Zeolite combined with alum and polyaluminum chloride (PAC) mixed with agricultural slurries reduces carbon losses in runoff from grassed soil boxes

J.G. Murnane¹,², R.B. Brennan¹, M.G. Healy¹*, O. Fenton³

¹Civil Engineering, National University of Ireland, Galway, Co. Galway, Rep. of Ireland.
²Civil Engineering and Materials Science, University of Limerick, Co. Limerick, Rep. of Ireland.
³Teagasc, Johnstown Castle, Environment Research Centre, Co Wexford, Rep. of Ireland

*Corresponding author. Tel: +353 91 495364; fax: +353 91 494507. E-mail address: mark.healy@nuigalway.ie

Abbreviation list:

DOC – dissolved organic carbon
DM – dry matter
FWMC – flow-weighted mean concentration
MWW – milk house wash water
PAC – polyaluminum chloride
SOC – soil organic carbon
SS – suspended solids
TIC – total inorganic carbon
TOC – total organic carbon
Core Ideas

- Application of organic slurries increases total carbon (TC) concentrations in soils and potentially in drinking water sources due to surface runoff;
- Few studies have quantified TC losses in runoff from grassed soils following application of agricultural slurries;
- This paper investigates the effectiveness of polyaluminum chloride and alum, applied individually or in combination with zeolite, to mitigate TC losses in surface runoff from agricultural slurries;
- Dual application of zeolite and chemical amendments reduced total organic carbon (TOC) in runoff from dairy and pig slurries and milk house wash water but did not impact total inorganic carbon;
- Given the relatively low amounts of TOC measured in runoff from unamended slurries compared to the amounts applied, widespread application of amendments may not be economically viable at field-scale to reduce TOC losses.

Abstract

Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products (DBP), which are potentially harmful to human health. This study aimed to (1) quantify total organic carbon (TOC) and total inorganic carbon (TIC) losses in runoff after application of either dairy slurry, pig slurry, or milk house wash water (MWW) to land, and (2) mitigate these losses through co-amendment of the slurries with zeolite (2.36 – 3.35 mm clinoptilolite) and either liquid polyaluminum chloride (PAC) (10% Al₂O₃) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% Al₂O₃) for MWW. Four
treatments under repeated 30 min simulated rainfall events (9.6 mm h\(^{-1}\)) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide and 1 m long, 10% slope): (1) control soil (2) unamended slurries (3) PAC-amended dairy and pig slurries (13.3 and 11.7 kg t\(^{-1}\), respectively); alum-amended MWW (3.2 kg t\(^{-1}\)), and (4) combined zeolite and PAC-amended dairy (160 and 13.3 kg t\(^{-1}\) zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t\(^{-1}\) zeolite and PAC, respectively); and combined zeolite and alum-amended MWW (72 and 3.2 kg t\(^{-1}\) zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34 and 50 t ha\(^{-1}\) for pig and dairy slurries, and MWW. Significant reductions of TOC in runoff compared to unamended slurries were measured for PAC-amended dairy and pig slurries (52% and 56%, respectively), but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared to alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, while effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared to the amounts applied.

Keywords: agricultural slurries, total organic carbon, total inorganic carbon, soil organic carbon, surface runoff.

1. Introduction

Application of organic slurries to agricultural soils may result in increased carbon (C) and nutrient losses to ground and surface waters, increased greenhouse gas emissions, and ammonia volatization (Bol et al., 2003; Jardé et al., 2007; Morel et al., 2009; Chadwick et al., 2011; Li et al., 2013). Over the last two decades elevated levels of
dissolved organic carbon (DOC) in surface waters have been observed in the UK (Freeman et al., 2001; Evans et al., 2005; Worral and Burt, 2007), Europe (Skjelkvåle et al., 2001; Hejzlar et al., 2003), North America, and Canada (Burns et al., 2006; Zhang et al., 2010; Couture et al., 2012). These elevated levels are attributed to a variety of influences including increased air temperatures (Bellamy et al., 2005; Powlson, 2005; Toosi et al., 2014), precipitation (Hongve et al., 2004; Dalzell et al., 2005; Clark et al., 2007; Raymond and Oh, 2007; Hernes et al., 2008), atmospheric influences (Monteith et al., 2007), and changes in agricultural practices including increased spreading of agricultural slurries to soils (Owens et al., 2002; Chen and Driscoll, 2009; Ostle et al., 2009; Sickman et al., 2010; Delpla et al., 2011; Oh et al., 2013).

The amount of C, and particularly soil organic carbon (SOC), in soils is the most frequently used indicator of the condition and health of a soil (e.g. Reeves 1997; Van-Camp et al., 2004; Arias et al., 2005), and recent studies have linked land use management to C losses with corresponding soil quality deterioration and reduced productivity (Cui et al., 2014; Waring et al., 2014). Soil organic C levels below a critical 2% threshold (i.e. percentage of SOC in a sample using dry combustion or elemental analysis techniques) are widely believed to negatively impact the soil structure, although quantitative evidence of this seems lacking (Loveland and Webb, 2003). Blair et al. (2006) observed that small changes in total C content can have disproportionately large effects on soil structural stability. On the other hand, excessive SOC levels above which there is no agronomic benefit in terms of crop production (Zhang et al., 2016) may also adversely impact the soil structure (Haynes and Naidu, 1998), and may result in C losses to ground and surface waters.
Application of organic manures increase soil SOC to a greater extent than inorganic fertilizers (Huang et al., 2010; Gattinger et al., 2012; Li and Han, 2016), and grassed soils offer a greater potential for C storage than tilled or disturbed soils because of their greater protection of micro (<250 μm) and macro (>2000 μm) aggregate associated C (Balesdent et al., 2000; Denef et al., 2001; Denef et al., 2007; Zotarelli et al., 2007). Therefore, undisturbed soils such as grasslands offer greater potential to mitigate atmospheric carbon dioxide (CO$_2$), as well as nitrous oxide (N$_2$O) emissions, and it may be environmentally beneficial to focus the application of organic slurries to grassed soils. This, however, would increase the risk of surface runoff and leaching during, or immediately after, application, and options to mitigate these risks need to be explored.

Total inorganic carbon (TIC) makes up approximately one third of global soil carbon stocks (748 Pg (1 Pg = 1015 g or 1 Gt) in the upper 1 m of soil, with the remainder made up of total organic carbon (TOC) (1,548 Pg) (Batjes, 2014). Although not as agronomically important as TOC, TIC has potential for enhanced long-term sequestration of atmospheric CO$_2$, particularly as pedogenic (i.e. formed within soil) carbonates are stable for extremely long periods of time (Manning, 2008; Rawlins et al., 2011). It is becoming increasingly important, therefore, to monitor inorganic as well as organic carbon in soils, to gain a more thorough understanding of soil carbon dynamics and its impact on the global carbon cycle.

High concentrations of TOC in surface waters have negative implications for water quality (Seekell et al., 2015; Thrane et al., 2014) and potentially human health,
particularly when these waters are abstracted for potable treatment. High TOC concentrations can act as a transport mechanism for micro pollutants such as pesticides and metals (Loux, 1998; Ravichandran, 2004; Rencz et al., 2003), and can be difficult to remove by conventional water treatment (Stackelberg et al., 2004). They can also increase the potential for formation of disinfection by-products (DBP) following chlorination (Gopal et al., 2007; Hrudey, 2009). Trihalomethanes (THMs) are the primary DBP of concern and are considered harmful to human health at concentrations >100 μg L\(^{-1}\) (Minear and Amy, 1995; U.S. EPA, 2006). Therefore, removal of TOC at the source is seen as the most effective way of reducing the risk of THM formation (Minear and Amy, 1995; Crittenden et al., 2012). To date, few studies have quantified C losses to runoff following land application of various agricultural slurries (e.g. McTiernan et al., 2001; Delpla et al., 2011), and no study has assessed the effectiveness of applying amendments to land-applied agricultural slurries to mitigate C losses in runoff to surface waters.

Therefore, the aims of this study were to quantify: (1) total carbon (including TOC and TIC) losses in runoff to surface waters following land application of three types of agricultural slurries (dairy slurry, pig slurry, and milk house wash water (MWW)) and (2) the effectiveness of applying amendments to the slurries to mitigate these losses. The authors have previously investigated the effectiveness of chemical amendments (polyaluminum chloride (PAC), comprising 10% Al\(_2\)O\(_3\) applied to dairy and pig slurries; and alum, comprising Al\(_2\)(SO\(_4\))\(_3\)·18H\(_2\)O applied to MWW) applied alone, or in combination with zeolite to reduce nitrogen (N), phosphorus (P) and suspended solids (SS) losses from grassed soil in rainfall simulation studies (Murnane
et al., 2015). The objective of the current study was to investigate if these amendments, applied at the same rates, were also effective in reducing C losses.

2. Materials and Methods

Soil

Intact grassed soil samples (45 no.), 0.5 m long, 0.3 m wide and 0.1 m deep, were cut using a spade and transported on flat timber pallets from a dry stock farm, which had not received manure or fertilizer application for > 10 yr before the experiment in Galway, Republic of Ireland. The established grass (perennial ryegrass, *Lolium perenne* L.) length was approximately 350 - 400 mm and was cut to approximately 25 mm in the laboratory runoff boxes, where it remained alive for the duration of the experiment. The soil pH (6.4±0.3) was measured (n=3) using a pH probe and a 2:1 ratio of deionized water to soil (Thomas et al., 1996). Particle size distribution was determined using a sieving and pipette method, bulk density (1.02±0.07 g cm\(^{-3}\)) using the core method (British Standard (BS) 1377-2; BSI, 1990a), and organic content (5±2%) by the loss of ignition test (BS 1377-3; BSI, 1990b). The soil had a sandy loam texture (57±5% sand, 29±4% silt and 14±2% clay) and was classified as an acid brown earth Cambisol (WRB classification).

Agricultural slurries

Three types of agricultural slurries were collected in 25 L containers from the Teagasc Agricultural Research Centre, Moorepark, Fermoy, Co. Cork. They were (1) dairy slurry taken from a dairy cow slatted unit (2) pig slurry taken from the slurry tank of an integrated pig unit, and (3) MWW taken from a milking parlor washwater collection sump. All slurries were homogenized immediately prior to collection and
were transferred directly to a temperature controlled room (10.4±0.7 °C) in the laboratory. All slurry samples were tested within 24 h of collection (n=3) for TOC and TIC (Table 1) using the method of oxidation by combustion followed by infra-red measurement of CO₂ (BS EN 1484, 1997) using a BioTector analyzer (BioTector Analytical Systems Ltd). Total phosphorus (TP) was measured using persulfate digestion and dry matter (DM) was measured by drying at 105 °C for 24 h (APHA, 2005).

Slurry amendments

The results of a laboratory study by Murnane et al. (2015) determined the optimum combined chemical and zeolite application rates for reductions in ammonium-N (NH₄-N) and orthophosphate (PO₄-P), and these were used in the current study. The amendments applied were (1) commercial grade liquid PAC (10% Al₂O₃) added to the dairy and pig slurries at rates equivalent to 13.3 and 11.7 kg t⁻¹ (10.10 and 8.08 mg per runoff box), and commercial grade liquid aluminum sulfate (alum) (8% Al₂O₃) added to the MWW at a rate equivalent to 3.2 kg t⁻¹ (3.61 mg per runoff box). Turkish zeolite (clinoptilolite), comprising 66.7% SiO₂ and 10.4% Al₂O₃, was sieved to 2.36 – 3.35 mm and added at rates equivalent to 160, 158, and 72 kg t⁻¹ (121.5, 109.4 and 81 g per runoff box) to the dairy and pig slurries and MWW, respectively.

The efficacy of the zeolite and PAC/alum to also reduce TOC and TIC at the applied application rates was investigated in batch experiments (n = 3). Varying amounts of PAC ranging from 50 to 3500 μL were added to approximately 75 mL of dairy and pig slurries, and varying amounts of alum ranging from 50 to 1000 μL were added to approximately 75 mL of MWW. Similarly, varying masses of graded zeolite ranging
from 2 to 20 g was placed in 100 mL flasks before adding approximately 75 mL of each slurry type to the samples. All samples were shaken for 24 h at 250 excursions per minute (epm) on a reciprocating shaker and, on removal, were allowed to settle for 1 h, and the supernatant was tested for TOC and TIC using a BioTector analyzer.

Rainfall simulation study

Aluminum runoff boxes, 1 m long, 0.225 m wide and 0.05 m deep, with side walls 0.025 m higher than the soil surface, were placed at a 10% slope (representative of local terrain) to the horizontal under the rainfall simulator (n=3). Each runoff box had 5 mm diameter drainage holes located at 0.3 m intervals along the base, which was covered with muslin cloth to prevent soil loss. Rainfall was generated using a mains water supply (pH 7.7±0.2, electrical conductivity 0.435 dS m⁻¹), at an intensity of 9.6±0.16 mm h⁻¹ (representative of a 2 yr, 1 h rainfall event) and average uniformity coefficient of 0.84 over the experimental area (2.1 m × 2.1 m) using a single 1/4HH-SS14SQW nozzle (Spraying Systems Co. Wheaton, IL) placed approximately 3.4 m above the soil surface. The intact grassed soil samples were trimmed by hand (0.45–0.5 m long, 0.225 m wide and 0.05 m deep), placed firmly in the runoff boxes, saturated from the base, and then left to drain for 24 h to replicate field capacity conditions. At this point (t = 24 h), amended and unamended slurries were stirred and applied by even and consistent hand spreading in repeated figure eight patterns to the grassed soil at rates, net of applied amendments, equivalent to 31, 34 and 50 t ha⁻¹ (759, 691 and 1,125 g per runoff box) for pig and dairy slurries and MWW, and left for 48 h. The applied rates were the maximum permissible based on a limit of 19 kg P ha⁻¹ for dairy and pig slurry and a volumetric limit of 50 m³ ha⁻¹ for MWW (S.I. No. 31 of 2014). In addition, unamended soil boxes (n=3) were used as controls. At t = 72,
96 and 120 h, successive rainfall events were applied (RE1, RE2, RE3, respectively), each lasting 30 min after continuous runoff was observed. During each rainfall simulation, the surface runoff was collected at time intervals of 10, 20 and 30 min, and TOC and TIC were measured immediately using a BioTector analyzer.

Subsamples taken at 5 min intervals were thoroughly mixed and measured for SS by vacuum filtration through Whatman GF/C glass fiber filters (pore size 1.2 µm) (APHA, 2005).

Data analysis

Flow-weighted mean concentrations (FWMCs) were determined for each rainfall simulation event and the data were analyzed using one way ANOVA in SPSS (IBM SPSS Statistics 20 Core System) with treatment as a factor. Logarithmic transformations were required for all variables to satisfy the normal distributional assumptions. Probability values of $p>0.05$ were deemed not to be significant.

3 Results and Discussion

Batch studies and amendment application rates

The applied PAC/alum rates (based on N and P removals (Murnane et al., 2015)) were less than those which provided optimum TOC and TIC removals for all slurries except for MWW, where increased application of alum did not improve TOC removal rates (Fig 1). This was most likely due to the reduced opportunity for alum to coagulate the SS in the more dilute MWW (0.7±0.3 % DM) when compared to the dairy (8.0±0.1 % DM) and pig (2.6±0.1 % DM) slurries. The batch studies also showed that a 2.3 fold increase in the PAC application (from applied volumetric ratio of 0.0111 to 0.0256) resulted in a corresponding eight fold increase in TOC removal from dairy slurry (100
to 800 mg). Similarly for pig slurry, an approximate doubling of the PAC application rate (from volumetric ratio of 0.0097 to 0.0197) resulted in a corresponding approximate three-fold increase in TOC removal (170 to 500 mg) (Fig. 1). The maximum zeolite adsorption capacities for TOC and TIC (Table 2) indicate that the ability of zeolite to remove TOC might be impacted by the DM of the slurries (Table 1) with the highest removals from MWW (the most dilute slurry) followed by pig and dairy slurries. Therefore, the batch studies indicated that the effectiveness of PAC/alum applications to remove TOC increased with increasing slurry DM content and conversely, the effectiveness of zeolite to remove TOC decreased with increasing slurry DM content.

The TOC and TIC removal rates for PAC-amended dairy and pig slurries and alum-amended MWW were much higher than those for zeolite (Table 2). The reduction of TOC and TIC from the slurries amended with either PAC or alum was via the process of coagulation of the SS and colloidal matter (Matilainen et al., 2010; Alexander et al., 2012) which may have involved a number of removal mechanisms, including destabilization (charge neutralization), entrapment (including sweep flocculation), adsorption, and complexation with coagulant metal ions into insoluble particulate aggregates (Crittenden et al., 2012). It was observed that excessive application of PAC to the pig slurry (> volumetric ratio of 0.0197 PAC: slurry; Fig 1) resulted in a rapid decrease in the removal of TOC and TIC. This was likely due to charge reversal of the colloidal particles at high dosage rates (Black et al., 1966).

Rainfall simulation study
Significant ($p<0.001$) increases in FWMCs of TOC were observed for all unamended slurry applications over the three rainfall events when compared to the control soil and were highest for dairy slurry followed by pig slurry and MWW (Fig. 2). The higher TOC content of the dairy slurry compared with the pig slurry, as well as its higher application rate (34 vs. 31 t ha$^{-1}$), was a contributing factor to the higher FWMC in runoff. Total organic carbon concentrations were reduced compared to the unamended slurries ($p<0.001$) following application of PAC-amended dairy and pig slurries, but the reductions for alum-amended MWW were not significant (Figure 2, Table 3). Significant ($p<0.05$) reductions in TOC were measured for MWW amended with zeolite and alum when compared to alum amendments only and for dairy slurry amended with zeolite and PAC when compared to PAC amendments only. However, pig slurry amended with zeolite and PAC was not significantly lower than that amended with PAC only. Average reductions in FWMCs of TIC in runoff compared to unamended slurries over the three rainfall events were significant only for pig slurry ($p<0.001$) (increases in TIC were observed for dairy slurry and MWW); however, average TIC concentrations remained below those of the control soil for all slurries and all treatments (Table 3).

Relationship between suspended solids and carbon losses in runoff

The average FWMC of TOC in runoff was positively correlated with corresponding SS concentrations (Murnane et al. (2015) and Fig 3) for both unamended and amended dairy and pig slurries ($R^2 = 0.78$ and 0.48, respectively), but was not correlated with MWW (Fig. 3). In contrast, there was a negative correlation between SS concentrations and average FWMC of TIC in runoff for dairy slurry, a weak positive correlation for pig slurry ($R^2 = 0.31$), and a negative correlation for MWW.
Chemical amendments flocculate slurry particles, which once entrained on the soil surface, have a high resistance to being washed off during repeated rainfall events (McCalla, 1944; Kang et al., 2014). Particulate organic matter in land-applied slurries contain colloidal particles, which have a large specific surface area and provide the greatest number of sites for sorption of pollutants, including carbon. In a particle size fractionation study of pig slurry, Aust et al. (2009) found that particle size fractions <63 μm contained 50% of slurry DM, and it is these sized colloidal particles that are usually released in surface runoff following land application of agricultural manures immediately after the start of a rainfall event or in high intensity storms (Delpla et al., 2011). Studies to measure the enrichment ratios (ER) (ratio of C concentration in eroded sediment to the original concentration of sediment from where the eroded sediment originated) of C in runoff (Jin et al., 2008; Jacinthe et al., 2004) have reported ERs ranging from 1.01 to 3.4, while ERs between 1.16 – 2.33 in particles mobilized by rainfall splash under natural precipitation have also been measured (Beguería et al., 2015). Polyaluminum chloride was most effective at removing TOC (even though the applied rate was less than the optimum (Fig. 1)) and SS from dairy slurry, which had the highest DM content (8%). In contrast, alum was least effective at removing TOC from MWW, which had the lowest DM (0.7%). This indicated that PAC had a greater opportunity to coagulate the C-enriched colloidal particles in the dairy slurry but was less able to coagulate the pig slurry (2.6% DM), as less of it remained on top of the soil during the rainfall events. Similarly, alum was least able to coagulate the dilute MWW, and was therefore least effective in mitigating TOC losses. Application of combined zeolite and alum amendments significantly (p<0.05) reduced TOC in runoff from MWW when compared with alum amendments only (Table 3, Fig. 2). This indicates that zeolite has a role in C...
sequestration in runoff, particularly from slurries with a low DM content, and
corroborates the results of the zeolite adsorption tests carried out in the batch studies
(Table 2).

Implications for use of amendments at field-scale

In this study, the use of dual zeolite and PAC/alum amendments with land applied
organic slurries have been shown to be reasonably effective in retaining a proportion
of the TOC lost in runoff (range 51-76%, Table 3) under simulated rainfall even
though the PAC/alum was not applied at optimum TOC removal rates (Fig. 1).
However, in a wider context, the amounts of TOC lost in surface runoff from the
unamended slurries as a proportion of the amounts applied were quite low (2.2, 3.1
and 17.4% from dairy and pig slurries and MWW, respectively) and these losses were
reduced for all slurries following application of either PAC/alum amendments or dual
amendments of zeolite and either PAC/alum, with highest removal rate of 8.9% (from
17.4% to 8.5%) for MWW (Table 4). The estimated costs per m³ of applying the
amendments (in Ireland) for dairy and pig slurries, and MWW, respectively, are €190,
€188 and €84 for dual zeolite and either PAC or alum, and €6.40, €5.60 and €0.80 for
PAC/alum amendments only (Murnane et al., 2015). While it is recognized that these
costs will vary regionally, it is clear that the economic benefits of carbon
sequestration by application of dual zeolite and PAC/alum amendments may be
prohibitive for all slurries. The benefits of applying PAC only to the dairy and pig
slurries and alum to the MWW for carbon removal may also be uneconomical at the
rates indicated.

3 Conclusions
Dual application of zeolite and either PAC to dairy and pig slurries or alum to MWW reduced TOC in runoff from grassed soil runoff boxes under repeated simulated rainfall. Increases in TOC in runoff were measured following application of unamended slurries when compared to the control soil. Significant (p<0.001) reductions of TOC in runoff were observed by the use of PAC amendments for dairy and pig slurries and by use of dual zeolite and alum amendments to MWW. Reductions in TIC were significant only for PAC amended pig slurry (p<0.001) but remained below those of the control soil for all slurries and all treatments. Total organic carbon losses were correlated to SS concentrations in runoff, and indicated that the C removal mechanisms depend on the DM content of the slurry. Given the relatively low amounts of TOC measured in runoff from unamended slurries compared to the amounts applied, widespread application of amendments may not be economically viable at field-scale to reduce TOC losses.

Acknowledgments

The authors wish to acknowledge the assistance provided by Mary O’Brien, Dermot McDermott, Gerry Hynes and Peter Fahy during the course of the experimental work.
References

List of Figures

Figure 1: Total organic carbon (TOC) and total inorganic carbon (TIC) removals in batch study tests (n=3) following application of polyalumim chloride (PAC) to dairy and pig slurries and alum to milk house wash water (MWW). Optimum volumetric ratios for TOC and TIC removals were were 0.0256 and 0.0197 PAC:slurry for dairy and pig slurries respectively, and 0.0056 alum:slurry for MWW. Applied volumetric ratios for TOC and TIC removals were 0.0111 and 0.0097 PAC:slurry for dairy and pig slurries, respectively, and 0.0024 alum:slurry for MWW.

Figure 2: Histogram of flow weighted mean concentrations (FWMC) (n=3) for (A) total organic carbon (TOC) and (B) total inorganic carbon (TIC) in runoff from rainfall event 1 (RE1) at t = 72 h, rainfall event 2 (RE2) at t = 92 h and rainfall event 3 (RE3) at t = 120 h. Error bars indicate standard deviation.

Figure 3: Correlation between suspended solid (SS) concentrations and corresponding total organic carbon (TOC) and total inorganic carbon (TIC) concentrations (n=3) for dairy slurry, pig slurry and milk house wash water (MWW) averaged over all three rainfall events. The data includes unamended wastes, wastes amended with PAC/alum only (no zeolite) and combined zeolite and PAC/alum amendments. Lines represent a least squares correlation analysis with correlation coefficients (R^2) and significance (p) indicated.
List of Tables

Table 1 Slurry characterization for total organic carbon (TOC), total inorganic carbon (TIC), total phosphorus (TP) and dry matter (DM) (mean ± standard deviation) (n=3).

Table 2 Maximum removal rates of total organic carbon (TOC) and total inorganic carbon (TIC) from dairy and pig slurries, and milk house wash water (MWW) using (1) natural zeolite (clinoptilolite) sieved to a particle size of 2.36-3.35 mm, and (2) polyaluminum chloride (PAC) for dairy and pig slurries and alum for MWW. All tests were carried out in batch studies (n=3). The zeolite adsorption data was modelled using a Langmuir adsorption isotherm. The specific gravities of PAC and alum were 1.2 and 1.32, respectively.

Table 3 Flow weighted mean concentrations in runoff (n=3) averaged over three rainfall events and % reductions (+) or increases (-) from unamended slurries for total organic carbon (TOC) and total inorganic carbon (TIC). Shaded cells mean that no values apply.

Table 4 Mass balance of total organic carbon (TOC) in runoff boxes during simulated rainfall for (a) unamended slurries, (b) slurries amended with either polyaluminum chloride (PAC) or alum, and (c) slurries amended with zeolite and either polyaluminum chloride (PAC) or alum (dual amended slurries). The flow weighted mean concentrations in runoff (n=3) are averaged over three rainfall events and the amendment application rates are as described in Table 3.
Table 1 Slurry characterization for total organic carbon (TOC), total inorganic carbon (TIC), total phosphorus (TP) and dry matter (DM) (mean ± standard deviation) (n=3).

<table>
<thead>
<tr>
<th>Slurry Type</th>
<th>TOC</th>
<th>TIC</th>
<th>TP</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy slurry</td>
<td>15,723±409</td>
<td>1,224±33</td>
<td>563±55</td>
<td>8.0±0.1</td>
</tr>
<tr>
<td>Pig slurry</td>
<td>10,471±640</td>
<td>392±47</td>
<td>619±30</td>
<td>2.6±0.1</td>
</tr>
<tr>
<td>Milk house wash water</td>
<td>1,137±75</td>
<td>54±5</td>
<td>52±11</td>
<td>0.7±0.3</td>
</tr>
</tbody>
</table>
Table 2 Maximum removal rates of total organic carbon (TOC) and total inorganic carbon (TIC) from dairy and pig slurries, and milk house wash water (MWW) using (1) natural zeolite (clinoptilolite) sieved to a particle size of 2.36-3.35 mm, and (2) polyaluminum chloride (PAC) for dairy and pig slurries and alum for MWW. All tests were carried out in batch studies (n=3). The zeolite adsorption data was modelled using a Langmuir adsorption isotherm. The specific gravities of PAC and alum were 1.2 and 1.32, respectively.

<table>
<thead>
<tr>
<th>Slurry type</th>
<th>Maximum zeolite removal rates</th>
<th>Maximum PAC/alum removal rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Maximum adsorption (mg kg⁻¹)</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td></td>
<td>TOC</td>
<td>TIC</td>
</tr>
<tr>
<td>Dairy slurry</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>Pig slurry</td>
<td>1,020</td>
<td>189</td>
</tr>
<tr>
<td>Milk house wash water</td>
<td>1,190</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 3 Flow weighted mean concentrations in runoff (n=3) averaged over three rainfall events and % reductions (+) or increases (-) from unamended slurries for total organic carbon (TOC) and total inorganic carbon (TIC). Shaded cells mean that no values apply.

<table>
<thead>
<tr>
<th>Slurry application</th>
<th>TOC (mg L(^{-1}))</th>
<th>% Reduction</th>
<th>TIC (mg L(^{-1}))</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>77(^{a†})</td>
<td></td>
<td>33(^{d†})</td>
<td></td>
</tr>
<tr>
<td>D(U)</td>
<td>300(^{d})</td>
<td></td>
<td>12(^{c})</td>
<td></td>
</tr>
<tr>
<td>D(P)</td>
<td>144(^{bc})</td>
<td>52</td>
<td>31(^{d})</td>
<td>-163</td>
</tr>
<tr>
<td>D(Z+P)</td>
<td>73(^{a})</td>
<td>76</td>
<td>21(^{cd})</td>
<td>-81</td>
</tr>
<tr>
<td>P(U)</td>
<td>236(^{cd})</td>
<td></td>
<td>27(^{d})</td>
<td></td>
</tr>
<tr>
<td>P(P)</td>
<td>104(^{ab})</td>
<td>56</td>
<td>3(^{a})</td>
<td>91</td>
</tr>
<tr>
<td>P(Z+P)</td>
<td>84(^{ab})</td>
<td>65</td>
<td>3(^{a})</td>
<td>88</td>
</tr>
<tr>
<td>MWW(U)</td>
<td>214(^{cd})</td>
<td></td>
<td>5(^{ab})</td>
<td></td>
</tr>
<tr>
<td>MWW(A)</td>
<td>179(^{c})</td>
<td>16</td>
<td>12(^{c})</td>
<td>-125</td>
</tr>
<tr>
<td>MWW(Z+A)</td>
<td>105(^{ab})</td>
<td>51</td>
<td>9(^{bc})</td>
<td>-68</td>
</tr>
</tbody>
</table>

D(U) Unamended dairy slurry
D(P) Dairy slurry amended with polyaluminium chloride (PAC) at 13.3 kg t\(^{-1}\)
D(Z+P) Dairy slurry amended with zeolite at 160 kg t\(^{-1}\) and polyaluminium chloride (PAC) at 13.3 kg t\(^{-1}\)

P(U) Unamended pig slurry
P(P) Pig slurry amended with polyaluminium chloride (PAC) at 11.7 kg t\(^{-1}\)
P(Z+P) Pig slurry amended with zeolite at 158 kg t\(^{-1}\) and polyaluminium chloride (PAC) at 11.7 kg t\(^{-1}\)

MWW(U) Unamended milk house wash water
MWW(A) Milk house wash water amended with alum at 3.2 kg t\(^{-1}\)
MWW(Z+A) Milk house wash water amended with zeolite at 72 kg t\(^{-1}\) and alum at 3.2 kg t\(^{-1}\)

\(^{†}\)Values in each column followed by the same letters are not statistically different (p< 0.05) as determined by analysis of variance for all data and all treatments.
Table 4 Mass balance of total organic carbon (TOC) in runoff boxes during simulated rainfall for (a) unamended slurries, (b) slurries amended with either polyaluminum chloride (PAC) or alum, and (c) slurries amended with zeolite and either polyaluminum chloride (PAC) or alum (dual amended slurries). The flow weighted mean concentrations in runoff (n=3) are averaged over three rainfall events and the amendment application rates are as described in Table 3.

<table>
<thead>
<tr>
<th>Slurry type</th>
<th>Vol. slurry applied (mL)</th>
<th>Slurry TOC conc. (mg L$^{-1}$)</th>
<th>Mass TOC applied (mg)</th>
<th>Vol. runoff (mL)</th>
<th>Flow weighted mean concentration of TOC in surface runoff from…</th>
<th>Mass TOC in surface runoff from…</th>
<th>Mass TOC in surface runoff as a proportion of mass TOC applied for…</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a) unamended slurries</td>
<td>(b) PAC/alum amended slurries</td>
<td>(c) dual amended slurries</td>
</tr>
<tr>
<td>Dairy slurry</td>
<td>759</td>
<td>15,723</td>
<td>11,939</td>
<td>878</td>
<td>300</td>
<td>144</td>
<td>73</td>
</tr>
<tr>
<td>Pig slurry</td>
<td>691</td>
<td>10,471</td>
<td>7,232</td>
<td>956</td>
<td>236</td>
<td>104</td>
<td>84</td>
</tr>
<tr>
<td>Milk house wash water</td>
<td>1,125</td>
<td>1,137</td>
<td>1,279</td>
<td>1,041</td>
<td>214</td>
<td>179</td>
<td>105</td>
</tr>
</tbody>
</table>
Figure 1: Total organic carbon (TOC) and total inorganic carbon (TIC) removals in batch study tests (n=3) following application of polyaluminim chloride (PAC) to dairy and pig slurries and alum to milk house wash water (MWW). Optimum volumetric ratios for TOC and TIC removals were were 0.0256 and 0.0197 PAC:slurry for dairy and pig slurries respectively, and 0.0056 alum:slurry for MWW. Applied volumetric ratios for TOC and TIC removals were 0.0111 and 0.0097 PAC:slurry for dairy and pig slurries, respectively, and 0.0024 alum:slurry for MWW.
Figure 2: Histogram of flow weighted mean concentrations (FWMC) (n=3) for (A) total organic carbon (TOC) and (B) total inorganic carbon (TIC) in runoff from rainfall event 1 (RE1) at t = 72 h, rainfall event 2 (RE2) at t = 92 h and rainfall event 3 (RE3) at t = 120 h. Error bars indicate standard deviation.
Figure 3: Correlation between suspended solid (SS) concentrations and corresponding total organic carbon (TOC) and total inorganic carbon (TIC) concentrations (n=3) for dairy slurry, pig slurry and milk house wash water (MWW) averaged over all three rainfall events. The data includes unamended wastes, wastes amended with PAC/alum only (no zeolite) and combined zeolite and PAC/alum amendments. Lines represent a least squares correlation analysis with correlation coefficients (R^2) and significance (p) indicated.