical Therapies, Faculty of Education and Health Sciences, University of Limerick, Ireland
Supplemental Methods

OVID MEDLINE Search String
1 Risk Assessment/mt [Methods]
2 models, statistical/
3 forecasting/
4 Risk/
5 "risk".mp
6 4 OR 5
7 score.mp
8 6 AND 7
9 Risk Factors/
10 "risk".mp
11 "factor*".mp
12 10 ADJ 11
13 "risk factors".mp
14 "Predictive Value of Tests"/
15 "Sensitivity and Specificity"/
16 "predict*.mp"
17 1 OR 2 OR 3 OR 8 OR 9 OR 12 OR 13 OR 14 OR 15 OR 16
18 Cerebrovascular Disorders/
19 Stroke/
20 exp Basal Ganglia Cerebrovascular Disease/
21 exp Brain Ischemia/
22 exp Brain Infarction/
23 exp Intracranial Hemorrhages/
24 (stroke OR poststroke OR post-stroke OR cerebrovasc* OR CVA)
25 (brain) ADJ5 (vasc*).mp.
26 (cerebral) ADJ5 (vasc*).mp
27 Hemiplegia/
28 exp paresis/
29 (hemipleg* OR hemipar* OR paresis OR paretic).mp.
30 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29
31 accidental falls/
32 accidents/
33 exp accident prevention/
34 accidents, home/
35 accident proneness/
36 (fall OR falls OR faller OR fallen OR fallers OR falling OR "fall-related" OR "near-fall" OR "falls-efficacy scale").mp.
37 (slip OR slips OR slipped OR slipping OR trip OR trips OR tripped OR tripping).mp.
38 (stumble* OR tumble*).mp.
39 31 OR 32 OR 33 OR 34 OR 35 OR 36 OR 37 OR 38
40 17 AND 30 AND 39
EMBASE Search String

1. "Risk Assessment"/de
2. "statistical model"/de
3. "forecasting"/de
4. "prediction"/de
5. Risk/de
6. "risk"
7. 5 OR 6
8. "score"
9. 7 AND 8
10. "Risk Factor"/de
11. "risk"
12. factor*
13. 11 ADJ 12
14. "risk factors"
15. "Predictive Value"/de
17. predict*
18. 1 OR 2 OR 3 OR 4 OR 9 OR 10 OR 13 OR 14 OR 15 OR 16 OR 17
19. Cerebrovascular Disease/de
20. Cerebrovascular Accident /de
21. 'Brain Ischaemia'/exp
22. 'Brain Infarction'/exp
23. 'Brain Hemorrhage'/exp
24. "stroke" or "poststroke" or "post-stroke" or cerebrovasc* or "CVA"
25. "brain" ADJS vasc*
26. "cerebral" ADJS vasc*
27. "Hemiplegia"/de
28. paresis/exp
29. hemipleg* or hemipar* or "paresis" or "paretic"
30. 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29
31. "falling"/de
32. "accident"/de
33. "accident prevention"/exp
34. "home"
35. "accident proneness"/de
36. "fall" OR "falls" OR "faller" OR "fallen" OR "fallers" OR "falling" OR "fall- related" OR "near-fall"
37. OR "falls-efficacy scale"
38. "slip" OR "slips" OR "slipped" OR "slipping" OR "trip" OR "trips" OR "tripped" OR "tripping"
39. stumble* OR tumble*
40. 31 OR 32 OR 33 OR 34 OR 35 OR 36 OR 37 OR 38
41. 18 AND 30 AND 39
CINAHL on EBSCO Search String

1. MH "Fall Risk Assessment Tool")
2. (MH "Models, Statistical")
3. (MH "Forecasting (Research)")
4. (MH "Predictive Research")
5. risk
6. score
7. 5 AND 6
8. (MH "Risk Assessment")
9. (MH "Risk Factors")
10. risk factor*
11. W1 11
12. "risk factors"
13. (MH "Predictive Value of Tests")
14. (MH "Sensitivity and Specificity")
15. predict*
16. 1 OR 2 OR 3 OR 4 OR 7 OR 8 OR 9 OR 12 OR 13 OR14 OR 15 OR 16
17. (MH "Cerebrovascular Disorders")
18. (MH "Stroke")
19. (MH "Basal Ganglia Cerebrovascular Disease+")
20. (MH "Cerebral Ischemia")
21. (MH "Intracranial Hemorrhage+")
22. "stroke" OR "poststroke" OR "post-stroke" OR cerebrovasc* OR CVA
23. "brain" N5 vasc*
24. "cerebral" N5 vasc*
25. (MH "Hemiplegia")
26. hemipleg* OR hemipar* OR "paresis" OR "paretic"
27. 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27
28. (MH "Accidental Falls")
29. (MH "Accidents")
30. (MH "Accidents, Home")
31. "fall" OR "falls" OR "faller" OR "fallen" OR "fallers" OR "falling" OR "fall- related" OR "near-fall"
32. OR "falls-efficacy scale"
33. "slip" OR "slips" OR "slipped" OR "slipping" OR "trip" OR "trips" OR "tripped" OR "tripping"
34. stumble* OR tumble*
35. 29 OR 30 OR 31 OR 32 OR 33 OR 34
36. 17 AND 28 AND 35
OVID PsycINFO Search String
1 risk assessment/
2 prediction/
3 Risk Factors/
4 risk.mp.
5 factor*.mp.
6 score.mp.
7 4 ADJ 5
8 4 AND 6
9 "risk factors".mp.
10 predict*.mp.
11 1 OR 2 OR 3 OR 7 OR 8 OR 9 OR 10
12 Cerebrovascular Disorders/
13 exp Cerebral Ischemia/
14 Cerebrovascular Accidents/
15 exp Cerebral Hemorrhage/
16 (stroke OR poststroke OR "post-stroke" OR cerebrovasc* OR "cva").mp
17 brain ADJ5 vasc*
18 cerebral ADJ5 vasc*
19 Hemiplegia/
20 hemiparesis/
21 (hemipleg* OR hemipar* OR paresis OR paretic).mp
22 12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18 OR 19 OR 20 OR 21
23 Accidents/
24 Falls/
25 exp Accident Prevention/
26 Home Accidents/
27 Accident Proneness/
28 ("fall" OR "falls" OR "faller" OR "fallen" OR "fallers" OR "falling" OR "fall-related" OR "near-fall"
29 OR "falls-efficacy scale").mp.
30 ("slip" OR "slips" OR "slipped" OR "slipping" OR "trip" OR "trips" OR "tripped" OR "tripping").mp.
31 (stumble* OR tumble*).mp.
32 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29 OR 30
33 11 AND 22 AND 31

Web of Science Search String
1 TS=(risk NEAR/1 factor*)
2 TS=(risk AND score)
3 TS=("risk factors")
4 TS=(predict*)
5 TS=("risk assessment")
6 #5 OR #4 OR #3 OR #2 OR #1
7 TS=(stroke)
8 TS=(poststroke)
9 TS=("post-stroke")
Cochrane Library Search String

1. MeSH descriptor: [Risk Assessment] explode all trees and with qualifier(s): [Methods - MT]
2. MeSH descriptor: [Models, Statistical] this term only
3. MeSH descriptor: [Forecasting] this term only
4. MeSH descriptor: [Risk] this term only
5. risk
6. score
7. #4 OR #5
8. #7 AND #6
9. MeSH descriptor: [Risk Factors] this term only
10. factor*
11. #5 NEXT #10
12. "risk factors"
13. MeSH descriptor: [Predictive Value of Tests] this term only
14. MeSH descriptor: [Sensitivity and Specificity] this term only
15. predict*
16. #1 or #2 or #3 or #8 or #9 or #11 or #12 or #13 or #14 or #15
17. MeSH descriptor: [Cerebrovascular Disorders] this term only
18. MeSH descriptor: [Stroke] this term only
19. MeSH descriptor: [Basal Ganglia Cerebrovascular Disease] explode all trees
20. MeSH descriptor: [Brain Ischemia] explode all trees
21. MeSH descriptor: [Brain Infarction] explode all trees
22. MeSH descriptor: [Intracranial Hemorrhages] explode all trees
23. stroke OR poststroke OR "post-stroke" OR cerebrovasc* OR (brain NEXT vasc*) OR (cerebral NEXT vasc*)
24. MeSH descriptor: [Hemiplegia] this term only
Guidance notes for methodological quality appraisal

These guidance notes were developed by the authors (RG, MW) apriori, with reference to McGinn et al.[1]

Score each item as either Yes/No/Not Reported

Internal validity

1. Were those assessing the outcome event blinded to presence of predictors?

The presence or absence of an outcome event should be determined without knowledge of the status of predictor variables. If the study did not comment on the blinding process then record as ‘not reported’. If the outcome was not dependant on blinding (e.g. death), then record as ‘yes’.
2. *Were those assessing the presence of predictors blinded to the outcome event?*

If the study is prospective and predictor variables were collected prior to the outcome event then assessment is considered to be blind. If the study is conducted retrospectively, this should be coded as appropriate i.e. need a clear comment on the blinding process.

3. *Adequate sample size (including outcome events)?*

There should be at least 10 falls per independent variable in the final prediction rule to be considered adequate. For example, a prediction rule with 4 variables should have 40 falls.

4. *Clinically sensible?*

The rule should display content validity i.e. most clinicians should think that the items in the prediction rule seem clinically sensible and no obvious items are missing. Furthermore, the methods of aggregating the components should seem reasonable and the variables should seem appropriate for the purpose of the rule.

External Validity

1. *Were all important predictors included in the derivation process?*

The authors identified a number of variables believed to predict the occurrence of the outcome (univariable analysis/descriptive analysis reported). There should be no obvious predictors missing during the derivation process. Studies that examined at least one factor from at least three of the following categories (stroke-related, general health, demographic, physical function) will be considered to have measured important predictors.

2. *All important predictors present in a significant proportion of the study population?*

Are predictors present in minimum of 5% of population? Important predictors are those defined by primary study authors based on clinical judgement or univariable analysis.

3. *All predictors and outcome events clearly defined?*

a. Predictors should be defined in a clear, clinically sensible and reproducible manner. They should be valid outcome measures, include a clear description of administration and a clear description of the scoring system/rating scale.

b. The outcome being predicted by the rule should be clearly defined – That, is to allow the reader to understand the definition and be able to replicate it in their own setting. There should be a clear and explicit definition of a fall.
Supplemental Table I. Multivariable analyses from studies excluded from final review

<table>
<thead>
<tr>
<th>First author Year (model)</th>
<th>N</th>
<th>Setting of fall*</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis†</th>
<th>Effect measure‡</th>
<th>Adjusted value§</th>
<th>95% CI§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chin [2] 2013</td>
<td>126</td>
<td>Com</td>
<td>Any fall (30)</td>
<td>FIM Transfer FIM Bladder and Bowel FIM Mobility FIM Communication FIM Social Cognition Length of stay Lower limb Fugl-Meyer Berg Balance Scale (BBS)</td>
<td>OR</td>
<td>0.78</td>
<td>0.62, 0.99</td>
</tr>
<tr>
<td>Czernuszenko [3] 2009</td>
<td>1155</td>
<td>Inp</td>
<td>Time to first fall (189)</td>
<td>Barthel Index <15/20 Onset-to-admission <12 weeks Presence of neglect Age >65 years Left-sided motor deficit Scandinavian Stroke Scale <46/48</td>
<td>HR</td>
<td>5.19</td>
<td>2.48, 10.86</td>
</tr>
<tr>
<td>Jalayondeja [4] 2014</td>
<td>97</td>
<td>Com</td>
<td>Any fall (25)</td>
<td>FES >32/100† Barthel Index <83/100‡ Preferred gait speed <=0.4m/s# 2MWTT <=34 metres# Max gait speed<=0.6m/s# BBS <43/56# TUG >=14 seconds† Age Sex BMI Cognition (Thai MMSE)</td>
<td>OR</td>
<td>2.79</td>
<td>0.95, 8.28</td>
</tr>
<tr>
<td>First author</td>
<td>Year (model)</td>
<td>N</td>
<td>Setting of fall*</td>
<td>Fall outcome (number)</td>
<td>Variables included in multivariable analysis †</td>
<td>Effect measure ‡</td>
<td>Adjusted value §</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| Jalayondeja | 2014 (Three month measures) | 97 | Com | Any fall (25 fell in 6m) | Barthel Index <83/100§
2MWT <=34 metres§
FES >32/100§
TUG
Max gait speed <=0.6m/s§
BBS <43/56§
Preferred gait speed <=0.4m/s§
Age
Sex
BMI
Cognition (Thai MMSE) | OR | 4.69 | 1.44, 15.27 |
| | | | | | 4.15 | 1.23, 14.06 |
| | | | | | 4.1 | 1.19, 14.07 |
| | | | | | 3.99 | 1.00, 15.96 |
| | | | | | 3.64 | 1.03, 12.81 |
| | | | | | 3.27 | 1.00, 11.34 |
| | | | | | 2.13 | 0.65, 6.96 |
| | | | | | N/R | N/R |
| | | | | | N/R | N/R |
| | | | | | N/R | N/R |
| Forster | 1995 | 108 | Com | Multiple (51) | Falls in hospital
Sex
Age
Co-morbidities
Mental state test score
Albert’s test (neglect)
Proprioception (pass/fail)
Time to walk 5 metres
Living alone/ with carer
Barthel index
Nottingham health profile
Motor club assessment | OR | 2.0 | 1.2, 3.5 |
| | | | | | N/R | N/R (not sig) |
| Mansfield | 2012 | 100 | Inp | Any fall (20) | Force plate–based measures:
• Anteroposterior synchronisation
• Root mean square of mediolateral centre of pressure
• Stance load symmetry | OR | 0.10 | 0.01, 0.91 |
| Mayo | 1990 | 202 | Inp | Any fall (95) | Response time to visual stimulus:
• 0.00-0.49 seconds
• 0.50-0.99 seconds
• 1.0-1.49 seconds
• 1.5-1.99 seconds
• 2.0-2.49 seconds
• >=2.5 seconds
Depression
Age
Male sex
History of previous stroke
Side of lesion, left
Visual hemineglect | OR** | Reference | 1.09 | 0.44, 2.68 |
<p>| | | | | | 2.00 | 0.63, 6.38 |
| | | | | | 3.11 | 1.01, 9.63 |
| | | | | | 6.67 | 1.49, 29.79 |
| | | | | | 2.74 | 1.04, 7.17 |
| | | | | | 1.75 | 1.00, 3.75 |
| | | | | | 1.12 | 0.89, 1.42 |
| | | | | | 1.38 | 0.78, 2.41 |
| | | | | | 1.34 | 0.63, 2.85 |
| | | | | | 1.28 | 0.73, 2.27 |
| | | | | | 1.47 | 0.75, 2.88 |</p>
<table>
<thead>
<tr>
<th>First author Year (model)</th>
<th>N</th>
<th>Setting of fall*</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis</th>
<th>Effect measure 1</th>
<th>Adjusted value §</th>
<th>95% CI †</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minana-Climent [8] 2005</td>
<td>1410</td>
<td>Inp</td>
<td>Any fall (115)</td>
<td>Delirium, Depression, Arm strength (MRC), Previous Barthel Index, Age, Stroke severity (OPS <3), Stroke severity (OPS 3-5), Leg strength (MRC), Level of consciousness, Dysphagia</td>
<td>OR</td>
<td>4.69</td>
<td>2.93, 7.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.76</td>
<td>1.10, 2.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.23</td>
<td>1.06, 1.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>1.00, 1.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.93, 0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.15, 0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15</td>
<td>0.66, 2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td>Nyberg [9] 1996</td>
<td>135</td>
<td>Inp</td>
<td>No. of falls (53 fell)</td>
<td>Downton Index sum Observation time in weeks</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R (sig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td>0.44, 0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.78</td>
<td>0.94, 3.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.11</td>
<td>0.90, 1.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
<td>0.99, 1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.88</td>
<td>2.02, 11.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.71</td>
<td>1.67, 8.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.17</td>
<td>1.54, 6.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.14</td>
<td>1.44, 6.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.44</td>
<td>1.22, 4.92</td>
<td></td>
</tr>
<tr>
<td>Persson [11] 2011 (General estimated equation analysis)</td>
<td>96</td>
<td>Com</td>
<td>Any fall (46)</td>
<td>Age, Sex, Length of stay, SwePASS <33/36 10MWT >12 seconds BBS <43/56 M-MAS UAS-95 <51/55 TUG >15 seconds</td>
<td>OR</td>
<td>N/R</td>
<td>N/R (not sig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.04</td>
<td>1.01, 1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.984</td>
<td>1.15, 7.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.63</td>
<td>1.46, 9.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td>First author Year (model)</td>
<td>N</td>
<td>Setting of fall*</td>
<td>Fall outcome (number)</td>
<td>Variables included in multivariable analysis</td>
<td>Effect measure‡</td>
<td>Adjusted value§</td>
<td>95% CI§</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Simpson [13] 2011 | 80 | Com | No. of falls (14 fell once, 26 fell multiple times) | • Berg Balance Scale
• TUG
• Age
• Cognition (CCSE)
• Balance Confidence (ABC)
• Sex | IRR
| 0.91
0.96
1.03
1.10
N/R
N/R
N/R | 0.85, 0.98
0.91, 0.99
0.99, 1.06
0.99, 1.22
N/R (not sig)
N/R (not sig)
N/R (not sig) |
| Suzuki [14] 2005 | 256| Inp | Time to first fall (121 fell) | • FIM motor <65
• FIM cognitive <30
• Sex
• Age | HR
| N/R
N/R
N/R
N/R | N/R (p<0.00)
N/R (p=0.63)
N/R (p=0.14)
N/R (p=0.13) |
| Tanaka [15] 2010 | 41 | Inp | Any fall (18) | • Impaired attention
• Movement disorder
• Sensory impairment | N/R
N/R
N/R | N/R (sig)
N/R (not sig)
N/R (not sig) |
| Tutuarima [16] 1997 | 720| Inp | No. of falls (104 fell once) | • Urinary incontinence
• Mental decline
• Heart disease
• Psychotropic medications
• Age 66-75
• Age 76-85
• Age >85
• Female sex
• Confusional state | RR
| 2.3
1.6
1.6
0.5
0.7
0.6
0.6
0.9
1.3 | 1.3, 4.1
1.0, 2.4
1.0, 2.4
0.3, 0.8
0.4, 1.2
0.3, 1.0
0.3, 1.2
0.6, 1.3
0.8, 2.0 |
| Yates [17] 2002 | 280| Com | Any fall (142) | • Motor Impairment
• Motor + Sensory Impairments
• Motor + Sensory + Visual Impairments | OR
| 2.2
3.1
2.4 | 1.05, 4.70
1.46, 6.79
1.05, 5.83 |

* Com= Community, Inp= Inpatient
† FIM= Functional Independence Measure, FES= Falls Efficacy Scale, 2MWT= Two minute walk test, BBS= Berg Balance Scale, TUG= Timed up and go test, BMI= Body Mass Index, MMSE= Mini Mental State Exam, MRC= Medical Research Council, OPS= Orpington Prognostic Scale, M-MAS UAS= Modified Motor Assessment Scale according to Uppsala University Hospital, SwePASS= Swedish Version of the Postural Assessment Scale for Stroke Patients, 10MWT= 10 metre walk test, NIHSS= National Institute of Health Stroke Scale, CCSE= Cognitive Capacity Screening Examination, ABC= Activities-specific Balance Confidence Scale
‡ OR= Odds Ratio, RR= Relative Risk, HR= Hazard Ratio, IRR= Incidence Rate Ratio
§ N/R= Not reported, (sig)= Reported as statistically significant at 95% confidence level but no values reported, (not sig)= Reported as not statistically significant at 95% confidence level but no values reported
Included in separate multivariable analysis, controlled for remaining variables
** Unadjusted odds ratios presented
Supplemental Table II. Characteristics of included studies

<table>
<thead>
<tr>
<th>First author Year (Country)</th>
<th>Study design</th>
<th>Setting of assessment</th>
<th>Participant description</th>
<th>Specific exclusion criteria</th>
<th>Time from onset of stroke at baseline assessment</th>
<th>Setting of falls outcome</th>
<th>Duration of follow-up</th>
</tr>
</thead>
</table>
| Ashburn [18] 2008 (United Kingdom) | Prospective cohort | Home-based assessments within 2 weeks of hospital discharge | N=115
Age: Mean 70.2 (SD not reported)
Gender: 62% Male | • Not independently mobile prior to stroke
• Did not pass a test of gross cognitive function
• Discharged to a nursing home | Range: 10–330 days
Mean: 78.9 days (SD not reported) | Community | 12 months (Diaries returned monthly) |
| Baetens [19] 2011 (Belgium) | Prospective cohort | 5 rehabilitation centres | N=65
Age: Mean 64.6 (SD 15.0)
Gender: 60% Male | • Not first stroke
• Major musculoskeletal problems
• A concurrent neurologic disorder
• Mini-Mental State Examination < 18
• Unable to understand or follow instructions | Mean 9.4 weeks (SD 6.2)
Median 7 weeks (IQR 10) | Inpatient and Community | 6 months (Diaries returned monthly) |
| Chen [20] 2015 (USA) | Prospective cohort | Inpatient rehabilitation facility | N=108
Age: Mean 70.1 (SD 13.0)
Gender: 44% Male | • Not first stroke
• Not unilateral brain damage | Median 6 days (IQR 5) | Inpatient | Until discharge: Median 21 days |
Age: Mean 70.7 (SD 13.3)
Gender: 49% Male | None reported | Less than 1 month | Community | 6 months |
| Mackintosh [22] 2006 (Australia) | Prospective cohort | Home-based assessments after discharge from 3 rehabilitation centres | N=55
Age: Mean 68.1 (SD 12.8)
Gender: 45% Male | • A concurrent neurologic disorder
• A major orthopedic problem
• An Orientation-Memory-Concentration test score >10 and no caregiver
• Insufficient English-language skills | Mean 2.3 months (SD 1.6) | Community | 6 months (Diaries returned every 2 weeks) |
| Nakagawa [23] 2008 (Japan) | Prospective cohort | 17 convalescent rehabilitation wards 2004-2005 | N=704
Age: Mean 69.7 (SD 12.1)
Gender: 58% Male | None reported | Mean 40.4 days (SD 24.9) | Inpatient | Until discharge: Less than 3 months |
<table>
<thead>
<tr>
<th>First author Year (Country)</th>
<th>Study design</th>
<th>Setting of assessment</th>
<th>Participant description</th>
<th>Specific exclusion criteria</th>
<th>Time from onset of stroke at baseline assessment</th>
<th>Setting of falls outcome</th>
<th>Duration of follow-up</th>
</tr>
</thead>
</table>
Age: Mean 74.8 (SD 8.9)
Gender: 51% Male | • Those completely immobile and bedridden throughout their entire stay | Approximately 2-4 weeks | Inpatient | Up to 56 days, Median 49 days |
Age: Mean 76.4 (SD 8.6)
Gender: 46% Male | • Those completely immobile and bedridden throughout their entire stay | Approximately 2-4 weeks | Inpatient | Up to 56 days, Median 34.5 days |
| Rabadi [26] 2008 (USA) | Retrospective cohort | An acute stroke rehabilitation unit 24 month period | N=754
Age: Mean 70 (SD 13)
Gender: 48% Male | • Not first stroke
• No neuroimaging corresponding to signs and symptoms
• Hemorrhage within a brain tumor
• Sudden onset of clinical signs and symptoms due to brain lesion other than vascular cause | Mean 12 days (SD 7) | Inpatient | Until discharge: Mean 17 days (SD 9) |
| Rapport [27] 1993 (USA) | Prospective cohort | Inpatient rehabilitation unit | N=32
Age: Mean 62.3 (SD 6.3)
Gender: 100% Male | • Only right hemisphere unilateral strokes included | Median: 60 days (range: 22-140 days) | Inpatient | Until discharge: Mean 47.6 days |
Age: 74% >=65 years
Gender: 53% Male | • Patients who did not receive brain CT scan
• Patient who were on Foley urethral catheters | Approximately 1 week after onset | Inpatient | Until discharge: (Approx 4-6 weeks) |
| Tilson [29] 2012 (USA) | Randomised Controlled trial | After discharge from 5 centres
Setting not reported | N=408
Age: Mean 62.0 (SD 12.7)
Gender: 55% Male | • No residual paresis
• Unable to walk 10 feet with one person
• Unable to follow a 3-step command
• Self-selected walking speed of >0.8 m/s | Mean 63.8 days (SD 8.5) | Community | Mean 10.3 months (SD 2.1) (Diaries returned monthly) |
Supplemental Table III. Multivariable analyses results from included studies

<table>
<thead>
<tr>
<th>First author Year (model)</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis*</th>
<th>Effect measure†</th>
<th>Adjusted value‡</th>
<th>95% CI‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashburn [18] 2008</td>
<td>At least 2 falls (48)</td>
<td>Hospital near falls</td>
<td>OR</td>
<td>4.14</td>
<td>1.57, 10.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rivermead upper limb</td>
<td></td>
<td>0.89</td>
<td>0.78, 1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rivermead leg and trunk score</td>
<td></td>
<td>1.16</td>
<td>0.85, 1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berg Balance Scale</td>
<td></td>
<td>1.02</td>
<td>0.95, 1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean functional reach</td>
<td></td>
<td>0.96</td>
<td>0.89, 1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nottingham extended ADL</td>
<td></td>
<td>0.99</td>
<td>0.95, 1.03</td>
</tr>
</tbody>
</table>
| Baetens [19] 2011 (General model) | At least 1 fall (38) | Functional Ambulation Category
- 4–5 Walks independently
- 3 Walks with supervision
- 0-2 (nonfunctional or needs physical assistance
Use of walking aid
- No use of an aid
- Uses walking aid
- Aid not applicable - unable to mobilise without 2 persons
Star Cancellation time >95 secs
Civil state
Grip strength on unaffected side | OR | Reference | Reference |
| | | | Reference | 24.8 | 1.7, 363.9 |
| | | | | 0.2 | 0, 2.4 |
| | | | Reference | 12.1 | 1.4, 102 |
| | | | | 3.6 | 0.2, 77.7 |
| | | | | 22.7 | 3.1, 164.9 |
| | | | N/R | N/R | N/R |
| Baetens [19] 2011 (Mobility model) | At least 1 fall (38) | Functional Ambulation Category
- 4–5 Walks independently
- 3 Walks with supervision
- 0-2 (nonfunctional or needs physical assistance
Grip strength on unaffected side ≤ 0.55 bar
Use of walking aid
- No use of an aid
- uses walking aid
- Aid not applicable because unable to mobilise without 2 persons | OR | Reference | Reference |
| | | | Reference | 7.6 | 1.4, 42.1 |
| | | | | 1 | 0.3, 3.6 |
| | | | | 3.7 | 1.1, 11.9 |
| | | | N/R | N/R | N/R |
| | | | N/R | N/R | N/R |
| | | | N/R | N/R | N/R |
| Chen [20] 2015 | No of falls (15 fell) | Spatial neglect at admission (KF-NAP score >0)
Age
Right brain stroke
Days post stroke at admission
Admission FIM motor
Admission FIM cognitive | IRR | 7.38 | 0.82, 66.12 |
<p>| | | | | 0.96 | 0.92, 0.99 |
| | | | | 0.59 | 0.19, 1.82 |
| | | | | 0.97 | 0.89, 1.07 |
| | | | | 0.98 | 0.94, 1.02 |
| | | | | 1.03 | 0.92, 1.15 |</p>
<table>
<thead>
<tr>
<th>First author Year (model)</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis*</th>
<th>Effect measure</th>
<th>Adjusted value</th>
<th>95% CI‡</th>
</tr>
</thead>
</table>
| Kerse [21] 2008 (All falls model) | At least 1 fall (407) | Baseline Barthel Index Score
- 20 (independent)
- 10–19
- 0–9 (dependent)
Age at stroke
6 month normal cognition (Hodkinson Mental Test>6)
Fall in last year before stroke
Female
Previous stroke at baseline
6 month often feel sad/depressed
Frenchay Activities Index Score
Premorbid self care dependency
Ethnicity
Living at home at 6 months
Marital status
Drinks alcohol
Any psychotropic medication
Anti-platelet therapy | OR | Reference | Reference |
| | | | | 1.72 | 1.25, 2.36 |
| | | | | 2.09 | 1.40, 3.12 |
| | | | | 1.06 | 1.00, 1.12 |
| | | | | 0.81 | 0.55, 1.18 |
| Kerse [21] 2008 (Injurious falls model) | Injurious fall (151) | Pre-morbid dependency
6 month Frenchay Activities Index
Age at stroke
New Zealand/European ethnicity
Fall in year before stroke
Female
Previous stroke at baseline
6 month normal cognition (Hodkinson Mental Test>6)
Barthel Index score
Have tertiary qualifications
Living at home at 6 months
Marital status
Ever had atrial fibrillation
Drinks alcohol
Any anti-platelet therapy
Any psychotropic medication
Often feels sad or depressed at 6 months | OR | 0.46 | 0.26, 0.82 |
| | | | | 0.8 | 0.72, 0.89 |
| | | | | 1.07 | 0.97, 1.17 |
| | | | | 1.94 | 1.11, 3.41 |
| | | | | 1.33 | 0.89, 2.00 |
| | | | | 1.75 | 1.15, 2.64 |
| | | | | 1.52 | 0.98, 2.35 |
| | | | | 0.53 | 0.32, 0.86 |
| Mackintosh [22] 2006 | At least 2 falls (12) | Berg Balance Scale <49§
Fall in hospital or rehabilitation (Adjusted for Berg Balance Scale)
Step test <7§
Fall in hospital or rehabilitation (Adjusted for Step test)
Fast gait speed <0.56m/s§
Quadriceps strength§ | OR | 7.5 | 1.4, 40.6 |
<p>| | | | | 20.5 | 2.2, 190.6 |
| | | | | 9.7 | 1.0, 93.3 |
| | | | | 17.2 | 1.9, 145.2 |
| | | | | N/R | N/R (not sig) |
| | | | | N/R | N/R (not sig) |</p>
<table>
<thead>
<tr>
<th>First author</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis*</th>
<th>Effect measure †</th>
<th>Adjusted value ‡</th>
<th>95% CI ‡</th>
</tr>
</thead>
</table>
| Nakagawa [23] 2008 | At least 1 fall (270) | Presence of central paralysis
 - Neither
 - Right
 - Left
 - Both
History of previous falls
Use of psychotropic medicines
Mode of locomotion:
 - Walks with walker
 - In wheelchair
Urinary incontinence
Revised Hasegawa’s Dementia Scale Score 0–26
Visual impairment
Apraxia
Attention disturbance
Fecal incontinence
Delerium
Unilateral spatial neglect
Pain
Sensory disturbance | HR | Reference | Reference |
| Nyberg [24] 1997 | Time to first fall (49 fell) | Male sex
Katz ADL score of E or lower
Urinary incontinence
Postural stability score <10/14
Bilateral signs of hemiplegia
Visuospatial hemineglect
Bilateral brain lesions
Use of diuretics, antidepressants, or sedatives
Cognitive impairment (MMSE<24)
Dyspraxia
High white blood cell count
High blood glucose level | OR | 2 | N/R (not sig) |
Visuospatial hemi-inattention
Male sex
Katz ADL score of E or lower
Bilateral brain lesions | HR | 4.50 | 1.1, 18.7 |
| Rabadi [26] 2008 | Any fall (117) | MMSE <25
Gait speed <0.5m/s
Berg Balance Scale
Lower Extremity Motricity Index
Limb placement task
Visual impairments | OR | N/R | N/R (p<.001) |

*Variables included in multivariable analysis †Effect measure ‡Adjusted value §95% CI
<table>
<thead>
<tr>
<th>First author Year (model)</th>
<th>Fall outcome (number)</th>
<th>Variables included in multivariable analysis*</th>
<th>Effect measure †</th>
<th>Adjusted value ‡</th>
<th>95% CI ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapport [27] 1993</td>
<td>Any fall (15)</td>
<td>Falls Assessment Questionaire</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>No of falls</td>
<td>Failure to inhibit to left trials</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rey-Osterreith Complex Figure Drawing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(visuospatial)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digit span reverse (attentional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sze [28] 2001</td>
<td>At least 1 fall (78)</td>
<td>Admission Barthe Index (5-15/20)</td>
<td>OR</td>
<td>2.64</td>
<td>1.26, 5.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dysphasia§</td>
<td>1.81</td>
<td>1.03, 3.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expressive dysphasia§</td>
<td>2.04</td>
<td>1.11, 3.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urinary incontinence on admission</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IHD</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemiplegia</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilson [29] 2012**</td>
<td>Multiple/Injurious falls (147)</td>
<td>Berg Balance Scale</td>
<td>N/R</td>
<td>N/R (sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABC scale</td>
<td>N/R</td>
<td>N/R (sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age</td>
<td>N/R</td>
<td>N/R (sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alcohol abuse</td>
<td>N/R</td>
<td>N/R (sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Motor Fugl-Meyer</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower limb Fugl-Meyer</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper limb Fugl-Meyer</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comfortable walking speed</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast walking speed</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-minute walk distance</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of assistive device</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke impact scale</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified rankin scale</td>
<td>N/R</td>
<td>N/R (not sig)</td>
<td></td>
</tr>
</tbody>
</table>

* ADL= Activities of Daily Living, KF-NAP= Kessler Foundation Neglect Assessment Process, FIM= Functional Independence Measure, MMSE= Mini Mental State Exam
† OR= Odds Ratio, HR= Hazard Ratio, IRR= Incidence Rate Ratio
‡ N/R= Not reported, (sig)= Reported as statistically significant at 95% confidence level but no values reported, (not sig)= Reported as not statistically significant at 95% confidence level but no values reported
§ Included in separate multivariate analysis due to collinearity, controlled for other variables
|| Scores derived from OR, not actual OR
Unadjusted hazard ratios presented as adjusted values not reported
** Details of multivariable analysis obtained from author correspondence
References

