
UNIVERSITY of LIMERICK

"The Design of An Autonomous Mobile Robot Built to Investigate
Behaviour Based Control"

by

Mark Christopher Leyden

A Thesis Submitted For The Degree Of
Master of Engineering

Based On Work Done At
The Department of Electronic and Computer Engineering

University of Limerick, Ireland

Supervisors

Dan Toal and Colin Flanagan

Submitted to the University of Limerick, October, 2000

I

DECLARATION

I hereby declare that this thesis is entirely my own work and has not been submitted as an

exercise to any other university.

Mark Leyden

II

ABSTRACT

Within this thesis, the design of an autonomous mobile robot built as a testbed to

investigate behaviour-based control in a real world environment is described. By adopting a

behaviour-based control architecture the robot can respond very rapidly to environmental

changes by reacting directly to sensor stimuli. A modified form of a behaviour-based

control architecture has been developed for this robot. This is based on the standard

subsumption architecture with the addition of a concept known as a blackboard. The

blackboard allows the sharing of system state and knowledge between behaviours to help

them perform their tasks. In addition, the design of a fuzzy logic navigation system is also

described. This was designed to overcome one of the limitations of pure behaviour-based

systems - that is, the exclusion of interaction between behaviours. Experimentation with the

robot has shown that by interacting with each other through the robot's environment, the

behaviours can contribute to seemingly intelligent tasks being performed.

III

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisors, Dan Toal and Colin Flanagan, for their

support and advice in this work. I would also like to thank Danny O'Brien who did a

wonderful job in building the chassis for the robot.

IV

Table of Contents

DECLARATION.. I

ABSTRACT... II

ACKNOWLEDGEMENTS... III

LIST OF FIGURES...VIII

1. INTRODUCTION ..1

1.1 RESEARCH CONTRIBUTION ..2

1.2 STRUCTURE OF THE THESIS ...3

2. BACKGROUND...5

2.1 MOBILE ROBOT CONTROL ARCHITECTURES ...5

2.2 CLASSICAL ROBOT ARCHITECTURES..6

2.3 THE SYMBOL SYSTEM AND PHYSICAL GROUNDING HYPOTHESES ...8

2.4 REACTIVE ARCHITECTURES ...9

2.5 BEHAVIOUR BASED ARCHITECTURES...9

2.6 SUBSUMPTION .. 10

2.6.1 Levels of Competence.. 11

2.6.2 Layers of Control.. 12

2.6.3 The Structure of Layers... 13

2.6.4 Coordination in Behaviour Based Systems... 14

2.6.5 Example Robots Using Subsumption.. 15

2.7 ADVANTAGES OF BEHAVIOUR BASED CONTROL... 17

2.8 LIMITATIONS OF BEHAVIOUR BASED CONTROL .. 18

2.9 HYBRID ARCHITECTURES .. 18

2.9.1 Example Architectures .. 19

2.10 MAPPING .. 21

2.10.1 Recognizable Locations... 22

2.10.2 Topological Maps ... 22

2.10.3 Metric Topological Maps .. 23

2.10.4 Area-Based Metric Maps... 23

2.11 CHOOSING A MAP ... 24

2.12 SUMMARY .. 24

3. ROBOT DESIGN ... 26

3.1 LOCOMOTION SYSTEM .. 26

V

3.2 MECHANICAL DEISGN ... 28

3.3 HARDWARE DESIGN .. 31

3.4 CENTRAL CONTROLLER... 31

3.5 POWER SUPPLY BOARD ... 33

3.6 NOISE INTERFERENCE ... 35

3.7 OBSTACLE DETECTION AND AVOIDANCE ... 36

3.7.1 Echolocation... 37

3.7.2 Limitations and Difficulties of Sonar ... 38

3.7.3 Polaroid Ultrasonic Ranging Module.. 41

3.7.4 Sonar Ranging Board.. 44

3.7.5 Serial Communications ... 45

3.7.6 Software Implementation... 47

3.8 LOCOMOTION BOARD.. 50

3.8.1 Controlling The Speed of a DC Motor ... 51

3.8.2 HCTL-1100 Motion Control IC ... 52

3.8.3 Incremental Shaft Encoder .. 53

3.8.4 Interfacing The HCTL-1100 With The Main Central Controller... 55

3.8.5 Address Decoding... 56

3.8.6 Using The 8255... 57

3.8.7 L293D Driver Chip... 59

3.8.8 Output From The HCTL-1100 ... 61

3.8.9 Writing To And Reading From The HCTL-1100 .. 62

3.8.10 Using The HCTL-1100.. 65

3.8.10.1 Position Control Mode .. 68

3.8.10.2 Integral Velocity Mode.. 68

3.8.10.3 Trapezoidal Profile Mode.. 70

3.9 LIGHT DETECTION CIRCUITRY... 71

3.9.1 ADC0808.. 72

3.9.2 Using the ADC0808 .. 73

3.10 SOFTWARE DEVELOPMENT .. 74

3.11 SUMMARY .. 75

4. CONTROL ARCHITECTURE.. 76

4.1 OVERVIEW.. 76

4.2 BEHAVIOUR-BASED BLACKBOARD ARCHITECTURE.. 76

4.3 IMPLEMENTATION OF SIMPLE LOW-LEVEL BEHAVIOURS .. 77

4.3.1 Obstacle Avoidance Behaviour.. 78

4.3.2 Cruise Behaviour.. 79

4.3.3 Light Following Behaviour.. 80

4.3.4 Arbitration Function ... 81

VI

4.4 IMPLEMENTATION OF MAPPING AND NAVIGATION BEHAVIOURS... 82

4.4.1 Edge Following Behaviour.. 83

4.4.2 Concave Corner Behaviour... 85

4.4.3 Convex Corner Behaviour... 88

4.4.4 Search For Edge Behaviour .. 91

4.4.5 Mapping Behaviour .. 91

4.4.6 Localisation Behaviour ... 97

4.4.7 Navigation Behaviour ... 98

4.4.8 Arbitration Function ... 99

4.5 SUMMARY .. 99

5. A FUZZY LOGIC BASED NAVIGATION SYSTEM .. 101

5.1 LIMITATIONS OF SUBSUMPTION ... 101

5.2 ENHANCING SUBSUMPTION ... 102

5.2.1 Payton and Rosenblatt's Command Fusion Network .. 102

5.2.2 Using Fuzzy Logic .. 103

5.3 FUZZY LOGIC NAVIGATION SYSTEM .. 104

5.3.1 Target Following Behaviour ... 105

5.3.2 Obstacle Avoidance Behaviour.. 107

5.3.3 Command Fusion.. 110

5.3.4 Defuzzification.. 111

5.3.5 Implementation ... 114

5.3.6 Development... 120

5.3.6 Simulation Examples... 121

5.4 SUMMARY .. 122

6. EXPERIMENTAL RESULTS ... 123

6.1 TEST ENVIRONMENT ... 123

6.2 TESTING THE SIMPLE LOW-LEVEL BEHAVIOURS ... 123

6.2.1 Cruise behaviour .. 124

6.2.2 Obstacle Avoidance Behaviour.. 124

6.2.3 Light Following Behaviour.. 126

6.3 TESTING THE MAPPING AND NAVIGATION BEHAVIOURS ... 127

6.3.1 Edge Following Behaviour.. 127

6.3.2 Concave Corner and Convex Corner Behaviours... 129

6.3.3 Mapping Behaviour .. 130

6.3.4 Search for Edge Behaviour ... 132

6.3.5 Localization and Navigation Behaviours ... 133

7. CONCLUSIONS... 135

VII

7.1 DISCUSSION .. 135

7.2 FUTURE WORK ... 136

REFERENCES... 138

APPENDIX 1 .. 141

ROBOT SPECIFICATIONS .. 141

APPENDIX 2 .. 142

MOTOR DATA... 142

APPENDIX 3 .. 143

SONAR SOFTWARE LISTING... 143

APPENDIX 4 .. 149

CONTROL SOFTWARE LISTING... 149

APPENDIX 5 .. 187

PUBLISHED PAPERS... 187

VIII

LIST OF FIGURES

FIGURE 1 ROBOT CONTROL ARCHITECTURE...5

FIGURE 2 DELIBERATIVE VERSUS REACTIVE REASONING...6

FIGURE 3 HORIZONTAL DECOMPOSITION..7

FIGURE 4 SUBSUMPTION ARCHITECTURE.. 11

FIGURE 5 LAYERS OF CONTROL... 13

FIGURE 6 FINITE STATE MACHINE... 14

FIGURE 7 ATLANTIS ARCHITECTURE.. 20

FIGURE 8 AURA ARCHITECTURE.. 21

FIGURE 9 ROBOT ... 28

FIGURE 10 DC MOTOR AND TRANSMISSION SYSTEM .. 28

FIGURE 11 CASTOR WHEEL... 29

FIGURE 12 SHAFT ENCODER ... 29

FIGURE 13 FRAME WHERE THE PCBS ARE STACKED ... 30

FIGURE 14 HOLDER FOR SONAR SENSOR ... 30

FIGURE 15 HARDWARE .. 32

FIGURE 16 SONAR BEAM PATTERN ... 39

FIGURE 17 MEASUREING THE SHORTEST DISTANCE TO AN OBSTACLE 39

FIGURE 18 DIRECT CROSSTALK ... 40

FIGURE 19 INDIRECT CROSSTALK ... 41

FIGURE 20 POLAROID RANGING MODULE AND ULTRASONIC TRANSDUCER 42

FIGURE 21 TIMING DIAGRAM FOR A POLAROID RANGING MODULE.. 44

FIGURE 22 SONAR SOFTWARE FLOWCHART ... 48

FIGURE 23 TYPICAL TRANSMISSION PACKET ... 50

FIGURE 24 CONTROL SYSTEM .. 53

FIGURE 25 QUADRATURE ENCODER OUTPUT SIGNALS .. 54

FIGURE 26 HEDS-5600 SHAFT ENCODER.. 55

FIGURE 27 ADDRESS DECODING CIRCUITRY... 56

FIGURE 28 8255 CONTROL REGISTER... 59

FIGURE 29 CONNECTING A SINGLE MOTOR TO THE L293D... 61

FIGURE 30 L293D INTERFACE CIRCUITRY .. 62

FIGURE 31 INTEGRAL VELOCITY MODE ... 69

FIGURE 32 TRAPEZOIDAL PROFILE MODE.. 71

FIGURE 33 ADC INTERFACE CIRCUITRY ... 73

FIGURE 34 OBSTACLE AVOIDANCE BEHAVIOUR.. 78

FIGURE 35 MOTOR WEIGHTS AND CONDITION VALUES ... 79

FIGURE 36 CRUISE BEHAVIOUR.. 80

IX

FIGURE 37 LIGHT FOLLOWING BEHAVIOUR .. 80

FIGURE 38 LAYERING OF BEHAVIOURS BY IMPORTANCE... 81

FIGURE 39 BEHAVIOUR-BASED BLACKBOARD ARCHITECTURE ... 83

FIGURE 40 EDGE FOLLOWING BEHAVIOUR ... 84

FIGURE 41 SONAR SENSORS USED FOR EDGE FOLLOWING .. 84

FIGURE 42 DETECT CONCAVE CORNER BEHAVIOUR... 86

FIGURE 43 DETECTING A CONCAVE CORNER.. 87

FIGURE 44 RE-ESTABLISHING A PARALLEL POSE TO THE FOLLOWING EDGE.......................... 87

FIGURE 45 CONVEX CORNER BEHAVIOUR... 88

FIGURE 46 DETECTING A CONVEX CORNER OR DOOR .. 89

FIGURE 47 DETECTING A DOOR.. 90

FIGURE 48 THE ROBOT'S POSITION AFTER TURNING AT A CONVEX CORNER 90

FIGURE 49 SEARCH FOR EDGE BEHAVIOUR... 91

FIGURE 50 EXAMPLE ENVIRONMENT ... 94

FIGURE 51 CALCULATING THE DISTANCE BETWEEN LANDMARKS ... 95

FIGURE 52 CALCULATING THE DISTANCE BETWEEN LANDMARKS ... 96

FIGURE 53 LOCALISATION BEHAVIOUR ... 98

FIGURE 54 NAVIGATION BEHAVIOUR... 98

FIGURE 55 LAYERING OF BEHAVIOURS.. 99

FIGURE 56 TWO POSSIBLE CHOICES.. 101

FIGURE 57 A PAYTON AND ROSENBLATT NETWORK FOR FUSING TWO BEHAVIOURS........ 103

FIGURE 58 FUZZY LOGIC NAVIGATION CONTROLLER... 104

FIGURE 59 EXAMPLE .. 105

FIGURE 60 MEMBERSHIP FUNCTIONS AND FUZZY RULES FOR TARGET FOLLOWING 106

FIGURE 61 COMPUTING DESIRED DIRECTION ... 107

FIGURE 62 MEMBERSHIP FUNCTIONS AND FUZZY RULES FOR OBSTACLE AVOIDANCE...... 108

FIGURE 63 CALCULATING DISALLOWED DIRECTION... 109

FIGURE 64 COMMAND FUSION ... 111

FIGURE 65 MOM DEFUZZIFICATION .. 112

FIGURE 66 COA DEFUZZIFICATION.. 113

FIGURE 67 CLA DEFUZZIFICATION .. 114

FIGURE 68 FUZZY CONTROLLER MODULES... 115

FIGURE 69 MEMBERSHIP FUNCTION NEAR FOR FORWARD LOOKING SENSOR 115

FIGURE 70 MEMBERSHIP FUNCTION FORWARD.. 117

FIGURE 71 MEMBERSHIP FUNCTIONS ZERO AND FORTHY_FIVE... 118

FIGURE 72 SIMULATION EXAMPLE... 121

FIGURE 73 SIMULATION EXAMPLE.. 122

FIGURE 74 PATH FOLLOWED BY THE ROBOT UNDER OBSTACLE AVOIDANCE 125

FIGURE 75 PATH FOLLOWED BY THE ROBOT UNDER OBSTACLE AVOIDANCE 125

X

FIGURE 76 PATH FOLLOWED BY THE ROBOT UNDER LIGHT FOLLOWING............................... 126

FIGURE 77 EDGE FOLLOWING... 128

FIGURE 78 EDGE FOLLOWING... 128

FIGURE 79 DETECTING CORNERS... 129

FIGURE 80 DETECTING A DOOR.. 130

FIGURE 81 TEST ENVIRONMENT FOR MAPPING BEHAVIOUR... 131

FIGURE 82 TESTING THE SEARCH FOR EDGE BEHAVIOUR.. 132

FIGURE 83 TESTING THE LOCALIZATION AND NAVIGATION BEHAVIOURS............................ 133

1

1. INTRODUCTION

The field of robotics can be classified into two distinct areas - industrial robotics and

mobile robotics. Industrial robots are generally operated in very well structured and

controlled environments such as a car assembly plant. In these environments, everything

the robot does is preplanned. There is very little variation in the tasks the robot has to

perform and how it performs them (Nehmzow, 2000). In contrast, mobile robots must

operate in unstructured and dynamic environments. The typical types of application that

these robots perform are many. For example, typical duties may include delivering mail

around an office building, cleaning floors and performing security duties. Although these

environments may be considered structured for the people who live and work in them, this

is generally not the case for the mobile robot. To operate successfully in our everyday

environments, mobile robots must be capable of dealing with all the uncertainty and

variation that exists (Saffiotti, 1997). To build a robot to deal with all this uncertainty can

be a complex and challenging task. Having a model of the environment is not sufficient on

its own for the robot to operate robustly. Firstly, the model may be inaccurate or incomplete

and secondly, the introduction of new features into the environment may render the model

invalid. To operate autonomously and robustly, the robot must be capable of responding

directly to the environment itself. It must have certain basic capabilities or reflexes built

into it. It must be able to navigate, avoid obstacles, build and update maps and be robust

towards any environmental changes.

This thesis describes the design of an autonomous mobile robot built as a testbed for

behaviour based control and experimentation (Leyden, 2000b). The design of the robot has

been heavily influenced by the need for real-time sensing and decision making in order to

operate in dynamic and unstructured environments. This has been achieved by adopting a

behaviour based control architecture and tightly coupling behaviours with sensor inputs and

actuator outputs in a reactive way. A modular hardware control architecture has been

implemented which distributes the workload and offloads sensor data stream processing to

a dedicated processor.

2

1.1 Research Contribution

Building a mobile robot can be a complex, expensive and time-consuming task. For these

reasons, many researchers working on mobile robots decide to implement their designs in a

simulated environment. In such an environment, it is easy to see the results of a newly

applied algorithm. It is also easy to modify and fine-tune various parameters. Testing new

ideas and methods can be achieved in a fraction of the time it would take to implement on a

real robot. For a simulation to be of any practical use, however, it has to be able to model

the real world in a very precise manner. This is an extremely complicated thing to do.

Also, unless the results of a simulation are validated on a real robot, there is the possibility

that a lot of effort will be put into solving problems which do not crop up in the real world.

These problems may be associated with the simulation itself and ones that do not appear in

reality (Leyden, 2000a).

Due to the limited usefulness of simulations, it was decided to build a real working robot

for this thesis. In doing so, experiments can be carried out in the real world giving a true

insight into how the robot's control architecture behaves. To operate reliably in unstructured

and dynamic environments, a behaviour-based architecture has been adopted. With this

type of architecture, the robot's control system consists of a number of behaviours. Each

behaviour is designed to perform a particular task such as avoiding obstacles, following a

light etc. The behaviours respond directly to environmental cues through the use of the

robot's sensors and actuators (Arkin, 1998). With behaviour-based architectures, the system

tends to be very robust. A certain amount of redundancy is built into the system. If one

behaviour should fail, then the others should still be capable of controlling the robot,

although at a lower level. One of the problems with behaviour-based systems, however, is

that due to their highly distributed nature, representation and sharing of system states and

knowledge between the behaviours is inconvenient. To overcome this shortcoming, a new

type of architecture has been developed here. This is known as a behaviour-based

blackboard architecture. This introduces the concept of a blackboard, which acts as a

central data repository where behaviours can deposit and extract information to help them

go about their tasks. A set of behaviours which allows the robot to successfully explore,

map, and navigate around the environment have been implemented. In situations when the

3

robot becomes lost or is unaware of its position, it can perform localisation to re-establish

its correct position in a relative fashion.

With behaviour based architectures, each behaviour is designed to perform a specific task

such as obstacle avoidance or goal seeking. Each of these behaviours work independently

of each other and in parallel. One of the shortcomings of this design, however, is that it

excludes interaction between the behaviours. For example, if the obstacle avoidance

behaviour encounters an obstacle, it will attempt to manoeuvre the robot around it. How it

goes about this is entirely up to itself. It could go either left or right to avoid the obstacle. If

at the same time the robot is attempting to travel to some target location, the decision about

which way to turn could be important. Turning in one particular direction might move it

closer along the desired path towards the target. Turning in the other direction might move

it further away. Since the behaviours work independently of each other, it is not possible

for one behaviour to know the goals of the other. To help solve this problem, a system has

been developed in fuzzy logic that combines the outputs of the obstacle avoidance

behaviour and the goal seeking behaviour into one single value (Leyden, 1999). So far, this

system has only been tested in simulation. A detailed discussion of this system is given in

chapter 5 along with experimental results from tests carried out.

1.2 Structure of the Thesis

Chapter 2 provides a literature review which is relevant to the work discussed in this

thesis. A review of mobile robot control architectures is carried out with examples of

various types been shown. An examination of mapping techniques for mobile robots is also

presented.

Chapter 3 describes the design and construction of the robot. The robot's locomotion

system is explained along with the physical design of the robot. Following this, the

distributed control architecture which has been implemented is described in detail.

Chapter 4 discusses the control architecture used on the robot and the behaviours which

have been implemented.

4

Chapter 5 describes the design of a fuzzy logic navigation system which has been

developed to overcome one of the limitations of pure behaviour based architectures.

Chapter 6 presents experimental results from tests carried out and comments on how

successful the robot's control architecture is.

Chapter 7 gives conclusions from the work carried out and presents ideas for future work.

5

2. BACKGROUND

This chapter provides a literature review which is relevant to the work discussed in this

thesis. It provides a review of the theory of robot architectures. It also discusses the

different types of architectures available and emphasises the advantages and limitations of

each. A review of robot mapping techniques is also discussed.

2.1 Mobile Robot Control Architectures

In order for a mobile robot to function usefully and reliably in unstructured and dynamic

environments, it must be able to perceive its surroundings and generate a set of appropriate

actions. This requires the use of an underlying architectural framework which is responsible

for the sensing and reasoning processes of the robot. The architecture must be able to gather

perceptual and state information and generate a set of actions for the robot to follow (see

figure 1). An architecture is basically a collection of software building blocks used to

construct the robot's control system (Arkin, 1998). When designing the control architecture,

a number of key issues must be taken into account. Decisions have to be made on whether

the architecture should be centralised or distributed, whether the reasoning should be

reactive or deliberative and whether input combination should occur via sensor fusion or

arbitration.

Perception
Planning
Control

World Commands

State

Figure 1 Robot Control Architecture

During the past two decades, two different types of control architectures have dominated

the robotics scene. The two architectures differ in the type of reasoning they use. One uses

deliberative reasoning to determine what actions should be taken. The other uses reactive

6

reasoning to tightly couple sensor input with actuator output in a reactive way. Figure 2

shows a comparison of the two methods (Arkin, 1998).

Representation-dependant
Slower response
High-level intelligence (cognitive)
Variable latency

Representation-free
Real-time response
Low-level intelligence
Simple computation

DELIBERATIVE REACTIVE

Purely Symbolic Reflexive

DEPENDENCE ON ACCURATE, COMPLETE WORLD MODELS

PREDICTIVE CAPABILITIES

SPEED OF RESPONSE

Figure 2 Deliberative versus Reactive Reasoning

2.2 Classical Robot Architectures

The traditional artificial intelligence approach to building a control system for a mobile

robot is to break the task into a number of subsystems. These subsystems typically include

perception, world modelling, planning, task execution and motor control. The subsystems

can be thought of as a series of vertical slices with sensor inputs on the left and actuator

outputs on the right. These subsystems form a chain through which information flows from

the robot's environment, via the sensors, through the robot and back to the environment

through actuators (see figure 3). This type of architecture decomposes a large, complex

system into a number of small modules for relative ease of implementation (Albus et al.,

1981). Probably the most famous robot built using this type of architecture is Shakey,

developed at the Stanford Research Institute in the late 1960s (Nilsson, 1969).

7

P
er

ce
pt

io
n

M
od

el
lin

g

M
ot

or
 C

on
tr

ol

E
xe

cu
tio

n

P
la

nn
in

g

Sensors Actuators

Environment

Figure 3 Horizontal Decomposition

The following gives a description of each of the subsystems (Toal et al., 1996).

Perception: This subsystem handles the sensing devices connected to the robot.

World Modelling: This subsystem uses sensor input to determine where the robot is in

relation to an internal model of the environment and to update the internal model with new

information.

Planning: This subsystem attempts to work out how it will achieve its goals given the

current world state and the state of the robot.

Task Execution: This subsystem decomposes the plan into a set of detailed motion

commands.

Motor Control: This subsystem interfaces with the robot's actuators to execute motion

commands generated by the task execution subsystem.

One of the problems with this type of architecture is that it precludes interaction with low-

level sensing and action processes at higer-levels and tends to result in very structured

decomposition of problems, leading overall to longer processing times and poor use of

sensory information (Orlando, 1984). Its strictly structured decomposition requires an

instance of each module to be built in order for the robot to function at all.

The following example highlights the problems with this type of architecture. A robot is

instructed to move along a certain path in search of a target. During this time, one of the

robot's cameras may detect an obstacle straight ahead along the path, which is not contained

8

in the world model held by the robot. The information provided by the camera is then

processed and the world model is updated. All of this takes time and before the robot is able

to respond to the new information contained in the world model, it may already have

collided with the obstacle. The problem with this architecture is that planning is a time-

consuming task and the world may change during the planning process in a way that

invalidates the resulting plan (Kortenkamp et al., 1998). As a result, this type of

architecture may only be of use in very structured and highly predictable environments.

2.3 The Symbol System and Physical Grounding Hypotheses

Before discussing reactive and behaviour based architectures, two important hypotheses

which are central to the understanding of these architectures will be discussed. These two

hypotheses are generally referred to as the Symbol System Hypothesis and the Physical

Grounding Hypothesis.

The symbol system hypothesis (Brooks, 1990) states that intelligence operates on a system

of symbols. The implicit idea is that perception and motor interfaces are sets of symbols on

which the central intelligence system operates. The robot’s sensors deliver a description of

entities in the world in terms of symbols to the a central intelligence system which develops

an internal model of the world and then drives the actuators based on some belief. The

symbols with which these systems reason often have no physical correlation with reality. In

other words, they are not grounded by perceptual or actuator processes. The hierarchical

architecture described above is based on this type of hypothesis. The Physical grounding

hypothesis (Brooks, 1990) is a hypothesis based on the belief that to build an intelligent

system, it is necessary to have its representations grounded in the real physical world. This

means that a robot must acquire its knowledge from external sensors and not from a set of

symbols. Also, all of the robot's goals and desires must be expressed as physical action.

Robots based on this hypothesis are generally more robust and can operate in more

complex and unstructured environments. Reactive architectures are based on this type of

hypothesis.

9

2.4 Reactive Architectures

To try and overcome the problems associated with the classical type of architecture, a new

breed or architecture was developed. This is known as a reactive architecture. Instead of

constructing a world model, planning a course of action within that model, and mapping

that plan into specific actions, reactive architectures are designed to respond directly to

sensor stimuli from environmental cues. This is done by tightly coupling sensor input with

actuator output in a reactive way. They are particularly suited to complex and unstructured

environments. By sensing the environment at a rapid rate, uncertainty in perception is

avoided. Any false readings which are obtained will only have a very limited impact. By

continuously acting on the perceived world, any uncertainty on what actions are to be

carried out is also avoided. World models are avoided under the belief that "the world is its

own best model" (Brooks, 1990). The advantage of reactive architectures is that they have a

very fast response time from perceiving an environmental cue to acting on it. This is

important in dynamic environments where the robot may come across unforeseen objects.

2.5 Behaviour Based Architectures

A behaviour based architecture is a radically different type of robot control system. Instead

of decomposing the architecture into functional modules, the behaviour based architecture

decomposes it into task-achieving modules or behaviours. A behaviour in this sense is a

routine which performs a certain set of actions in response to a given stimulus from sensors

(Arkin, 1998). Each behaviour is designed to perform a particular task such as avoiding

obstacles, following a light etc. It does this in response to sensor inputs acting in a similar

manner to the way an insect behaves. A behaviour encapsulates the perception, exploration,

avoidance, planning and task execution capabilities necessary to achieve one specific aspect

of robot control. It is capable of producing meaningful action which in turn can be

composed to form levels of competence. Each behaviour realises an individual connection

between some kind of sensor data and actuation. The whole system is built step by step

from a very low level. Successive levels can be added incrementally to enhance the

functionality of the robot.

10

Control of the robot is distributed across a number of independent behaviours. The

interaction between them is what defines the overall behaviour of the robot. Since each

behaviour is able to operate independently of each other, if one behaviour fails, the entire

control system can still function, albeit at a lower level. This makes the system very robust.

Behaviour based architectures have a very fast response time to environmental changes.

Behaviour based architectures have the following general characteristics (Arkin, 1998):

• Behaviours serve as the basic building blocks for robotic actions. Each behaviour

consists of a senserimotor pair. Information from the sensor determines the motor reflex

response.

• Use of explicit abstract representational knowledge is avoided in the generation of a

response. Purely reactive systems react directly to the world as it is sensed. This avoids

the need for intervening abstract representation knowledge.

• These architectures are inherently modular from a software design perspective. This

allows the competency of the robot to be increased by adding new behaviours, without

redesigning or discarding the old ones.

• Interaction of the behaviours is through the robot's environment.

• Behaviours are relatively simple and tend to be more reactive than deliberative.

Two common architectures which employ this design method are Brooks' subsumption

architecture (Brooks, 1986) and Arkin's schema-based architecture (Arkin, 1989). The

robot discussed in this thesis uses the subsumption architecture, so a detailed examination

of this will be given in the following sections.

2.6 Subsumption

The subsumption architecture was originally developed by Rodney Brooks back in the mid

1980s at MIT (Brooks, 1986). This type or architecture is a purely reactive behaviour based

architecture. Unlike classical control which decomposes the control system into a number

11

of vertical tasks, subsumption decomposes the task into a number of horizontally arranged

layers (see figure 4). Each of these layers is capable of implementing a "competence", that

is the ability to display a particular behaviour. In addition, each layer encapsulates elements

of all the vertical tasks found in the classical system. For example, a layer may have

perception, planning, task execution and motor control elements. This allows it to act on

information perceived by the robot's sensors and execute a certain set of actions.

Avoid Obstacles

Wander

Explore

Build Maps

Use Maps

Work Usefully

Sensors Actuators

Figure 4 Subsumption Architecture

Each layer in the subsumption architecture implements one behaviour, such as the ability to

move away from an obstacle, to follow a light source or to explore the robot's environment.

Since the task of controlling the robot is broken down into a number of different

behaviours, each behaviour does not have to tackle the whole problem of achieving the

overall goal. This greatly simplifies the design of the architecture, since behaviours can be

built up incrementally.

2.6.1 Levels of Competence

In subsumption, the control architecture is built up using a number of levels of competence.

Each level of competence is an informal specification of how the robot should behave in

12

any environment it encounters. Higher levels of competence encapsulate all the control

layers of lower level competences. The following eight competences are used by Brooks:

Level Robot's Behaviour

0 Avoid contact with objects (whether the objects are moving or are stationary).

1 Wander aimlessly around without hitting things.

2 Explore the world by seeing places in the distance which look reachable and

head for them.

3 Build a map of the environment and plan routes from one place to another.

4 Notice changes in the static environment.

5 Reason about the world in terms of identifiable objects and perform tasks related

to certain objects.

6 Formulate and execute plans which involve changing the state of the world in

some desirable way.

7 Reason about the behaviour of objects in the world and modify plans

accordingly.

The robustness of the robot's control system becomes more acute as the level of

competence increases. Take the Explore competence as an example. Since this includes as a

subset the Wander and Avoid competencies, it can operate secure in the knowledge that it

will not collide with an obstacle. Higher level competencies do not have to be concerned

about avoiding obstacles since this is taken care of by a lower level competence.

2.6.2 Layers of Control

The key idea behind levels of competence is that the control system can be built using

layers that correspond to each level of competence. Adding a new layer to the control

system moves it up to the next level of overall competence.

When designing the control system in Subsumption, the level 0 competence is added first.

This endows the robot with an obstacle avoidance ability. This is generally the most

13

important ability a robot must have and so is added first. A control layer is added which

achieves this. Once a reliable and functional level 0 competence has been tested and

debugged, the next level of competence is added. This equips the robot with the ability to

wonder around without hitting things. A control layer is implemented that lets the robot

wander freely. This layer, however, does not have the ability to avoid obstacles. Instead,

this is taken care of by layer 0. Together, layer 0 and layer 1 constitute the level 1

competence.

Higher level layers are able to examine data from lower level layers and can also inject data

into the internal interfaces of a lower level layer to suppress the normal data flow. Lower

level layers always run, however, without being aware of the layers above them. This is

shown in figure 5.

Avoid Obstacles

Wander

Explore

Build Maps

Use Maps

Sensors Actuators

Figure 5 Layers of Control

2.6.3 The Structure of Layers

Each layer in Subsumption contains many of the elements found in classical control such as

perception, task execution, motor control and so on. Unlike classical control, however, each

layer only has to be concerned with a carrying out a small specific task. Brooks implements

each of the layers as finite state machines. Each of these machines has an input and an

output. In addition, each input can be suppressed and an output can be inhibited by wires

14

terminating from other finite state machines. These wires are used by higher level layers to

interact with the lower level layers. Figure 6 shows one of these finite state machines.

Finite State
Machine

Inputs Outputs

S

Suppressor

I

Inhibitor

Figure 6 Finite State Machine

The inhibition wire at the output of a module is used to inhibit the output from the module.

If a signal is sent along this wire, any output generated by the module will be lost. The

suppression wire works in a similar manner. In this case, however, if a signal is sent along

the wire, the input to the module will not only be inhibited but will also be replaced with

the signal on the suppression wire.

2.6.4 Coordination in Behaviour Based Systems

In behaviour based architectures, a number of behaviours run concurrently. Many of these

will try to drive the same actuator at the same time. An example of this can be seen with

two simple behaviours. One behaviour is an obstacle avoidance behaviour which attempts

to steer the robot away from an obstacle. The other is a light following behaviour which

causes the robot to follow a light source. In normal situations (in the absence of obstacles),

the light following behaviour controls the robot's motors to track the light source. If an

obstacle is encountered, however, the obstacle avoidance behaviour becomes active and

tries to steer the robot away from it. At this stage, both behaviours are trying to control the

robot's motors, causing a conflict to occur. This is a common characteristic of all behaviour

based architectures. To overcome it, an arbitration function has to be implemented. The

arbitration function has to select a single behavioural response from a multitude of possible

ones. There are a number of ways in which this can be done. In subsumption, a fixed

15

priority arbitration scheme is used. A higher level layer is able to subsume a lower level

one. This is where the name subsumption comes from. Inhibition and suppression are the

mechanisms by which conflict resolution between actuator commands from different layers

is achieved.

2.6.5 Example Robots Using Subsumption

A number of robots have been built over the years using the subsumption architecture. The

following sections give a brief description of some of these.

Allen (Brooks, 1996): This was the first robot built by Brooks to test subsumption. Three

behaviours were implemented on it. The first behaviour endowed the robot with the ability

to avoid both static and dynamic objects. The second behaviour made the robot wander

about at random. The third behaviour was an exploration module which made the robot

head for distant places. Although quite a simple robot, it highlighted all the essential

features of the subsumption architecture.

Tom and Jerry (Connell, 1987): These two robots were developed to demonstrate how

easily it is to implement subsumption on robots with very low computational power. Both

of these robot were developed from toy cars and had three infrared proximity sensors

mounted at the front and one at the rear. The software for the robot fitted on a single 256

gate programmable array logic chip. Three behaviours were implemented on the robot. The

first two were similar to the robot Allen, that is an obstacle avoidance and wander

behaviour. The third behaviour allowed the robot to follow a moving target.

Herbert (Brooks et al., 1987): This was a somewhat more ambitious robot. The robot used

24 8-bit processors and 30 infrared proximity sensors. It also had an onboard manipulator

with sensors attached to the hand, and a laser range finder to collect three dimensional

depth data. The robot had the ability to wander around an office environment and collect

soda cans. It could also perform obstacle avoidance and wall following. The remarkable

thing about Herbert is that it could do quite complex and useful tasks without there being

any internal communication between its behaviour generating modules.

16

Genghis (Brooks, 1989): This is a six-legged walking robot originally built to develop

walking and learning algorithms. Onboard, there are 12 motors, 12 force sensors, 6

pyroelectric sensors, 1 inclinometer and 2 whiskers. The behaviours implemented on the

robot give it the ability to walk over rough terrain. The passive infrared sensors are used to

detect and follow people. Developing the control system for this robot using the classical

hierarchical architecture would be extremely complex. However, developing it in

subsumption makes the task much more manageable. Low-level behaviours can be built up

gradually, tested and debugged before higher-level behaviours are added to the system.

Squirt (Flynn et al., 1989): This is one of the smallest robots built at the MIT lab.

Weighing just 50 grams, it incorporates an 8-bit computer, an onboard power supply, three

sensors and a propulsion system. Two behaviours are implemented on the robot. The first

behaviour monitors the output from a light sensor, causing the robot to moves in a spiral

pattern until a dark area has been located, at which time it stops and remains stationary. The

second behaviour only becomes active once a dark area has become established. The output

from a pair of microphones is then monitored until a certain sound pattern is detected. Once

the pattern is detected, the robot will head in the direction of the sound.

Toto (Mataric, 1989): This robot performed obstacle avoidance, wandering, wall

following, path planning and most importantly map-building. Behaviours were

implemented on the robot that recognised certain types of landmarks, such as walls

corridors and so on. Another set of identical behaviours were also used which lie in waiting

for new landmarks to be detected. When this happens, a behaviour allocates itself to

represent the landmark that was detected. Behaviours which represent adjacent landmarks

have neighbour relationship links activated between them. Together, these group of

behaviours represent Toto's map. To plan a path to a particular landmark, the behaviour for

that landmark is activated. This activation will spread through the adjacency links between

behaviours until it arrives at the one associated with the robot's current position.

17

2.7 Advantages of Behaviour Based Control

Behaviour based architectures are generally more robust than hierarchical architectures

making them more suitable for use in unstructured and dynamic environments. The

following lists some of the important advantages which these behaviour based systems

exhibit (Nehmzow, 2000).

• In behaviour based systems, there is no functional hierarchy between the different

layers. It is not necessary for one layer to call upon another to carry out a specific task.

Each of the layers run in parallel and work independently of each other carrying out

their intended goal. Each layer can respond directly to environmental changes in a

timely manner. There is no central planning module which has to take account of all

sub-goals. As a result, no conflict resolution strategy is needed.

• Behaviour based systems are modular making them easy to design, test and debug.

When implementing the system, lower levels of competence are added first, such as

obstacle avoidance. Once this layer has been thoroughly tested and shown to exhibit the

correct behaviour, further layers can be added, increasing the level of competence of the

robot.

• A very important advantage of behaviour based systems is that they are robust. In a

hierarchical architecture, the failure of one module leads to the failure of the entire

system. In behaviour based system, however, the failure of one layer only has a minor

effect on the performance of the whole system. This is because the overall behaviour

the robot exhibits is the combination of a number of layers of control running

concurrently. If one layer fails, the others can still function independently.

18

2.8 Limitations of Behaviour Based Control

One of the main limitations of behaviour based systems is that they do not cater very easily

for the execution of plans (Nehmzow, 2000). Behaviour based system are purely reactive -

they respond directly to sensor stimuli. By tightly coupling sensor input with actuator

output, they respond very well to environmental cues. However, since behaviour based

systems do not have any internal state, they are unable to follow a specified sequence of

actions.

2.9 Hybrid Architectures

The traditional hierarchical architecture used on mobile robots maintains an internal world

model of the environment, which it then uses to plan and execute a set of actions. In

contrast, behaviour based architectures have no internal state and rely on external

environmental cues to determine what actions should be taken. An important question

arises here. Is a model or map of the robot's environment necessary in order to carry out

purposeful and useful tasks? Consider the following example of a delivery robot travelling

around an office environment in search of a specific room. If a behaviour-based

architecture was used, it could have difficulty in trying to locate the room. At corridor

intersections, the robot cannot use its sensors to decide what to do next. There are no

environmental cues available to help it reach its goal. Since behaviour based systems

determine their actions directly from sensor stimuli, the office environment would have to

be extensively modified to provide the robot with a set of available cues. In cases such as

this, it is more appropriate for the robot to maintain an internal model of the environment.

By accessing the robot's internal state, decisions can be made about what to do next.

The problem with having an internal model of the environment, however, is that it has to be

accurate to be of any use. If the environment is changing at a rapid rate, then little value can

be placed on the model. Over time, new features may be introduced into the environment or

known features may have changed, such as doors closing or opening. Unless the correct

state of the environment is held in the model, the robot cannot be expected to generate a

correct plan of actions. To overcome this, the introduction of hybrid systems has become

19

quite popular. These combine the rapid response time of behaviour based systems with the

deliberative reasoning capabilities of hierarchical architectures. The low-level reactive

components of the system effectively filter out the highly changeable aspects of the world,

leaving the higher-level model-based components to deal with the constant or slowly

changing features [10].

2.9.1 Example Architectures

The following sections give a brief description of some architectures based on this hybrid

approach.

Atlantis (Gat, 1991): This hybrid architecture was developed at the Jet Propulsion

Laboratory. It is a three-level architecture consisting of a deliberator, a sequencer and a

reactive controller (see figure 7). The deliberator handles planning and world modeling.

The sequencer handles initiation and termination of low level activities and addresses

reactive-system failures to complete the task. The reactive controller is in charge of

managing a collection of primitive activities. The control layer in Atlantis is implemented

in ALFA. This is a programming language specially designed to program reactive modules.

Within the architecture, conditional sequencing occurs upon the completion of various

subtasks or if a failure has been detected. A feature that has been introduced into the system

is the notion of "cognizant failure". This gives it the ability to recognize when a task cannot

be completed so it can take corrective action. Tasks are described by a list of methods for

carrying out the task along with the conditions under which the methods are useful. The

deliberator performs such tasks as planning and world modeling. Each of these tasks are

initiated and terminated by the sequencer. The output from the deliberator is viewed only as

advice to the sequencer, with control of the robot remaining in the hands of the sequencer.

AuRA (Arkin, 1996): This was one of the first architectures developed to demonstrate the

hbrid approach. It consists of two components - a deliberative hierarchical planner, based

on traditional AI techniques, and a reactive controller, based on schema theory. Figure 8

shows the various components of the AuRA architecture. The hierarchical component

20

consists of a mission planner, a spatial reasoner and a plan sequencer. The mission planner

is in charge of establishing high level goals for the robot. The spatial reasoner uses

cartographic knowledge to construct a sequence of navigational path legs that the robot

must ececute to complete its mission. The plan sequencer converts each path leg into a set

of motor behaviours for execution. The schema controller is in charge of monitoring the

behavioural processes at run time.

Deliberator

Sequencer

Control
Sensors Actuators

Figure 7 Atlantis Architecture

21

Mission Planner

Plan Sequencer

Spatial Reasoner

R
E
P
R
E
S
E
N
T
A
T
I
O
N

Schema Controller

Motor Perceptual

Teleautonomy

Mission Alterations

Apatial Goals

User Intentions

On-line
Adaption

Opportunism

Spatial Learning

Plan Recognition
User Profile

Learning User Inputs

Actuation Sensing

Reactive
Component

Hierarchical
Component

Figure 8 AuRA Architecture

2.10 Mapping

If a mobile robot contains an internal model or map of its environment, it can perform

navigational tasks such as travelling to a particular room in an office building. For certain

types of robots, having this capability is essential. Office cleaning robots and security

robots, for example, both need a map to go about their tasks. A map in this context denotes

a one-to-one mapping of the environment onto an internal representation (Nehmzow,

2000). There are a number of ways in which a map can be built up. The tasks a robot has to

perform and the environment in which it operates have a strong influence on the type of

map which is chosen. The sections that follow review the types of maps available and

considers the applications to which they are best suited.

22

2.10.1 Recognizable Locations

This type of map consists of a number of distinct locations, such as doors, corners, tables

and so on, that the robot can recognize as it travels about. If the robot returns to a location

contained in the map, it will be able to recognize it. A number of researchers have

investigated techniques which allow the robot to recognize these distinct places. Donnett

(1992) used a robot with ultrasonic and infrared sensors which measured certain properties

of the sensors at various positions in the environment. This allowed the robot to recognize a

location if it was subsequently revisited by matching its sensor readings against the stored

properties. The robot used a Bayesian process to match the data which computed the

propability of the robot being at a particular location.

Nehmzow and Smithers (1991) recognized distinct places by monitoring the movement of

the robot. The robot initially adopts a wall-following strategy. If any significant movement

occurs, such as turning at a corner, information about the move is used to train a self-

organizing neural network. Eventually, after a few circuits of the room, the neural network

will be sufficiently trained to be able to recognize individual corners when information

about a particular move is presented to the network.

2.10.2 Topological Maps

Topological maps are similar to maps based purely on recognizable locations. However, in

this case, the maps are enhanced by the addition of links or paths which show the

relationship between different landmarks or features. The map can be considered as a graph

with nodes representing distinct locations. Pathways between locations are represented as

arcs connecting the appropriate nodes (Kurz, 1996; Zimmer, 1996). A link which

establishes the connection between two landmarks has to be identified by the robot. This is

done by travelling the corresponding route between the two landmarks. To make

constructing the topological more straightforward, the links can be established at the same

time as the landmarks are identified. This is the approach used by Mataric's robot (Mataric,

1990). The robot navigates by wall-following and landmarks are identified in the sequence

corresponding to their topological relationships.

23

2.10.3 Metric Topological Maps

In topological maps, no metric or geometric information is stored. This has the advantage

that it eliminates the problem of accumulating odometry errors. To make topological maps

more useful, however, they are often extended by incorporating some metric information

into them such as the length of paths between landmarks. The advantage of adding this

information is twofold. Firstly, it can increase the efficiency of the path planner and

secondly it can remove any ambiguity between similar landmarks (Lee, 1996). When a

robot is travelling between two landmarks, it is usually desirable for the robot to travel

along the shortest path. With a topological map, there may be a number of routes between

the two landmarks. Having the addition of path length information allows the path planner

to choose the shortest route. Path length information is usually obtained from onboard

odometry. The problem with odometry, however, is that it is notoriously unreliable,

producing errors that gradually accumulate over time. With topological maps, the distance

between landmarks is usually small, and the errors that do result are usually acceptable.

2.10.4 Area-Based Metric Maps

This type of map divides the robot's environment into a number of distinct regions or cells.

Each of the cells represents a particular location in the environment. Having a large number

of cells allows a detailed model or map of the environment to be built up. Associated with

each cell is a number representing some property of the cell. Typically, this indicates the

occupancy state of the region that the cell represents. For example, the region may be

occupied, empty or the state unknown. The map is updated from data coming the robot's

sensors such as ultrasonic and infrared range data. A number of maps based on this

technique have been developed over the years. Popular examples include Occupancy Grids

(Elfes, 1989), Certainty Grids (Moravec, 1988) and Histogram Grids (Borenstein, 1991). In

order for a cell to be updated from a sensor reading, it is necessary to determine which cell

the data refers to. This is complex to do using sonar sensors due to the wide beam angle. A

return reading from a sonar sensor may refer to any obstacle within a 30° range. To

24

overcome this, various sonar models have been proposed, which translate the sonar

readings into occupancy probabilities of the cells within the sonar's beam.

2.11 Choosing a Map

The type of map that is most suitable for a particular robot application is dependent on the

environment in which the robot operates and the tasks it is expected to perform.

Topological maps are well suited to environments that are dominated by distinctive

landmarks which the robot can easily recognize. If the robot's task is to travel between

different landmarks, then a topological map is most appropriate. To be effective, however,

there must be clear unambiguous paths between the landmarks that the robot can travel. A

typical environment where this map can be used quite effectively is an office environment

with many doors and corridors.

In contrast, if the robot's application deems it necessary to travel within a large open space

occupied by obstacles, then an area-based map is more appropriate. Within this type of

environment, there may not many distinct features that the robot can recognize. For such

environments, the robot would need to be equipped with a map showing the full metric

relationship between all objects in the area. A warehouse robot, for example, would fall

into this category.

2.12 Summary

This chapter has provided a literature review which is relevant to the work discussed in this

thesis. An important discussion into robot architectures was carried out. It was shown that

behaviour based control is more robust and reliable in typical real world environments. The

merits of behaviour based control as opposed to hierarchical control were discussed.

Despite the major advantages of behaviour based architectures, they do have some

limitations - mainly the inability to easily execute plans. This limitation was addressed

along with the introduction of the hybrid architecture which is used to overcome it.

Examples of both behaviour and hybrid architectures were given. A summary of the types

25

of maps commonly used mobile robots was also given. It was argued that the type of map

most appropriate for a particular robot is dependent on the proposed application and the

environment in which the robot is expected to operate.

26

3. ROBOT DESIGN

This chapter describes both the physical and hardware design of the robot. All of the robot's

sub-modules are described in detail and how they interact with each other.

3.1 Locomotion System

Various drive configurations can be used to control the locomotion of a mobile robot.

Popular examples include differential drive, synchro drive, leg driven and track driven

drive systems. For practical reasons and ease of implementation, differential drive systems

incorporating wheels are generally the most preferred option. Such a system also offers a

great deal of maneuverability for the robot. One of the disadvantages of wheeled systems,

however, is their inability to tackle rough terrain. For such environments, tracks or legs

offer a greater degree of flexibility in negotiating obstacles. If the intended work area for a

mobile robot is an indoor environment, however, a wheeled system is more than sufficient.

On this robot, a differential drive system consisting of two servo motors is used. With a

differential drive system, the robot can move in a straight line, follow an arc and turn on the

spot, which is useful in negotiating tight corners. To steer the robot, the speed and direction

of each motor must be controlled.

When deciding on the type of motors to be used, various parameters have to be taken into

account. These include such things as the robot's weight, the speed and acceleration

required, wheel diameter and so on. A suitable motor can be chosen based upon these

parameters. A detailed calculation is shown below for determining the motors used on this

robot:

Mass of Robot = 3 Kg

Wheel Radius = 1.5"

Maximum Speed = 2.08 revs/sec

27

= 0.5 m/s

= 13.06 rads/sec (2Π * 2.08)

If maximum speed is reached in 0.5 seconds, then the acceleration required is:

Acceleration = 13.06/0.5

= 26.12 rads/sec/sec

Inertia of Robot = mr2

Where:m is the mass of the robot and r is the wheel radius.

1.5" is equal to 0.0381 m

= 3 * (0.0381)2 = 0.00435 Kg m2

If it's assumed that each motor only sees half the inertia of the robot, then the inertia for

each motor will be 0.00435 / 2 = 0.002175 Kg m2.

Acceleration Torque = Inertia * Acceleration

= 0.002175 * 26.12

= 0.0568 Nm = 56.8 mNm

Power = Acceleration Torque * Maximum Speed

= 0.0568 * 13.06

= 0.7418 Watts

Using a 30:1 reduction gearbox, the acceleration torque is reduced by a factor of 30. Also

the inertia seen by the motors is reduced by a factor of 302 = 900.

Acceleration Torque = 0.0568 / 30 = 0.001893 Nm

= 1.89 mNm

Reflected Inertia = 0.002175 / 900

= 0.00000241 Kg m2

= 2.41 g cm2

Motors inertia is 24.8 g cm2.

28

3.2 Mechanical Deisgn

One of the objectives in designing the robot was to make it small, compact and lightweight

so that it could easily be transported and could operate in tight locations. To accomplish

this, a cylindrical design using a differential drive system was opted for (see figure 9). The

advantage of such a design is that the robot cannot be caught in tight corners since the

differential drive system allows the robot to turn on the spot.

Figure 9 Robot

The base of the robot consists of a circular sheet of aluminum 30cm in diameter. Located

beneath the plate are two 12V DC motors, one on either side. These are positioned in

specially designed mounts and connected to each wheel using a rubber pulley transmission

system (see figure 10).

Figure 10 DC Motor and transmission system

29

Two castor wheels located at the front and back of the base plate are also used in order to

further support the robot (see figure 11).

Figure 11 Castor Wheel

Attached to each wheel is an optical incremental shaft encoder that measures wheel

displacement as the robot travels about (see figure 12). By attaching the optical encoder to

the wheel rather than to the motor itself, a more precise measure of wheel displacement can

be obtained. Slippage of the pulley against the motor's drive wheel will not be recorded in

this way.

Figure 12 Shaft Encoder

An aluminum frame is located on top of the base plate that allows a number of PCBs to be

stacked. These can be easily slided in and out. A total of 5 boards can be used. However,

only 3 spaces are occupied on the current design. Located at the bottom of the frame are the

12V battery and the switched mode power supply (see figure 13). On top of the frame is

another circular sheet of aluminum 30cm in diameter. This strengthens the structure making

it more rigid and also holds the mounts for each of the sonar sensors. The mounts have been

designed so as to allow the sensor to be rotated in all three axes (see figure 14). This allows

30

very accurate positioning of the sensor to be achieved. Two of the sensors are located at the

front of the robot, the rest are equally distributed around it. The 3 ultrasonic control boards

for the sensors are located on the side of the frame and held in position using some velcro

tape. The weight of the robot including the 12V lead acid battery is approximately 3 kg.

Figure 13 Frame where the PCBs are stacked

Figure 14 Holder for Sonar Sensor

31

3.3 Hardware Design

The electronic control hardware for the robot has been designed in the form of a distributed

control architecture, in which a number of separate modules are used to perform complex

tasks. Currently, three modules exist, these being a locomotion board, a sonar ranging

board and a central controller. There is also a power supply board to control the onboard

circuitry. Further modules can be added as required by extra sensory capabilities and

implemented behaviours. The advantage of distributing the workload to different modules

is that it frees the main processor or controller from performing repetitive albeit complex

time-consuming tasks such as the servo control of individual drives. Figure 15 gives a

block diagram of the hardware. The following sections give an in-depth discussion of each

module.

3.4 Central Controller

A thorough review of various CPU modules was carried out prior to the construction of the

robot. This was to determine the various types of features available, the ease of

implementation with other hardware, prices and so on. In the end, it was decided to use an

embedded 586 CPU module for the robot. While this offers far more processing power than

is necessary, it will allow for future enhancement of the robot such as the implementation

of relatively sophisticated vision control algorithms. This module has the advantage that it

can be easily programmed using traditional PC based programming software such as

Borland C++. There is also an abundant source of literature available on how to interface

with the PC based architecture. The processor runs at 133 MHz and has 8 MB of RAM and

a 2 MB solid state hard disk. While a 2 MB hard disk may seem rather small, it offers

sufficient space for the software running on the robot. If necessary, a larger hard disk can

always be added in future.

32

133 MHz Embedded
586 Board

Host
Computer

Switched Mode
Power Supply

12V Lead
Acid Battery

External
Power Supply

Motion Control

2 HCTL-1100
Motion Control

ICs

2 HEDS-5600
Incremental

Shaft Encoders

L293D Current
Driver

2 12V DC
Motors

Obstacle
Avoidance

Atmel 89C55
Microcontroller

9 Sonar
Sensors

3 Polaroid
Ranging
Modules

Light Following

ADC0808 ADC

2 LDRs

Figure 15 Hardware

33

The module used is a CMi586DX133 PC/104 module from Real Time Devices. PC/104 is a

specification for a compact version of the traditional PC bus optimised for the unique

requirements of embedded systems applications. In general, these boards have a much

smaller footprint, reduced power consumption and have a self stacking bus, which allows

other boards to be stacked on top of them. These features are ideal for the robot, which has

to be compact and capable of operating from a low capacity battery.

Feature wise, the CPU module has two RS232/422/485 serial ports, an ECP/EPP parallel

port, a floppy and hard disk interface, a keyboard interface and a real time clock. One of the

unique features of the module is that it can be operated in virtual mode. This allows you to

gain access to the device without having to connect a keyboard, monitor and floppy disk.

The module's serial port is connected to the serial port of a host PC and the host PC's

keyboard, monitor and floppy disks are made available to the CPU module. When operated

in this mode, less hardware has to be connected to the robot, keeping the cost, complexity

and weight to a minimum. All software development is carried out on a host PC and is

downloaded to the controller over a serial communications link.

3.5 Power Supply Board

The purpose of the power supply board is to provide all of the robot's electronic control

circuitry with a regulated 5V output. The robot can take its power from either an onboard

12V lead acid battery or an external power supply. The advantage of using lead acid

batteries over other types of rechargeable batteries is that they can provide energy densities

of up to 40 Wh/Kg and have a long shelf life. One of their drawbacks, however, is that they

are large and heavy relative to other battery technologies. To increase the efficiency of the

power being used, a switched mode power supply board was built. This provides a

regulated 5V output for the robot's control circuitry. The advantage of using a switched

mode power supply is that it offers a far greater efficiency than a standard power supply,

resulting in less heat being produced. This avoids having to use a larger heat sink and is

34

more economical in terms of battery power. This is important since the efficiency of the

power supply becomes an important factor when the robot is using the onboard battery.

A switched mode power supply works by rapidly switching an input voltage on and off. By

varying the duty cycle of this period, different output voltages can be obtained. The duty

cycle refers to the fraction of time a signal is held high within a cycle. For example, a duty

cycle of 20% means that the input voltage is on for 20% of the time and off for 80% of the

time. With this duty cycle, the output voltage would be one fifth of the input voltage. In

order to maintain a fixed output voltage, negative feedback is used to control the duty cycle

ratio. To smooth the output voltage, an LC filter is used.

The power supply was built using an SGS Thompson L4960 switching regulator IC. This

has been specifically designed for use in switched mode power supplies. It can provide an

output voltage from 5V to 40V at up to 2.5A with an efficiency of up to 90%. To build a

power supply using the IC, it is necessary to add other components into the design. These

include resistors, capacitors, diodes and inductors. To offer protection from reverse polarity

at the input to the regulator, a 1N4004 diode is used.

The power supply board has 5 output connectors, four of which provide a regulated 5V

output and the other which provides an unregulated 12V output. The 12V output connector

is used to power the motors. This connector gets its voltage directly from the battery and

has no form of reverse polarity protection. It was decided not to use any protection, since

this would have resulted in 0.7V being drop across a diode. While this wouldn't present a

problem when using an external power supply which could pump a large voltage into the

regulator, it could cause problems when the onboard battery is used. The output from the

battery may drop below 12V or near to it at times. If a diode was used, there would be a

smaller input voltage to the motors. Since it is desirable to have 12V for the motors or as

near to it as possible, it was decided not to use a diode.

35

3.6 Noise Interference

When designing an electronic system, it is important to consider noise interference. There

are several different types of noise, but the most common are EMI (electromagnetic

interference) and noise caused by inductive loads such as motors and relays. The presence

of noise in an electronic circuit can create fault conditions of varying severity. In the worst

case, noise problems can cause catastrophic (or unrecoverable) failure of an electronic

circuit. It can cause microprocessors to reset unexpectedly, analog measurements to fail and

erroneous signals to trigger.

Sources of EMI include microprocessors, microcontrollers, electrostatic discharges,

transmitters and transient power components. Within a microcontroller system, the digital

clock circuitry is usually the biggest generator of wide-band noise, which is noise that is

distributed throughout the frequency spectrum. These circuits can produce harmonic

disturbances up to 300 MHz. Noise can be coupled into a circuit through conductors. If a

wire runs through a noisy environment, the wire will pick up the noise inductively and pass

it into the rest of the circuit. An example of this type of coupling is found when noise enters

a system through the power supply leads. Once the noise is sourced in the power supply

lines, it is then conducted to all circuits needing power. Coupling can also occur on circuits

that share common impedances. Similarly, it can occur with radiated electric and magnetic

fields which are common to all electrical circuits. Whenever current changes,

electromagnetic waves are generated. These waves can couple over to nearby conductors

and interfere with other signals within the circuit.

It is important to have a good ground layout in a design to minimise ground interference in

the system. All ground lines have some finite impedance causing voltage drops to occur. It

is these voltage drops that are the cause of the interference in the system. As system

frequency increase, so too does the interference. In high frequency digital circuits, current

spikes are created when transistors are switched on and off. These spikes can be calculated

using the following equation:

dt

di
LV =

36

Ground noise can be reduced by providing low-impedance pathways for all return signals.

There is another type of noise in a circuit called power system noise. This can be decoupled

using filters unlike ground noise which cannot. When a logic gate switches, a transient

current is produced on the power supply lines. The impedance on the power supply lines

along with the sudden current flow creates a voltage drop on the VDD terminal of the

chips. The current needed by a chip can be supplied from a nearby decoupling capacitor.

This reduces the load on the power supply lines and removes unwanted glitches in the

power system. High frequency, low inductance capacitors of around 0.1 µF in size should

be used.

These decoupling capacitors are liberally used throughout the main control circuitry of the

robot.

3.7 Obstacle Detection and Avoidance

It is important to realize that the environment in which a robot must operate is usually

dynamic and constantly changing - that is, the environment has not been specifically

engineered for the robot. While the dynamics of the robot can be accurately determined and

modelled, the same cannot be said about its environment. Obstacles such as chairs and

furniture pose a constant threat to the robot. One way to overcome these problems is to

have the robot acquire information about the environment, such as the presence of

obstacles, at run-time. There are several ways in which this can be accomplished. Many

robots detect an obstacle by making physical contact with it. This is known as tactile

sensing. Others determine the distance to an obstacle through non-contact means through

the use of a sensor. Depending on the accuracy required, various sensors can be used such

as sonar, infrared, laser range finders and vision systems. The quality of information

received by these sensors is limited by the sensor's accuracy, it's field of view and the

manner in which the robot perceives the information. It is important that these issues are

kept in mind when designing and implementing the collision avoidance and detection

systems.

37

3.7.1 Echolocation

The majority of robots use echolocation or sonar (SOund Navigation And Ranging) as a

means of detecting or locating obstacles. This is a technique whereby the distance to an

object can be determined by using echoes of ultrasonic sound. An ultrasonic pulse is

transmitted towards a target which is then reflected. By measuring the time from the

moment the pulse was transmitted to the time an echo was received, the distance to the

target can be calculated. One of the main advantages of sonar over vision is its fast

processing time. It is also quite accurate in most situations. However, it does have some

limitations which will be discussed later.

There are three primary characteristics associated with sonar. These include the

transmission medium in which the sound travels, the velocity of propagation and the

wavelength of the sound. Unlike electromagnetic radiation, sound requires a medium for

transmission. Common transmission mediums for sound include air and water. The velocity

at which sound waves travel is much slower than light waves, enabling a controller to use

the "time-of-flight" principle to estimate an object’s distance. The wavelength of a 50 kHz

sound wave is 6.872 mm. This is large enough to overcome the roughness of indoor

surfaces and yield fairly accurate results.

By measuring the time of flight of a transmitted pulse, the distance to an obstacle can be

determined using the following equation:

vtd
2

1
=

where: d = distance to the target in meters

v = speed of sound in ms-1

t = time of flight in seconds

The speed of sound is proportional to the square root of the temperature in degrees kelvin.

Its speed at a given temperature is:

15.273
16.331

T
v +=

38

where: v = speed of sound in ms-1 for a given temperature

T = temperature in °C

The speed of sound at a standard temperature of 15°C is:

158.340

15.273

15
16.331

−=

+=

msv

v

Therefore, sound travels at 1117 feet per second at 15°C.

To calculate the distance to an obstacle, the following equation can be used:

15.273
16.331

2

1 T
td +=

This equation can be simplified by using a standard temperature of 15°C. This results in the

following:

td

td

29.170

58.340
2

1

=

=

3.7.2 Limitations and Difficulties of Sonar

One of the limitations of ultrasonic sensors is that they have very poor directional

resolution. The ultrasonic signal is typically transmitted out in a cone of 30°. Any object

that lies within this cone is capable of producing an echo. All that can be said therefore is

that if an object is detected that it lies somewhere within this cone. With sonar, the shortest

distance to an object within the cone is measured. This distance may not necessarily be the

distance along the centreline of the cone. An example of this is shown in figure 17. Instead

39

of the sensor measuring the distance to point P, which lies along the centreline, it measures

the distance to point D1 instead. Figure 16 shows the typical lobe pattern for a Polaroid

ultrasonic sensor. This shows the signal strength of the ultrasonic pulse for different angles

within the cone. It can be seen that the signal strength is greatest directly in front of the

sensor and reaches a local minimum at about 15° either side of centre. The signal strength

then increases again to create weaker side lobes. These side lobes have a sensitivity

approximately 10 dB lower than the main central lobe.

Figure 16 Sonar Beam Pattern

S2 S3

Robot
S1P

D1

D2

Figure 17 Measureing the Shortest Distance to an Obstacle

40

The typical wavelength of a 50 KHz ultrasonic beam is 6.87 mm. This is greater than the

roughness of most target surfaces resulting in the beams being reflected of these surfaces.

This is a phenomenon known as specular reflection. One of the problems with specular

reflection, unfortunately, is that it can result in crosstalk. Crosstalk is where an ultrasonic

sensor receives the signal transmitted by another sensor and assumes that it was transmitted

by itself.

There are two different types of crosstalk - direct crosstalk and indirect crosstalk. Figure 18

shows an example of direct crosstalk. In the figure, sensor 2 lies within the critical path of

sensor 1. The critical path is defined as any path of ultrasonic waves transmitted by one

sensor and received by one or more sensors resulting in crosstalk. For this example, sensor

2 is fired a short time after sensor 1. As sensor 2 waits for an echo to be received from its

own signal, it receives the echo from the signal transmitted by sensor 1. This would result

in an incorrect reading being generated by sensor 2. Fortunately, the way to overcome

direct crosstalk is quite simple and can be achieved purely through software. The way this

is done is explained later in the section on software implementation.

Wall

S1 S2

Main Beam

Echo

Robot

Figure 18 Direct Crosstalk

The other type of crosstalk is known as indirect crosstalk. Figure 19 shows an example of

this. This type of crosstalk results from signals being reflected of various surfaces and

41

being detected by another sensor. In the example, sensor 1 transmits a signal which is

reflected of surfaces W1, W2 and W3 and detected by sensors 3 or 4. If at this time sensors

3 or 4 were waiting for their own echoes, they would interpret the reflected signal from

sensor 1 as being their own. This would result in an incorrect reading being generated.

Unfortunately, indirect crosstalk can never be eliminated completely.

S2 S3

Robot
S1W1

W2

W3

Echo

Echo

Echo

Main Beam

Figure 19 Indirect Crosstalk

3.7.3 Polaroid Ultrasonic Ranging Module

The robot uses a Polaroid ultrasonic ranging module for determining the distance from

objects in its vicinity. The module acts as both a transmitter and a receiver. It is designed to

transmit an outgoing signal and to function as a receiver for the reflected signal (the echo).

42

The module consists of an acoustical transducer and a ranging circuit board. The diameter

of the transducer determines the acoustical lobe pattern, or acceptance angle, during the

transmit and receive operation. A small thin gold-plated plastic foil forms the outer surface

of the transducer. Below this foil rests a concentric groove aluminium backplate. These two

conductive surfaces act as a capacitor when 400 V is applied to the backplate. When the

transducer is acting as a transmitter, the voltage across the capacitor is varied, thus varying

the electrostatic force applied on the foil. This change causes the foil to act like a speaker

propagating sound waves into the air. The reflected wave applies a varying pressure to the

gold foil that alters the capacitance of the conductive surface. This changing capacitance

results in variable voltages that can be sampled by a controller. The width of the

transmission beam is approximately 30° . Figure 20 shows a picture of the ranging module

and the ultrasonic transducer.

Figure 20 Polaroid Ranging Module and Ultrasonic Transducer

When the unit is activated by an INIT signal, the transducer emits a sound pulse, then waits

to receive the returning echo from whatever object the sound pulse has struck. The emitted

pulse is a high frequency inaudible chirp consisting of sixteen pulses and lasting for a

period of approximately 0.5 ms. The pulses consist of multiple frequencies to minimise the

effects of sound absorption that occurs in some materials. Another benefit of using multiple

frequencies is that if a diffuse reflection occurs, the echo may cause a large enough phase

shift that it cancels out other echo signals. In most cases, the first echo is the one that is

measured. One of the problems the module has to overcome is the loss in strength of the

returning echo as it passes through the air. The further the signal has to travel, the weaker it

will be. To overcome this, the module has an amplifier whose gain increases over time.

43

Apart from power and ground lines, the sonar ranging module contains 3 extra pins which

must be used. These include an INIT pin, an ECHO pin and an INHIBIT pin. Each of these

is described below.

INIT This is used as an activation pin controlling the transmission of pules to the

ultrasonic transducer. Whenever the pin is brought high, a series of 16

pulses are transmitted.

ECHO This pin is activated whenever the module receives a returning echo.

BINH Normally, whenever an ultrasonic pulse is sent by the transducer, a period

of 2.38 ms exists before the ranging module can detect a returning echo.

This time period is used to eliminate ringing of the transducer from being

detected as a returned signal. In this case, the minimum distance which can

be measured is 1.5 feet. If distances shorter than this need to be measured

(up to 6 inches), the INHIBIT function of the module must be used. The

pin is brought high after a time period of approximately 1 ms. This allows

distances of around 6 inches to be measured.

Figure 21 shows a typical timing diagram for the Polaroid ranging module.

44

INIT

Transmit (Int)

BINH

Blanking (Int)

ECHO

Figure 21 Timing Diagram for a Polaroid Ranging Module

3.7.4 Sonar Ranging Board

A sonar sensor board has been designed and built to perform all the functions necessary for

range detection. The board is based upon an 8051 microcontroller and communicates with

the main central controller over a low bandwidth serial communications link. Various

different versions of the 8051 exist. The one used here is the Atmel 89C55. This is a low

power 8-bit microcontroller based on the standard 8051 architecture. It has 16K of

EEPROM memory on board, 4 input/output ports, serial communication and timer

capabilities and the provision for generating interrupts. Most of these features are used by

the sonar board.

A number of tasks have to be performed by the 8051. It has to control various signals going

to the Polaroid ranging boards, it must receive confirmation of returning echo signals, it

must perform timing calculations and lastly communicate with the main central controller.

The ranging detection system for the robot consists of 9 sonar sensors and 3 Polaroid

ranging modules. Ideally, each sensor would have its own ranging module. This would be

45

bulky and expensive, however, and it was decided instead to use just 3 ranging modules

and use some form of multiplexing. The multiplexing system is split into 3 groups. Each

Polaroid ranging module must control 3 sonar sensors. For this system to work there has to

be a way of switching each sonar sensor on and off at various times. This is to avoid all

three of them being connected to the ranging module at once. This is done using

STP4NB50 power mosfets. One mosfet is used for each sonar sensor. The mosfet can

switch the sensor on and off under the control of a GATE signal generated by the 8051. The

negative plate of each sensor is connected to the drain of the mosfet. The positive plate is

connected to the E1 connector of the ranging module. The source of the mosfet is

connected to the E2 connector of the ranging module.

Two ports on the 8051 are used to generate the gate signals to switch the mosfets on and

off. Port 0 and Port 2 are used for this purpose. Each of the gates on the mosfets require a

pull up resistor to work correctly. Port 2 already has internal pull up resistors on the chip

itself, so it is only necessary to add external resistors for Port 0. Through experimentation,

it was found that 4.7KΩ resistors seemed to work quite well. In addition to the gate signals,

the 8051 must also generate the INIT and BINH signals for each ranging module. This

requires the use of 6 output lines. Only two of the pins on Port 0 were used for the gate

signals, so the other 6 (pins 0 to 5) can be used for this purpose. Each time an echo is

received by a ranging module, the module generates an active high ECHO signal that is

read by the 8051. The echo signals for the 3 modules are connected to Port 1 (pins 0 to 2)

of the 8051.

3.7.5 Serial Communications

The 8051 microcontroller contains a bi-directional serial I/O system. This consists of an

RXD (Receive) and a TXD (Transmit) pin. There are no automatic handshaking signals

provided by the 8051. An RS232 serial data link is particularly suitable for slow

transmission speeds. It permits a simple bi-directional connection to be achieved by using

just the RXD and TXD pins and a ground pin. The RS232 standard requires bipolar levels

of +/- 5V to +/- 15V to operate. Since the 8051 can only provide 0V and 5V signals, a

driver/receiver is required between the 8051 and the serial port. The driver/receiver

46

converts the signals from the 8051 into the signals required for serial communication. A

MAX232 is used for this purpose.

To use the serial communications system on the 8051, various registers must be configured.

These registers specify such things as baud rate, number of data bits and stop bits and

parity. The transmission protocol used between the sonar ranging board and the main

central controller consists of a baud rate of 2400, eight data bits, one stop bit and no parity

(2400 8N1).

The crystal used on the 8051 is an 11.0592 MHz one. This odd value was chosen so that

very accurate baud rates could be set. One of the 8051's timers is used as a baud rate

generator. It is set up in Mode 2. This is an auto-reload mode which reloads a value into the

timer's counter whenever the counter overflows. The reload value is calculated using the

following equation:

Baud Rate
x Oscillator Frequency

x TH

SMOD

=
−

2

384 256 1

()

()

SMOD is a bit in the 8051's PCON register. It can be either 0 or 1, thus 2SMOD can be either

1 or 2. This acts as a multiplication factor enabling the baud rate to be doubled. For a baud

rate of 600, the reload value TH1 works out at D0H. The following is a table listing various

baud rates and their equivalent reload values:

Baud Rate TH1

300 A0H

600 D0H

1200 E8H

To initialise serial communications, a value of 52H is written to the 8051's SCON register.

This sets up the serial communications system in Mode 1. In this mode, ten bits are

transmitted (through TXD) or received (through RXD). These ten bits consist of a start bit

47

(0), eight data bits (LSB first) and a stop bit (1). The 8051's timer must be anabled for

communications to commence. This is achieved by setting bit TR1 in the TCON register.

3.7.6 Software Implementation

This section describes the software used on the sonar ranging board. All software

development was carried out in C using a special 8051 C compiler. Figure 22 shows a

flowchart for the software. At the start of the program is an initialization routine that sets up

various registers. Serial communications are set up for a baud rate of 2400, 8 data bits, no

parity and one stop bit (2400 8N1). Timer 0 is also set up as a 16 bit timer incrementing

every machine cycle. On the 8051 a machine cycle consists of twelve oscillator periods,

thus using an 11.0592 MHz clock, a machine cycle lasts for 1.085 µs. The counter therefore

increments once every 1.085 µs. This timer is used to measure the time of flight of an

ultrasonic pulse.

The 9 sonar sensors used on the robot are split into 3 groups. Each group is controlled by

one Polaroid ranging module. The first group consists of the sensors facing 0°, 45° and 90°.

The second group consists of the sensors facing 135°, 180° and 225°. Lastly, the third

group consists of the sensors facing 270°, 315° and 360°. To switch a sensor on or off, a 1

or a 0 is written to the port pin connected to the gate of the sensor's mosfet. Only one sensor

in each group can be on at a time, the other two must always be off. With this arrangement,

3 sensors can always be on at any given time. This brings about another group of sensors,

known as firing sensor groups. These are sensors that are grouped together that can all be

activated at the same time. In each of these groups, there are 3 sensors. The first group

consists of the sensors facing 0°, 135° and 270°. The second group consists of the sensors

facing 45°, 180° and 315°. Lastly, the third group consists of the sensors facing 90°, 225°

and 360°.

48

START

Set up serial communications and timer

Echo received
from one of
the ranging

boards?

Set firing_sensor_group = 1.
Activate sensor for first firing group.

Wait for 5 ms.

Determine which firing sensor group is active
and select the sensors for that group.

Initiate each ultrasonic ranging board and start the timer.

Wait 0.9 ms and then send a blank inhibit signal to each board.

Read in value of
timer and store in

a register.

Have all 3
echoes been

received?

Wait till timer reaches 100 ms.
Clear INIT and BINH signals for all boards.

Set firing_sensor_group = 1.
Calculate distances from timer values.

Transmit distances over serial communications link.

Increment firing
sensor group.

Have all 3
groups been

fired?

YES

NO

YES

NO

NO

YES

Figure 22 Sonar Software Flowchart

49

Initially, when the program starts, all the sensors in the first firing group are activated. This

consists of the sensors facing 0°, 135° and 270°. Each of these sensors is connected to a

different Polaroid ranging module, so this allows all of them to be activated at once.

Activating a sensor means writing a 1 to the gate of the sensor's mosfet. This connects the

sensor through an electronic switch (the mosfet) to the ranging module. This is done

initially at the start of the program, so that one sensor is connected to each ranging module.

The main section of the program consists of a loop that continually repeats itself. The

program determines which firing sensor group is currently active and switches on all the

sensors for that particular group. All the other sensors are switched off. Each ranging

module is then given an INIT signal to initiate it causing an ultrasonic pulse to be

transmitted. Also at this time, Timer 0 is cleared and instructed to start counting. In order to

prevent ringing of the transducers from being detected as a return signal, the receive input

of the ultrasonic ranging module's control IC is inhibited by internal blanking for 2.38 ms

after the initiate signal. With this blanking time, only distances of 1.33 ft and over can be

measured. To detect objects closer than this, the internal blanking time must be reduced.

This is achieved by taking the BINH (blank inhibit) input high. By taking this input high

after 0.9 ms, distances of as little as 6 inches can be measured. The next task, therefore, that

the program has to perform is to cause a delay of 0.9 ms. Since Timer 1 increments once

every 1.085 µs, it is simply a matter of reading in Timer 1's value and waiting till it reaches

830 (1.085 µs * 830 = 0.9 ms). After this short delay, each of the BINH inputs on the

ranging modules are activated.

The program then waits until it receives an echo from each ranging module. If an echo is

received, the value of Timer 0 is read. Depending on which firing group is active and the

module from which the echo came, it can be determined which sonar sensor produced the

echo. The value of Timer 0 is then stored in a variable for that particular sensor. Once the

echoes from all 3 ranging modules have been received, the INIT and BINH inputs for the

modules are brought low. Before this can be done, however, a small time delay must occur.

According to the data sheet for the ranging module, the INIT signal must stay high for a

period of 100 ms and low for a period of 100 ms. When the echoes are received, the INIT

50

signals will not have been high for this length of time, so it is necessary to introduce a small

time delay to ensure that this timing constraint is met.

The entire procedure described above is repeated for the other 2 firing sensor groups. Once

this is completed, the next task is to calculate the distance to the object that each sonar

sensor has detected. If the time of flight of the ultrasonic pulse for each sensor is known, it

is a simple task of calculating the distance. The following formula is used:

td 29.170=

This calculates the distance assuming a standard temperature of 15°C. In the equation, t

represents time of flight. When all the distances have been calculated, they are transmitted

over a serial communications link to the main central controller. The transmission protocol

used is quite simple. It consists of a packet containing a Start character followed by the

distance data for all 9 sensors and an End character. The Start character is used in order to

ensure synchronization between the program running on the central controller and the start

of a packet. The figure below shows a typical transmission packet used.

Start
Character

Data Data Data Data Data Data Data Data Data End
Character

Figure 23 Typical Transmission Packet

3.8 Locomotion Board

Controlling DC motors can often be a complex and time-consuming task. Rather than have

the main central controller on the robot perform this task, a separate locomotion board is

used. This greatly reduces the burden placed on the main central controller, freeing it up to

perform more useful and important tasks. The locomotion board uses two Hewlett Packard

HCTL-1100 motion control ICs and an L293D driver IC. The advantage of using such a

device as the HCTL-1100 is that it frees the host processor for other tasks by performing all

51

the complex and time-intensive functions of digital motion control. The chip is interfaced

with a host processor (in this case, the central controller) which specifies the speed,

acceleration and move distance for any new motion. Interfacing is done using the central

controller's input/output expansion bus.

3.8.1 Controlling The Speed of a DC Motor

One of the easiest ways to control the speed of a motor is by PWM (Pulse Width

Modulation). This is a technique whereby the power to the motors is rapidly switched on

and off at a very high rate. The natural inductance and resistance of the motor acts as a low

pass filter and makes the effective voltage seen by the motor to be the average value of the

voltage over time. To control the speed of the motors, it is simply a task of varying the duty

cycle of the PWM signal. The duty cycle refers to the fraction of time a signal is held high

within a cycle. For example, with a 50% duty cycle, the signal represents a pure square

wave while with a 20% duty cycle, the signal is only high for one fifth of the cycle. To

implement a PWM control system, it is necessary to decide on the frequency of the PWM

control signal. Normally, the frequency should be as high as possible, preferably above 10

KHz. If low frequencies are used, the motors can be quite audible. Also, there will be

substantial current and torque variations on the output shaft of the motor. To ensure that a

relatively steady current flows in the motors, the following equation can be used:

L = Armature Inductance

2 * Π * F * L >> R R = Armature Resistance

F = Switching Frequency

For the motors used in the robot, the armature inductance is 1.27 mH, the armature

resistance is 10.4 Ω. Therefore, if it's decided that the left hand side of the equation is to be

10 times larger that the right hand side, this results in the switching frequency being equal

to13 KHz. This is the ideal frequency at which the PWM control system should work at.

However, due to the finite speed of microcontrollers producing the PWM control signal, it

52

is not always possible to achieve this criteria. A frequency of 10 KHz should be perfectly

adequate. The HCTL-1100 motion control processors are able to achieve this.

3.8.2 HCTL-1100 Motion Control IC

The HCTL-1100 is an extremely powerful and flexible motion control IC, which has been

designed specifically for performing all the time-intensive functions of digital motion

control. The device is capable of accepting high level commands from a host processor and

carrying out all the low level functions needed to execute them. The advantage of using

such a device is that it greatly frees up valuable processing power on the host processor.

The HCTL-1100 is capable of carrying out a variety of different commands. These include

the ability to be able to place the robot at any desired position, being able to move the robot

at any desired speed and carrying out a trapezoidal profile move while specifying a speed

and acceleration.

In use, the HCTL-1100 receives input commands from a host processor and position

feedback from an incremental shaft encoder attached to the robot's wheel. An 8-bit bi-

directional multiplexed address/data bus is used to interface the HCTL-1100 with the host

processor. The device contains two input pins for position feedback from the incremental

shaft encoder. A shaft encoder with two output signals 90° out of phase with each other is

required. The HCTL-1100 also contains various logic lines to allow it to interface with the

host processor. There is also an external clock input which can accept input frequencies

between 100 KHz and 2 MHz. The output from the device is a pulse width modulated

signal whose duty cycle is proportional to the magnitude of the motor command. There is

also one other output signal that specifies the sign/direction of the pulse signal. Figure 24

below shows a block diagram of a control system built using the HCTL-1100.

53

Host Microprocessor

HCTL-1100
Motion Control IC

Current
Amplifier Motor

Encoder

Figure 24 Control System

3.8.3 Incremental Shaft Encoder

To measure movement of the robot's wheel, an incremental shaft encoder is used. An

incremental shaft encoder consists of an opaque disc containing a number of transparent

slits. On one side of the disc is an infrared LED, on the other side is a infrared

phototransistor. The light from the LED passes through the slit and into the phototransistor

on the other side. The disc is attached to a shaft on the wheel. As the wheel rotates, the light

passing through the slit will be periodically cut off. As each slit passes through the

LED/phototransistor pair, an output pulse will be produced. By counting these pulses and

knowing the dimensions of the disc and the robot's wheel, distances can be measured. By

using only one LED/phototransistor pair, it is not possible to determine whether the

direction of rotation is clockwise or counterclockwise. In order to make this distinction, it is

necessary to have two LED/phototransistor pairs. The second pair is located so as to

produce an output pulse which is 90° out of phase with the first. A phase detector can then

be used to detect the leading versus lagging relationship of the two pulses and determine

the direction of rotation. By using two LED/phototransistor pairs, the output can be

decoded into quadrature counts. The number of pulses for each wheel revolution will then

be four times the number of slits in the disk. This is shown in the figure below.

54

1 2 3 4 1 2 3 4 States

One
Encoder

Line

Channel A

Channel B

Figure 25 Quadrature Encoder Output Signals

The type of shaft encoder used on the robot is a Hewlett Packard HEDS-5600 two channel

optical incremental shaft encoder. A block diagram of this is shown in figure 26. This is a

commercially available encoder that contains the wheel and electronic circuitry in the one

package. The wheel contains 500 slits. Since the output is decoded into quadrature counts, a

total of 2000 pulses can be obtained for each wheel revolution. One pulse corresponds to a

travel distance of 0.035mm. Although, in theory, this kind of control resolution allows

very accurate distance changes to be measured, this is generally not the case in practice.

This is due to mechanical inaccuracies such as friction, backlash and slippage which reduce

the effective control resolution.

The HEDS-5600 contains two output pins. These are the outputs from each of the

LED/phototransistor pairs. Each output is known as a channel. It is up to the HCTL-1100 to

determine the phase relationship of the two channels to determine the direction of rotation

and also to count the pulses for measuring movement of the robot's wheel.

55

Figure 26 HEDS-5600 Shaft Encoder

3.8.4 Interfacing The HCTL-1100 With The Main Central Controller

The HCTL-1100 contains an 8-bit bi-directional multiplexed address/data bus. The lower 6

bits of this bus are multiplexed between address and data. The upper 2 bits are used for data

only. There is also one control bus containing 4 pins that controls the I/O operation of the

device. These pins include a read/write line, an address latch enable line, a chip select line

and an output enable line. It is not possible to directly interface the HCTL-1100 with the

main central controller's I/O expansion bus. This is due to a number of reasons. Instead, an

8255 programmable peripheral interface chip is used. This is a general purpose I/O

component for interfacing peripheral equipment with a microprocessor bus. The 8255

contains three 8-bit ports which can act as either inputs or outputs. Two HCTL-1100

controllers are used on the locomotion board, one for each motor. Each address/data bus is

connected to a separate port on the 8255. Since the control bus on the HCTL-1100 only

contains 4 pins, both of them can be connected to the same 8-bit port on the 8255. One

occupies the upper half, the other the lower half.

56

3.8.5 Address Decoding

Various chips on the locomotion board are mapped into the main central controller's I/O

memory address space. By doing this, the devices can be accessed by reading or writing a

value to or from a specific memory location. This requires the use of an address decoder.

This is a device that is used to select a particular chip whenever a specific memory location

is accessed. A 74HCT138 3 to 8 line decoder is used for the address decoding (see figure

27). This device contains 3 binary select inputs (A0, A1 and A2). These inputs determine

which one of the normally high outputs will go low. The chip also contains two active low

and one active high enable pins.

Figure 27 Address Decoding Circuitry

The input/output map for the PC consists of only 1024 addresses, as only the bottom ten

address lines are used for input/output mapping. The lower half of the map is reserved for

system hardware while the upper half is reserved for the expansion bus. Standard circuits

such as serial and parallel ports do not count as system hardware since they fit onto the

expansion bus. This means that the 512 addresses for the expansion bus are fairly crowded

with few gaps. There is an area, however, starting from address 300H and ending at 31FH

which is reserved for prototype cards. This area may be used for mapping external

peripherals into the input/output map.

57

To keep the address decoding as simple as possible, this memory area is split into 4

segments. Each segment is 8 bytes in size. Address lines A3 to A9 and the AEN signal are

used for the address decoding. Along with the 74HCT138, 2 OR gates are also used. AEN

(address latch enable) is a signal which goes low during processor bus cycles. It is needed

to distinguish between normal bus cycles and DMA (direct memory access) cycles. This

must be decoded to the low state by the address decoder. Depending on which address or

segment is written to, one of the 74HCT138's output pins goes low producing a chip select

signal for the device it is connected to. A single device is mapped into each 8-byte segment.

Some devices only require four or less memory locations in which to operate. Using 8 bytes

for each device may seem wasteful. However, since extra memory space is not required, it

is easier to implement the system in this manner.

3.8.6 Using The 8255

The 8255 must be programmed before it can be used. This will determine the manner in

which it operates. The three ports (A, B and C) can be configured in a wide variety of ways.

The way in which they are configured is determined by software running on the main

central controller. There are three modes of operation for the 8255. These include basic

input/output, strobed input/output and bi-directional bus. Only the first mode (basic

input/output) is used by the robot. In this mode, each of the ports can act either as an input

or an output. No handshaking is required, data is simply written to or read from a specified

port. Two of the ports (A and B) act as 8-bit ports while port C can act either as one 8-bit

port or two 4-bit ports. The outputs to the ports are latched. Therefore, any value written to

the port will remain there until it is changed. The way the ports can be configured is very

flexible allowing a total of 16 different input/output configurations.

The 8255 contains an 8-bit data bus and a 2-bit address bus. The data bus is connected to

the main central controller's data bus. The control signals for the 8255 consist of a READ

signal, a WRITE signal and a CHIP SELECT signal. The read and write signals are

connected to the main central controller's IOR and IOW pins. The CHIP SELECT signal

comes from the 74HCT138 3 to 8 line address decoder chip. The 8255 is mapped into the

58

main central controller's memory I/O address space at address 6000H. The 8255 contains

two address pins (A0 and A1). These are connected to the central controller's A0 and A1

pins. The 8255 only occupies four addresses in memory. These include one address for

each port and one for the control word. Thus, the device occupies memory locations from

300H to 303H. Once the chip has been properly configured, a port can be written to by

simply writing to its specified address in memory. The table below shows the ports and the

control word and their corresponding memory address locations.

300H Port A

301H Port B

302H Port C

303H Control Word

The 8255 has to be configured before it can be used. Configuring it sets up each of the ports

as either an input or an output. It also specifies the mode that should be used for each port.

To configure the device, a value specifying these various parameters is written to the

control register. A block diagram of the control register is shown in figure 28.

59

Figure 28 8255 Control Register

3.8.7 L293D Driver Chip

The PWM signal generated by the HCTL-1100 cannot be connected directly to the motors.

There are a number of reasons for this. Firstly, the HCTL-1100 doesn't have the required

current capability to drive them. Also, it can only give a maximum of 5V out. The motors

require 12V to operate. Secondly, motors are inductive devices which could damage the

HCTL-1100, although protection diodes could be used to overcome this problem. By using

the L293D driver chip, all of these problems can be overcome. The L293D is a quad push-

60

pull driver capable of delivering currents up to 600 mA per channel. The advantage of the

L293D over the L293 is that the L293D has output clamping diodes built in. This saves the

addition of having to add them onto the circuit board.

The L293D contains four channels or drivers, each of which is controlled by a TTL

compatible logic input. There is also an inhibit input for each pair of drivers along with a

separate power supply for both the onboard logic and the motors. The maximum motor

voltage is 36V which is far more than adequate. All of this is combined into a small 16-pin

device. It is recommended that a heat sink be added to the chip to dissipate excessive heat

being produced. It was found, however, that little heat was being produced for the motors

used, and so it was decided to leave the heat sink off. The L293D can be used in a number

of different ways. The way it is used here is to have each terminal of the motors connected

to a separate output channel each. The motors can then be controlled by varying the TTL

inputs for each channel. This can be summarized using the following table.

Inputs Function

C = High and D = Low Turn Right

VINH = H C = Low and D = High Turn Left

C = D Fast Motor Stop

VINH C = X and D = X Free Running Motor Stop

 Note: X = Don't Care

 C = Input 2 (Pin 7)

 D = Input 1 (Pin 2)

Figure 29 below shows a typical connection for a single motor connected to the L293D.

61

Figure 29 Connecting a single motor to the L293D

 The L293D allows the motors to run from a separate power supply. This is an important

feature, since the majority of motors require more than 5V in order to produce maximum

power and speed. The robot uses two 12V DC motors. The voltage to operate them comes

directly from the battery or power supply and is connected to the L293D.

3.8.8 Output From The HCTL-1100

The HCTL-1100 produces two output signals. One is a pulse width modulated signal whose

duty cycle is proportional to the magnitude of the motor command. The other is a signal

that specifies the sign/direction of the pulse signal. Together, these two signals specify the

speed and direction of rotation for the motor. To interface these signals with the L293D,

some extra logic circuitry is required. This consists of two AND gates and an inverter. This

circuitry converts the PWM signal and the sign signal into the required input format for the

L293D. Figure 30 shows this is implemented. The L293D has two TTL inputs to control

each motor. If both of these inputs are the same, the motor will come to a fast stop. If the

inputs are different, the motor will turn either left or right.

62

Figure 30 L293D Interface Circuitry

The truth table below shows the operation of the circuit.

PWM SIGN IN1 IN2
0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

It can be seen from the table that whenever the PWM signal is 0, both inputs to the L293D

are also 0. The polarity of the sign signal has no effect. In this state, the motor is not been

driven and will come to a fast stop. Whenever, the PWM signal is 1, the inputs to the

L293D will have opposite values. This will drive the motor either left or right. The

direction is determined by the polarity of the sign signal.

3.8.9 Writing To And Reading From The HCTL-1100

There are 3 different timing configurations that can be used to interface the HCTL-1100

with a host processor. The mode that is used here is the non-overlapped mode. This was

chosen because it is the easiest to implement.

To write a value to the HCTL-1100, the following procedure is used. First the address of

the register that is to be written to is placed on the HCTL-1100's address bus. ALE is then

brought low. After a small time delay, ALE is brought high again, followed by CS low and

63

R/W low. The value to be written to the register is then placed on the HCTL-1100's data

bus. Following this, CS and R/W are brought high again.

To read a value from the HCTL-1100, the following procedure is used. First the address of

the register that is to be read is placed on the HCTL-1100's address bus. ALE is then

brought low. After a small time delay, ALE is brought high again, followed by CS low. CS

is then brought high and OE brought low. The value contained in the register is then placed

on the data bus by the HCTL-1100. This can then be read by the host processor.

The address/data and control buses on the HCTL-1100 are connected to the 8255 IC.

Therefore, in order to write a value to the HCTL-1100, the value has to be written to the

8255. Similarly, to read a value from the HCTL-1100, the value has to be read from the

8255.

The following is a piece of C code to write a value to some specified register in the HCTL-

1100:

void Write_To_Register(unsigned int motor, unsigned char reg_address,

unsigned char value)

{

 unsigned int wait;

 outportb(ppi_control, 0x80);

 if (motor == LEFT)

 {

outportb(ppi_portc, reg_address);

outportb(ppi_porta, 0xFD); // ALE low

for (wait = 0; wait < con; wait++) ;

outportb(ppi_porta, 0xFA); // ALE high, CS low, R/W low

outportb(ppi_portc, value);

outportb(ppi_porta, 0xFE); // CS high

outportb(ppi_porta, 0xFF); // R/W high

 }

64

 else if (motor == RIGHT)

 {

outportb(ppi_portb, reg_address);

outportb(ppi_porta, 0xDF); // ALE low

for (wait = 0; wait < con; wait++) ;

outportb(ppi_porta, 0xAF); // ALE high, CS low, R/W low

outportb(ppi_portb, value);

outportb(ppi_porta, 0xEF); // CS high

outportb(ppi_porta, 0xFF); // R/W high

 }

}

The following code reads in a value from some specified register in the HCTL-1100:

unsigned char Read_Register(unsigned int motor, unsigned char reg_address)

{

 unsigned char reg_value;

 unsigned int wait;

 outportb(ppi_control, 0x80);

 if (motor == LEFT)

 {

outportb(ppi_portc, reg_address);

outportb(ppi_porta, 0xFD); // ALE low

for (wait = 0; wait < con; wait++) ;

outportb(ppi_porta, 0xFB); // ALE high, CS low

outportb(ppi_porta, 0xFF); // CS high

outportb(ppi_porta, 0xF7); // OE low

outportb(ppi_control, 0x89);

reg_value = inportb(ppi_portc);

65

outportb(ppi_porta, 0xFF); // OE high

 }

 else if (motor == RIGHT)

 {

outportb(ppi_portb, reg_address);

outportb(ppi_porta, 0xDF); // ALE low

for (wait = 0; wait < con; wait++) ;

outportb(ppi_porta, 0xBF); // ALE high, CS low

outportb(ppi_porta, 0xFF); // CS high

outportb(ppi_porta, 0x7F); // OE low

outportb(ppi_control, 0x82);

reg_value = inportb(ppi_portb);

outportb(ppi_porta, 0xFF); // OE high

 }

 return reg_value;

}

3.8.10 Using The HCTL-1100

In use, the HCTL-1100 receives input commands from the main central controller and

position feedback from the incremental shaft encoder attached to the robot's wheel.

Internally, the HCTL-1100 is controlled by a bank of 64 8-bit registers, 35 of which are

user accessible. These registers contain command and configuration information necessary

to properly run the device. A brief description of the most important registers that are used

is shown below.

Flag Register: This register consists of a group of flags F0 through F5. Each flag can be

individually set or cleared. The flags are used to specify which control mode is to be used

and also to specify various other parameters.

66

Program Counter Register: By writing a value to this register, various functions are

executed. These include performing a software reset and executing one of the pre-

programmed control modes.

Status Register: This register is used to indicate the status of the HCTL-1100. The lower 4

bits of the register can be written to in order to configure various parts of the HCTL-1100.

PWM Motor Command Register: The 2's-complement value of this register represents the

duty cycle and polarity of the PWM command. The PWM signal at the pulse pin has a

frequency equal to the external clock divided by 100. The duty cycle is resolved into the

100 clocks. For the 1 MHz clock used on the board, this means that the PWM frequency is

equal to 10 KHz.

Actual Position Register: During control moves, the HCTL-1100 keeps track of the position

of the motor. This position is stored as a 24-bit number and is located across 3 8-bit

registers. By reading this register, the current position of the robot can be obtained. It can

also be set to zero or some other value before a new command is issued.

Sample Timer Register: The HCTL-1100 is a digitally sampled data system. While

information from the host processor is accepted asynchronously with respect to the control

functions, the motor command is computed on a discrete sample time basis. The sample

timer is programmable by writing a value to the sample timer register. The sampling period

is equal to the following:









+=

clockexternaltheoffrequency
Tt

1
)1(16

Where T = contents of the sample time register.

With a 1 MHz clock, the sample time for the HCTL-1100 can vary from 128 µS to 4096

µS.

67

The HCTL-1100 has 4 control modes which are available to the user. These include

position control, proportional velocity control, trapezoidal profile control and integral

velocity control. The following section describes the function of each control mode and

how it is programmed by the user. When the HCTL-1100 is reset, it enters into an

initialization/idle mode. In this mode, no commands are being executed by the HCTL-1100

and it is simply waiting for input from the user.

In order to specify which control mode is to be executed, flags F0, F3 or F5 in the flag

register must be set. Each flag represents a different control mode. Only one flag can be set

at a time. If no flags are set, then the position control mode will be executed. After one of

these flags is set, the control mode is entered from the initialization/idle mode by writing a

value of 03H to the program counter register.

68

3.8.10.1 Position Control Mode

To enter this mode, flags F0, F3 and F5 in the flags register must be cleared and a value of

03H written to the program counter register. This mode is used to perform point to point

moves with no velocity profiling. The user specifies a 24-bit position command which the

controller compares to the 24-bit actual position. After calculating the position error, a

motor command is output. The controller will remain locked at a destination until a new

command is issued. The actual and command position data is stored as 24-bit 2's-

complement data. Position is measured in encoder quadrature counts. For the encoders used

on the robot, this means a total of 2000 counts per wheel revolution. This allows very fine

position moves to be executed. The following shows an example on how to use this mode:

Example Code to Program Position Moves

{ Begin }

Hard Reset { HCTL-1100 goes into INIT/IDLE mode }

Initialize Filter, Timer, Command Position Registers

Write 03H to Program Counter Register

{ HCTL-1100 is now in Position Mode }

Write Desired Command Position to Command Position Registers

{ Controller moves to new position }

Continue writing in new Command Positions

{ End }

3.8.10.2 Integral Velocity Mode

To enter this mode, flags F0 and F3 in the flags register must be cleared and flag F5 set to

begin the move. Also, a value of 03H must be written to the program counter register. This

mode is used to perform continuous velocity profiling. The user specifies a velocity and

acceleration and the HCTL-1100 will accelerate up to the desired velocity and maintain it

until such time that a new command is issued. Figure 31 shows the capability of the control

algorithm. The velocity specified by the user is an 8-bit 2's-complement value. Its units are

69

quandrature counts/sample time. To convert from rpm to quandrature counts/sample time,

the following equation can be used:

sec)/01667.0)()()((−= rpmtNVrVq

Where: Vq = velocity in quadrature counts/sample time

Vr = velocity in rpm

N = 4 times the number of slots in the codewheel (i.e. quanrature counts)

t = sample time in seconds

The acceleration specified by the user is a 16-bit value. Its units are quadrature

counts/sample time squared. To convert from rpm/sec to quadrature counts/sample time

squared, the following equation can be used:

sec)/01667.0)()()((2 −= rpmtNArAq

Where: Aq = acceleration in quadrature counts/sample time squared

Ar = acceleration in rpm/sec

N = 4 times the number of slots in the codewheel (i.e. quanrature counts)

t = sample time in seconds

Figure 31 Integral Velocity Mode

70

The following shows an example on how to use this mode:

Example Code for Programming Integral Velocity Mode

{ Begin }

Hard Reset { HCTL-1100 goes into INIT/IDLE mode }

Initialize Filter, Timer, Command Position Registers

Write 03H to Program Counter Register

{ HCTL-1100 is now in Position Mode }

Write Desired Acceleration (if needed)

Write Desired Maximum Velocity (if needed)

Set Flag F5 in the Flags Register { Integral Velocity Move Begins }

{ System Ramps to Maximum Velocity}

Continue writing in new Accelerations and Velocities

{ End }

3.8.10.3 Trapezoidal Profile Mode

To enter this mode, flags F3 and F5 in the flags register must be cleared and flag F0 set to

begin the move. Also, a value of 03H must be written to the program counter register. This

mode is used to perform point-to-point position moves while profiling the velocity

trajectory to a trapezoid or triangle. The user specifies the desired final position,

acceleration and maximum velocity and the controller will produce the necessary profile to

carry out the task. If maximum velocity is reached before arriving at the halfway point, the

profile generated will be trapezoidal, otherwise it will be triangular. Figure 32 shows the

possible trajectories when using this mode. The final position is specified by the user as a

24-bit 2's-complement value. The acceleration is specified as a 16-bit value with units of

quadrature counts/per sample time squared. The maximum velocity is a 7-bit scalar value

and has the units of quadrature counts/sample time.

71

Figure 32 Trapezoidal Profile Mode

3.9 Light Detection Circuitry

A light seeking ability has been implemented on the robot. This allows the robot to seek or

follow a light source. To achieve this, the robot uses two light dependant resistors (LDRs).

These are devices whose resistance varies with the amount of light falling on them. In

complete darkness, the resistance of an LDR is in the order of a few megohms. In bright

light, the resistance falls dramatically to a few kilohms. By measuring this resistance, the

intensity of the light can be determined. To measure the resistance, the LDR is connected in

series with another resistor forming a voltage divider. As the resistance of the LDR

changes, a voltage will be dropped across it.

This voltage is read by an analogue to digital converter (ADC). This is a device that

converts an analogue input voltage into a digital value. This can then be read by a

microprocessor connected to the ADC. There are numerous different types of ADCs

available. The type that has been opted for here is a National Semiconductor ADC0808.

This was chosen because it allows more than one input voltage to be measured.

72

3.9.1 ADC0808

The ADC0808 is an 8 input 8-bit ADC capable of measuring input voltages between 0 and

5V with an 8-bit resolution. This allows 256 different values to be measured. Onboard is an

8-channel multiplexer which selects one of 8 possible analogue input voltages. A 3-bit

address port is used to select which input to use. There are two voltage reference inputs on

the chip. One is connected to 0V and the other to 5V. This allows voltages between 0 and

5V to be measured. The control signals for the ADC0808 consist of a START signal, an

ALE (Address Latch Enable) signal, an OE (Output Enable) signal and an EOC (End Of

Conversion) signal. Since the ADC0808 is a digitally sampled system, it required a clock to

operate. This can have a value between 10 KHz and 1.28 MHz. A 1 MHz clock is used here

which comes from the same oscillator used for the HCTL-1100. The ADC0808 is

interfaced directly with the main central controller using some additional logic circuitry.

This consists of two NOR gates. These get their inputs from the main central controller's

IOR and IOW lines and an external chip select signal. The chip select signal comes from

the 74HCT138 address decoder. Figure 33 shows how the system is implemented. The

device is mapped into the main central controller's memory I/O address space at address

310H. The 3 address lines on the ADC are connected to the main central controller's A0,

A1 and A2 address lines. The ADC therefore occupies memory address locations from

310H to 317H. The table below shows each of the analogue inputs and their corresponding

memory address locations.

310H VIN1

311H VIN2

312H VIN3

313H VIN4

314H VIN5

315H VIN6

316H VIN7

317H VIN8

73

Figure 33 ADC Interface Circuitry

3.9.2 Using the ADC0808

To use the ADC, the address of the analogue input to be measured must first be written to

the address port on the chip. Both START and ALE are then triggered. ALE is used to latch

the 3 address inputs into internal registers. START is used to initiate a new conversion

cycle. Using a 1 MHz clock, the conversion takes approximately 64 uS. After a new

conversion begins, the EOC pin goes low to indicate a new conversion cycle is in progress.

When the conversion is complete, EOC goes high again. This pin could be used to trigger

an interrupt on a microprocessor to let it know when a new conversion is complete. To read

in the digital value of the measured voltage, the OE pin is brought high. This places the

digital value onto the output port of the ADC. This can then be read by the microprocessor.

74

As an example, to measure the voltage at input 1 of the ADC, some dummy value would be

written to address 6000H. Since the address is used to generate a chip select and for

specifying which input to use on the ADC, the value written is irrelevant. By writing to this

address, input 1 on the ADC is selected and the ALE and START pins are triggered. This

would latch the address and cause a new conversion cycle to begin. Instead of monitoring

the EOC pin to determine when the conversion is complete, a small time delay is

introduced. This is a simpler solution and requires less hardware. After a 1 mS time delay,

the main central controller reads in a value from address 6000H. This causes the OE pin on

the ADC to be triggered causing it to place the digital value onto its output port. This is

then read in by the main central controller.

The two reference inputs on the ADC0808 are connected to 0V and 5V respectively. This

allows the device to measure input voltages between 0 and 5V. With an 8-bit ADC, 256

different voltages can be measured. This means that each bit represents a voltage of 19.53

mV. If the main central controller reads in a value of 178, this would represent a voltage of

3.47V.

3.10 Software Development

The main central controller used on the robot is an embedded 586 CPU module. The

advantage of using such a device is that all software development can be carried out using

traditional PC based programming languages such as Borland C++. Software for the robot

is first developed on a desktop PC. Once this is compiled, it is downloaded to the controller

over a serial communications link and stored on the solid state hard disk. From here, it can

be executed like any normal program.

The control architecture used on the robot is a modified form subsumption. This is a

behaviour-based architecture which tightly couples sensor input to actuator output in a

reactive way. A number of behaviours, each of which performs a specific task, all run

concurrently. In order to implement this in software, there is a need to have a multitasking

ability built in. This allows each of the tasks to run separately. Unfortunately, most

microprocessors are sequential machines and do not possess this ability. To overcome it, a

75

piece of code which simulates this multi-tasking ability can be used instead. There are a

number of third-party products which allow standard C programs to implement

multitasking. The one which has been opted for here is the MicroC/OS-II real time kernal.

To use this kernal, the program is divided into a number of separate logical sections called

tasks. These represent both the robot's behaviours and other functions the software has to

perform, such as gathering sonar data from the serial port. Each task appears to run

simultaneously through the use of preemptive multitasking. The system is driven by a

system timer tick that is generated by an interrupt from the central controller's 8254

counter/timer chip. This allocates a certain amount of time for each task to go about its

work.

3.11 Summary

This chapter has described both the physical and hardware design of the robot. The

electronic control hardware has been designed in the form of a distributed control

architecture, in which a number of separate modules are used to perform complex tasks.

There are three distinct modules in the system. These consist of a locomotion board, a sonar

sensor board and a central controller. Further modules will be added as required by extra

sensory capabilities and implemented behaviours to improve the competence of the robot.

The advantage of distributing the workload to different modules is that it frees the main

controller from performing repetitive albeit complex time-consuming tasks such as the

servo control of individual drives. To allow the robot to operate in tight locations, a

cylindrical design using a differential drive system was opted for. The differential drive

system will allow the robot to turn on the spot, preventing it from getting caught in tight

corners.

76

4. CONTROL ARCHITECTURE

This chapter describes the control architecture used on the robot. In addition a set of

behaviours which have been successfully implemented are described in detail. These

behaviours allow the robot to explore its environment and generate a map. This map can

later be used to travel to specific locations specified by a user. A complete review of

topological maps is given to support the mapping technique used.

4.1 Overview

The two mobile robot control architectures that have dominated the robotics scene are the

hierarchical architecture and the behaviour-based architecture. The major advantage of

behaviour based architectures is that they can respond very rapidly to environmental

changes. This makes them very robust in unstructured and dynamic environments. They are

also very flexible and require less demanding computational requirements than their

equivalent hierarchical architecture. It is for these reasons that a behaviour-based

architecture has been adopted here. One of the problems with behaviour-based systems,

however, is that they can suffer from system modularity, state representation and the

integration of world models. Due to the highly distributed nature of these systems,

representation and sharing of system states and knowledge between the behaviours is

inconvenient. To overcome these shortcomings with the behaviour-based architecture, a

new type of architecture is introduced. This is known as a behaviour-based blackboard

architecture. This introduces the concept of a blackboard, which acts as a central data

repository where behaviours can deposit and extract information to help them go about

their tasks.

4.2 Behaviour-Based Blackboard Architecture

The control architecture implemented on the robot is based on the standard subsumption

architecture. This allows the robot to respond very rapidly to environmental changes.

77

Sensor input is tightly coupled with actuator output in a reactive way allowing the robot to

respond directly to environmental cues. To allow interaction and communication between

the behaviours to occur, a central data repository known as a blackboard is used.

Behaviours are allowed to store and retrieve information from the blackboard to help them

execute their tasks. The introduction of the blackboard in this architecture helps alleviate

one of the shortcomings of standard behaviour based systems - the sharing of knowledge

and system states. In subsumption, the interdependence of behaviours can lead to systems

with little flexibility and modularity. The behaviours often need to be able to access and

examine the internal state of other behaviours. Adding new behaviours may lead to change

of some existing ones. By incorporating a blackboard into the system, new behaviours can

easily be integrated without having to adapt the other behaviours.

4.3 Implementation of Simple Low-Level Behaviours

Having built the robot and developed the architectural framework for implementing the

robot's control system, a basic set of reflexive behaviours were designed. These initial

behaviours were extremely simple and their sole purpose was to demonstrate that the robot

could operate reactively based on sensor stimuli. These three behaviours consisted of a

cruise behaviour, an obstacle avoidance behaviour and a light following behaviour. In

designing a behaviour-based control system, low level behaviours are added first with

successive behaviours being added incrementally to enhance the functionality of the robot.

Obstacle avoidance is generally the most important ability a robot must have, so this

behaviour is added first. This behaviour is the lowest level behaviour since it is essential

that the robot avoids obstacles at all costs irrespective of what other tasks it may be

performing. In implementing these behaviours, the concept of the blackboard is not

introduced. The behaviours are relatively simple and do not require any sharing of

knowledge between them. The following sections describe each of these three behaviours

in turn and how they interact with each other through the robot's environment.

78

4.3.1 Obstacle Avoidance Behaviour

To operate successfully in our everyday environments, mobile robots must be capable of

dealing with all the uncertainty and variation that exists. To equip them with this capability,

they must be provided with a means to detect and avoid obstacles. This is a very important

feature of any mobile robot. Colliding with an obstacle could damage or hinder the

operation of the robot. It is therefore imperative that it is provided with the best means to

prevent a collision from occurring. To endow the robot with this capability, an obstacle

avoidance behaviour has been implemented. This behaviour gets its input from a ring of

sonar sensors located around the top of the robot. The output from the behaviour is a set of

commands for the motors that specify their speed and direction of rotation (see figure 34).

Obstacle AvoidanceSonar Sensors Motors

Figure 34 Obstacle Avoidance Behaviour

Each of the sonar sensors return the distance to the object directly in front of them. The

behaviour works by assigning weights to each of the sensors and also a condition value (see

figure 35). The weights specify the change in speed that should occur in the robot's motors

if the sensor detects an obstacle located closer than the condition value. For example, if the

sensor facing 45° detects an obstacle located less than 18 inches away, a weight of -3 will

be assigned to the left motor and a weight of 2 to the right motor. These values will then be

added to the current speed of each motor. This procedure is repeated for each of the sensors

in turn resulting in a final speed value for both motors. The weights that have been assigned

to each motor have been chosen both experimentally through trial and error and through

common sense by determining the relative threat an object poses to the robot. This can be

seen in the case of the forward looking sonar sensor. A weight of -9 is assigned to the right

motor and a weight of 0 to the left motor. If this sensor detects an obstacle located closer

than 20 inches away, the speed of the right motor will be drastically reduced, turning the

robot quickly away from the obstacle.. This is important since an obstacle in front of the

robot poses more of a threat than any other.

79

The following equations are used to calculate the change in speed for each motor.

Change in Left Motor Speed = ∑
=

5

1

)(__
s

sWeightMotorLeft

Change in Right Motor Speed = ∑
=

5

1

)(__
s

sWeightMotorRight

L=0
R=-9
C=20

L=-9
R=0
C=20

L=2
R=-3
C=18

L=1
R=-2
C=15

L=-3
R=2
C=18

L=-2
R=1
C=15

Robot

Figure 35 Motor Weights and Condition Values

4.3.2 Cruise Behaviour

This is an extremely simple behaviour whose sole purpose is to move the robot straight

ahead. Since the behaviour does not react to any kind of sensor stimuli, there are no inputs

to the behaviour. The output is a set of commands for the motors that specify the speed at

which to travel (see figure 36). It may seem more logical to endow this behaviour with the

ability to steer in a random direction. This is not necessary, however, since in conjunction

with the obstacle avoidance behaviour, the robot will naturally turn in the presence of

80

obstacles. Together, the obstacle avoidance behaviour and the cruise behaviour equip the

robot with a very basic ability - to wander around without colliding with objects.

Cruise Motors

Figure 36 Cruise Behaviour

4.3.3 Light Following Behaviour

This behaviour allows the robot to seek or follow a light source. To achieve this, the robot

uses two light dependant resistors (LDRs). These are located on top of the robot pointing

forwards. They can determine the direction of a light source relative to the direction in

which the robot is facing. By using some simple signal conditioning circuitry, voltages are

produced proportional to the intensity of light falling on the LDRs. These voltages are

measured using an ADC (analogue to digital converter). The difference between the two

voltages is measured and if this is above some preset threshold value, the robot will steer in

the direction of the brightest LDR. The input to this behaviour is the voltage from each

LDR. The output is a set of commands for the motors that specify their speed and direction

of rotation (see figure 37).

Light FollowingLDRs Motors

Figure 37 Light Following Behaviour

The two reference inputs used on the ADC are connected to 0V and 5V respectively. This

allows the device to measure input voltages between 0 and 5V. With an 8-bit ADC, 256

different voltages can be measured. This means that each bit represents a voltage of 19.53

mV. If the main central controller reads in a value of 178, for example, this would represent

81

a voltage of 3.47V. The preset threshold value chosen is 35. This represents a voltage

difference of 683mV (19.53mV * 35). If the difference in the intensity of the light between

the two LDRs is greater than this value, the behaviour will attempt to move the robot in the

direction of the brighter LDR. The threshold value chosen depends on the type of LDR

used. Different LDRs react different to the same amount of light. A certain amount of

experimentation is required to come up with a suitable value.

4.3.4 Arbitration Function

In behaviour based architectures, a number of behaviours run concurrently. Many of these

may try to drive the same actuator at the same time. This is clearly evident in the

behaviours shown here. The three behaviours obstacle avoidance, cruise and light

following can all send commands to the motors simultaneously. The problem with this is

that a conflict can occur. Unless this is taken care of, erratic behaviour may result. To

overcome it, an arbitration function has to be implemented. The arbitration function has to

select a single behavioural response from a multitude of possible ones. There are a number

of ways in which this can be done. In subsumption, a fixed priority arbitration scheme is

used. Each of the behaviours is layered according to their relative importance. Figure 38

shows the layering for the three behaviours described here. As can be seen, the obstacle

avoidance behaviour is able to subsume the output of both the light following behaviour

and the cruise behaviour. Similarly, the light following behaviour can subsume the output

of the cruise behaviour.

Wander

Light Following

Obstacle Avoidance

S

S Motors

Figure 38 Layering of Behaviours by Importance

82

The arbitration function selects a single behavioural response to send to the motors.

Operation of this function is quite simple. It continuously monitor the output from each of

the behaviours and using a fixed priority hierarchy, selects one single output to send to the

motors.

4.4 Implementation of Mapping and Navigation Behaviours

The implementation of the obstacle avoidance, cruise and light following behaviours

illustrated the robot's capability to react directly to sensor stimuli, and perform seemingly

intelligent tasks by interacting with each other through the robot's environment. Together,

these three behaviours helped develop the framework for implementing the robot's other

behaviours. The next set of behaviours to be developed endow the robot with the ability to

explore and map its environment. The robot can build up a topological map of the

environment which it can subsequently use to navigate to specific locations specified by the

user. The robot explores the environment by following walls or straight edges. To help it

detect landmarks for both building and using the map, a set of landmark detection

behaviours have been implemented. These can detect both concave and convex corners and

doors. Behaviours have also been developed which allow the robot to search for and lock

onto a wall and to perform localisation. The behaviours developed in this section all

interact and communicate with each other using the blackboard model described earlier.

This allows sharing of system state and knowledge between the behaviours. Figure 39

shows the blackboard and how each of the behaviours interacts with it. An arrow leading

from a behaviour to the blackboard indicates that the behaviour places information onto the

blackboard. Similarly, an arrow leading from the blackboard to a behaviour indicates that

the behaviour retrieves information from the blackboard. The following sections give an in-

depth discussion of each behaviour and how they interact through the blackboard.

83

B
la

ck
b

o
ar

d

Wall Following

Detect Concave
Corner

Detect Convex
Corner

Search for
Wall

Mapping

Navigation

Localisation

Figure 39 Behaviour-Based Blackboard Architecture

4.4.1 Edge Following Behaviour

The exploration and navigation strategy that the robot uses is based on following the edge

or outline of features in the environment. To equip the robot with the ability to do this, an

edge following behaviour has been implemented. This causes the robot to travel parallel to

an edge at a certain pre-set distance. It is very important that this behaviour be robust in

following the edge as accurately as possible, since this is important for the correct operation

of the landmark detection behaviours. The inputs to this behaviour are the range readings

from the sonar sensors located around the robot and a message from the blackboard telling

the behaviour whether it is following a left hand or a right hand edge. The output from the

behaviour is a set of commands for the motors that specify their speed and direction of

84

rotation (see figure 40). The message on the blackboard is originally generated by the

Search For Edge behaviour, once it has successfully found and locked onto an edge. This

behaviour will be explained later.

Edge FollowingSonar Sensors
Blackboard Message Motors

Figure 40 Edge Following Behaviour

For the purpose of this explanation, the procedure for following a left hand edge will be

given. To follow a right hand edge, an identical procedure is used, apart from the sonar

sensors employed. To follow the left hand edge, two sonar sensors are used - one facing

-90° and another facing -45° (see figure 41). The distance returned from the -90° sensor is

refererred to as the side distance and the distance returned from the -45° sensor is referred

to as the diagonal distance.

Robot-90°
Sensor

-45°
Sensor

Figure 41 Sonar Sensors used for Edge Following

A fairly simple procedure is used to follow an edge. The behaviour continuously monitors

the range readings from the two sonar sensor and turns the robot either towards or away

from the edge depending on the values read. The side distance indicates how close the

robot is to the edge whereas the diagonal distance indicates whether the robot is veering in

85

towards or away from the edge. The following strategy was eventually developed following

a lot of experimentation through trial and error.

• If the side distance is less than 12 inches, the robot is too close to the edge and should

veer away from it.

• If the side distance is greater than 11 inches and less than 17 inches, the robot is too far

from the edge and should veer towards it.

• If the side distance is greater than 11 inches and the diagonal distance is less than 18

inches, the robot is too far from the edge but is heading in a direction towards it. It

should therefore veer away somewhat to re-establish a correct parallel track.

• If the side distance is less than 12 inches and the diagonal distance is greater than 17

inches, the robot is close to the edge but is heading in a direction away from it. It should

therefore veer towards it somewhat to re-establish a correct parallel track.

For the above strategy to be effective, the robot must initially be parallel to an edge before

the procedure can begin. The edge following behaviour itself does not ensure that this

requirement is met. Instead, this is left to the Search For Edge behaviour. This behaviour

will lock onto and ensure that the robot is parallel to the edge. It will then place a message

on the blackboard indicating whether a lock onto a left hand or a right hand edge has been

established. For the Edge Following behaviour, the decision about whether to follow a left

or a right hand edge is determined by this message.

4.4.2 Concave Corner Behaviour

The most common features the robot encounters in its environment are straight edges and

concave and convex corners. The Edge Following behaviour endows the robot with the

ability to follow an edge at a certain predefined distance. It cannot, however, deal with a

corner if one is encountered. Instead, this ability is provided by the concave and convex

corner behaviours. The Concave Corner behaviour will turn the robot if a concave corner is

detected. The inputs to this behaviour are the range readings from the sonar sensors located

around the robot and a message from the blackboard informing the behaviour if the robot is

86

following a left hand or a right hand edge. The output from the behaviour is a set of

commands for the motors that specify their speed and direction of rotation and also a

message to be placed on the blackboard for the benefit of the Mapping and Navigation

behaviours (see figure 42).

Detect Concave
Corner

Sonar Sensors
Blackboard Message

Motors
Blackboard Message

Figure 42 Detect Concave Corner Behaviour

For the purpose of this explanation, it is assumed that the robot is initially following a left

hand edge when the corner is detected. A similar procedure is used for a right hand edge.

The only difference is the sonar sensors employed.

The behaviour detects a concave corner by monitoring one of the forward looking sonar

sensors. This sensor returns the distance to the object directly in front of the robot. If the

sensor returns a distance of less than 14 inches, this is an indication that a concave corner

has been found (see figure 43). If this occurs, the robot will immediately stop travelling

forward. It will then turn through an angle to be parallel with the following edge. The robot

turns by differentially driving each of the wheels at the same speed. This allows the robot to

turn on the spot resulting in a zero turning radius. To know when to stop turning, the

behaviour monitors the distances from the -90° sensor and the -45° sensor. By comparing

these two distances, it can be established if the robot is parallel to the edge. When the robot

is parallel to an edge, the difference in readings between the -90° sensor and the -45° sensor

is approximately three inches (see figure 44). While turning, it would seem appropriate to

stop when this value is read. However, in testing, it was found that this resulted in the robot

turning through too great an angle. Instead, the robot stops when a difference of one is

obtained. Before the robot commences a turn, it is already parallel to an edge. As a result,

unless a further condition is introduced, the robot would stop turning the immediate second

it starts. To overcome this, the distances from the forward looking sensors are also

monitored. In order to stop turning, these must return a distance greater than 18 inches.

87

Robot-90°
Sensor

-45°
Sensor

360°
Sensor

14 Inhces

Figure 43 Detecting a Concave Corner

-90°
Sensor

-45°
Sensor

Robot

12 Inches 15 Inches

Figure 44 Re-establishing a Parallel Pose to the Following Edge

88

Once a concave corner is detected, this behaviour will immediately place a message onto

the blackboard. This is for the benefit of both the Mapping and Navigation behaviours. The

Mapping behaviour will use it to build up a topological map of the environment. The

message signifies that a landmark has been detected so it can add a node to the map. This

will be explained in detail later on.

4.4.3 Convex Corner Behaviour

The Convex Corner behaviour will turn the robot if a convex corner is detected. The inputs

to this behaviour are the range readings from the sonar sensors located around the robot and

two messages from the blackboard. One of these messages is used to inform the behaviour

if the robot is currently following a left hand or a right hand edge. The other message is

used to indicate if the navigation behaviour is currently active. The output from the

behaviour is a set of commands for the motors that specify their speed and direction of

rotation and also a message to be placed on the blackboard for the benefit of the Mapping

and Navigation behaviours (see figure 45). In addition to detecting convex corners, this

behaviour can also detect doors.

Convex CornerSonar Sensors
Blackboard Message

Motors
Blackboard Message

Figure 45 Convex Corner Behaviour

For the purpose of this explanation, it is assumed that the robot is initially following a left

hand edge when the corner or door is detected. A similar procedure is used for a right hand

edge. The only difference is the sonar sensors employed.

To detect a convex corner or a door, the distance returned from the -90° sensor is

monitored. If this returns a distance greater than 20 inches away, this is an indication that a

either a convex corner or a door has been found (see figure 46). Which one it is cannot be

determined at this stage. Instead the robot must travel straight ahead for a certain

89

predefined distance. If the robot detects an edge at this point using the -90° sensor, then it is

assumed that a door was detected (see figure 47). If, on the other hand, no edge is detected,

a convex corner is assumed. In this case, the robot must reverse for a certain distance and

then turn. When the robot is turning at this stage, there are no reference cues to tell it when

to stop. Instead, it turns through a default angle of 90°. At this stage, the robot will be in a

similar position to that shown in figure 48. Having established this position, the robot will

then travel straight ahead until an edge is found. This occurs when the distance returned

from the -90° sensor is less than 20 inches.

Once a convex corner or door is detected, this behaviour will place a message onto the

blackboard. This is for the benefit of both the Mapping and Navigation behaviours. One of

the messages contained in the blackboard which is read by this behaviour is used to indicate

if the navigation behaviour is currently active. The purpose of this is simple. If the robot is

currently navigating and it knows that the next feature to be detected will be a convex

corner, then it can turn immediately at the corner instead of having to travel straight ahead

first.

-90°
Sensor

-45°
Sensor

Greater than
20 inches

Robot

Figure 46 Detecting a Convex Corner or Door

90

Door

-90°
Sensor

-45°
Sensor

Robot

Figure 47 Detecting a Door

Robot-90°
Sensor

-45°
Sensor

360°
Sensor

Figure 48 The Robot's Position After Turning at a Convex Corner

91

4.4.4 Search For Edge Behaviour

The purpose of this behaviour is to lock onto an edge and ensure that the robot is parallel to

it. This is important, since when the robot is initially switched on, it could be placed at any

random location in the environment. The ability of the Edge Following behaviour to be able

to accurately follow an edge is based on the assumption that it was initially parallel to an

edge in the first place. The Search For Edge behaviour ensures that this condition can be

met. The inputs to this behaviour are the range readings from the sonar sensors located

around the robot. The output is a set of commands for the motors that specify their speed

and direction of rotation and also a message to be placed on the blackboard (see figure 49).

Search For EdgeSonar Sensors
Motors

Blackboard Message

Figure 49 Search For Edge Behaviour

To search for an edge, the robot simply maintains forward motion until one of the sensors

returns a distance of less than 16 inches. When this occurs, the robot is in close proximity

to the edge but not parallel with it. At this stage, the robot's orientation to the edge must be

determined. This is necessary to establish whether the robot will lock onto it from its left

hand side or its right hand side. To ensure that the robot is parallel to the edge, a similar

procedure is used to the Concave Corner behaviour. Following this, a message is placed on

the blackboard indicating whether the robot is locked onto the edge from its left hand side

or its right hand side. This message will be read by the Edge Following and Convex and

Concave Corner behaviours.

4.4.5 Mapping Behaviour

If a mobile robot contains an internal model or map of its environment, it can perform

navigational tasks such as travelling to a particular location in the environment. Having this

ability is important for many types of robots. For example, office cleaning robots and

92

security robots both need a map to go about their tasks. To investigate mapping in the

context of a behaviour based architecture, the robot has been equipped with the ability to

build up a map of the environment and use it to travel to specific locations. Two behaviours

are used to implement these abilities - the Mapping behaviour and the Navigation

Behaviour. The Mapping behaviour constructs a map of the environment whereas the

Navigation behaviour uses it to travel to locations specified by a user. Before discussing the

details of the Mapping behaviour, an explanation of the type of map chosen will first be

presented. The robot's intended environment contains many distinctive landmarks which it

can easily recognize. As a result, it was decided that a metric topologic map would be used

to represent it.

A topological map consists of a number of distinct locations in the environment, such as

doors and corners, that the robot can recognize as it travels about. The robot builds up a

representation of the environment by storing these distinct locations as nodes in the map.

Associated with each node is a link which shows the relationship between different

landmarks or features. For example, from one landmark, there may be two paths leading to

other landmarks that the robot can travel to. The map can be considered as a graph with

nodes representing distinct locations and pathways between the locations represented as

arcs connecting the appropriate nodes. A link which establishes the connection between

two landmarks has to be identified by the robot. This is done by travelling the

corresponding route between the two landmarks. To make constructing the topological map

more straightforward, the links can be established at the same time as the landmarks are

identified. This is the approach used by the Mapping behaviour which will be described

shortly. With a topological map, there is no metric or geometric information stored. The

advantage of this is that accumulating odometry errors do not impede the accuracy of the

map. One of the problems, however, associated with this is perceptual aliasing. Distinct

locations within the environment may appear similar to the robot's sensors. This is

especially the case with doors and corners. How can the robot tell one from the other. To

overcome this limitation, the introduction of some metric information into the map is often

used. The length of paths between landmarks is often stored with each node. The addition

of this information can remove any ambiguity between similar landmarks helping the robot

to identifying where it is. This path length information is usually obtained from onboard

odometry. The problem with odometry, however, is that it is notoriously unreliable,

93

producing errors that gradually accumulate over time. With topological maps, the distance

between landmarks is usually small. Since the metric information stored only shows the

length of the path between landmarks, the errors that do result are usually perfectly

acceptable. It is important to realize that the errors that do accumulate for one path will not

be transferred to another. A topological map which uses some metric information is

referred to as a metric topological map. This is the type of map that has been utilized by the

robot.

Figure 50 shows an example of an environment where the robot may be expected to

operate. This environment consists of 6 distinct landmarks that the robot can recognize

(labelled 1 to 6) as it travels about. While exploring the environment, the robot builds up a

map in an incremental fashion. As each landmark is detected, the Mapping behaviour will

add a node to the map. For each node, the following information is stored.

• Type of Landmark

• Number of Next Node

• Distance to Next Node

• Number of Previous Node

• Distance to Previous Node

The following table shows an example of the nodes constructed for this environment. In

this example, it is assumed that the first landmark to be detected by the robot is the one

labelled 1 and that it is travelling in a clockwise direction.

1 2 3 4 5 6

Type of Landmark Concave Convex Concave Concave Concave Concave

Number of Next Node 2 3 4 5 6 1

Distance to Next Node 50 48 45 96 95 48

Number of Previous Node 6 1 2 3 4 5

Distance to Previous Node 48 50 48 45 96 95

94

1 2

3 4

56

50 Inches

95 Inches

45 Inches

48 Inches

48 Inches

96 Inches

Concave
Corner

Concave
Corner

Concave
Corner

Concave
Corner

Concave
Corner

Convex
Corner

Figure 50 Example Environment

How does the Mapping behaviour known when a landmark has been detected? There are

two ways in which this can be done. Firstly, it could continuously monitor the environment

itself using the robot's sensor to determine if certain environmental features are present.

The second method is to be informed by some other behaviour if a landmark has been

found. This second approach has been adopted here. The Mapping behaviour continuously

monitors the blackboard for certain messages. These messages are generated by the

landmark detection behaviours, namely the concave corner and convex corner behaviours,

whenever they detect a landmark. Once a landmark is detected, these behaviours will

immediately place the message onto the blackboard for the benefit of the Mapping

behaviour.

95

The message placed onto the blackboard indicates the specific type of landmark detected.

For example, the landmark may be a concave corner, a convex corner or a door. Having

received this message, the Mapping behaviour will place a node onto the map to represent

the landmark. The node contains a number of data fields which must be filled. Firstly, the

type of landmark that was detected must be stored. The next item to be stored is the number

of the previous node. This is obtained by checking the map to see the number of the last

landmark to be detected. The distance to the previous landmark must then be determined.

This is done by reading the robot's onboard odometry counter Each time the robot leaves a

landmark, it will set the odometry counter to zero. Therefore, whenever the robot arrives at

a new landmark, this counter will contain the distance to the previous landmark. A slight

problem occurs, however, if this system is used. The counter can only record the distance

from the point where the robot originated to the point where it stops. This distance will not

be the same as the length of the path between the landmarks. In other words, it may not be

the length of the straight edge or wall joining them. See figure 51 for an explanation of this.

Robot
Finish

Robot
Start

Recorded
Distance
(60 inches)

Actual
Distance
(96 inches)

18 inches

18 inches

Figure 51 Calculating the Distance Between Landmarks

96

To overcome this problem, an extra distance must to be added to each reading. From the

diagram, it can be seen that a value of 18 inches will have to be added twice. This value

represents the distance from each landmark to the centre of the robot. When the robot

arrives at a landmark, it will add the range reading from the forward looking sonar sensor to

the odometry counter. It will also add a value of 6 inches representing the radius of the

robot. Depending on the reading returned by the sensor, a value of 18 inches may not

always be obtained. This can vary slightly. Each time the robot leaves a concave corner, it

will store the distance from the rear facing sonar sensor to the edge or wall behind the

robot. This distance is calculated by the Concave Corner behaviour and stored in the

blackboard until such time that the Mapping behaviour needs to access it. Arriving at a

landmark, the Mapping behaviour will retrieve this value from the blackboard and add it to

the odometry counter plus a value of 6 inches to represent the robot's radius. The final

resulting value obtained should give quite an accurate indication of the distance between

the two landmarks.

If the robot arrives at a convex corner, a slightly different procedure is used (see figure 52).

In this case, the value of 18 will only have to be added once.

Robot
Start

Robot
Finish

Recorded
Distance
(54 inches)

Actual
Distance
(72 inches)

18 inches

Figure 52 Calculating the Distance Between Landmarks

97

There are two more data fields to be filled in. These represent the number of the next node

and the distance to the next node. The distance to the next node cannot be obtained until

such time that the robot travels to it its corresponding landmark. This makes the task of

constructing each node in the map a two step process. The information is accumulated by

travelling to two different landmarks. At each landmark, the Mapping behaviour will fill in

part of the details for the last landmark detected. Referring to the example shown in figure

50, when the robot arrives at node 2, it will know the distance it has travelled from node1.

This information can then be used to complete the data field entries for node 1.

As the robot travels about the environment adding each landmark to the map, it will

eventually arrive back to place where it started. Some kind of mechanism must be

introduced to stop the map making process at this stage. As the robot is mapping the

environment, it is continuously comparing detected landmarks with landmarks previously

detected. If a match is found, the robot can stop constructing the map.

4.4.6 Localisation Behaviour

When the robot is initially switched on, it could be placed at any random location in the

environment, without knowing its whereabouts. This is an undesirable situation. For the

robot to perform useful tasks such as travelling to specific locations, it must be aware of its

correct position. By using the map, however, the robot can re-establish its correct position

in a relative fashion. This is the purpose of the localisation behaviour. This behaviour will

build up a local map of the environment and compare it with the global map previously

built. The inputs to this behaviour are the messages from the blackboard generated by the

landmark detection behaviours, namely the concave corner and convex corner behaviours.

The output from the behaviour is a message to be placed onto the blackboard indicating the

robot's current position (see figure 53).

98

LocalisationBlackboard Messages Blackboard Messages

Figure 53 Localisation Behaviour

The local map built by this behaviour is constructed in the same manner as the map built by

the Mapping Behaviour. The local map, however, consists of only two nodes. These nodes

represent the two most recent landmarks detected. The local map is continuously updated as

the robot travels about. Also at the same time, a comparison is continuously performed

between the local map and the global map. If a match occurs between the two, the

behaviour can ascertain the current node that the robot is located at. When comparing the

local map with the global map, an exact match will usually never occur. Each time the

robot calculates the distance between landmarks, a slightly different value will always be

obtained. To take account of this while comparing the maps, a certain error margin is

introduced to allow the values to vary slightly. Once the current node is known, a message

will be placed onto the blackboard for the benefit of the navigation behaviour. This will

indicate the robot's current position.

4.4.7 Navigation Behaviour

This is a very simple behaviour. Its purpose is to travel to specific locations in the

environment which have been specified by the user. The inputs to this behaviour are the

messages from the blackboard generated by the landmark detection behaviours and the

destination node to travel to. The output is a message to be placed onto the blackboard to

instruct the motors to stop when the robot arrives at the destination (see figure 54).

NavigationBlackboard Messages
Destination Node Blackboard Message

Figure 54 Navigation Behaviour

99

For this behaviour to work correctly, the robot must initially be aware of its correct

position. This is taken care by the localization behaviour. To travel to a specific destination,

the behaviour simply keeps track of each landmark encountered. If the destination node

matches the current node or landmark, the robot has arrived at the destination and a

command is issued to instruct the motors to stop. This ensures that the robot remains

stationary at the destination node.

4.4.8 Arbitration Function

Four of the behaviours described in the previous section can all send commands to the

motors simultaneously. To prevent a conflict from occurring, the arbitration function has to

select a single behaviour output to send to the motors. In keeping with the subsumption

architecture, each of the behaviours is layered according to their relative importance (see

figure 55).

Edge Following

Convex Corner

Concave Corner

S

S Motors

Search For Edge

S

Figure 55 Layering of Behaviours

4.5 Summary

This chapter has described the control architecture used on the robot. A modified form of a

behaviour-based architecture has been developed for the robot. This is based on the

standard subsumption architecture with the addition of a concept known as a blackboard.

100

The blackboard allows the sharing of system state and knowledge between behaviours to

help them perform their tasks. An initial set of low-level behaviours was developed to

demonstrate that the robot could operate reactively based on sensor stimuli. Following the

implementation of these, a more complex set of behaviours was developed. These equip the

robot with the ability to explore and map its environment. The robot can build up a

topological map of the environment which it can subsequently use to navigate to specific

locations specified by the user.

101

5. A FUZZY LOGIC BASED NAVIGATION SYSTEM

5.1 Limitations of Subsumption

One of the limitations associated with subsumption is that the arbitration technique

employed only allows a single behaviour to be active at any one time. While this is

satisfactory in many situations, there are times when a combination of two behaviours is

required. Take, for example, navigating towards a target and avoiding obstacles. Each of

these could be implemented as a single behaviour each. So long as no obstacles are

detected, the robot will gracefully head towards its target location. If an obstacle is

detected, however, the obstacle avoidance behaviour becomes active and steers the robot

away from the obstacle. The problem with this is that the obstacle avoidance behaviour has

no knowledge about the target location, thus it could steer the robot in any direction to

avoid the obstacle. An example of this is shown in figure 56. Here the robot has only a 50%

chance of making a correct turn to the left. In many situations, this may work perfectly

well, but there are times when it may be desirable for the robot to steer in a direction which

takes it closer to its target location. This can be achieved by combining the output of the

two behaviours. This is referred to as command fusion. The output from the target

following behaviour and the obstacle avoidance behaviour are combined to produce a

heading that takes the robot towards its target location while avoiding obstacles. One

method used to perform this task was developed by David Payton and Ken Rosenblatt

(1989).

Figure 56 Two possible choices.

102

5.2 Enhancing Subsumption

5.2.1 Payton and Rosenblatt's Command Fusion Network

This technique came about from Payton and Rosenblatt's observation that a fixed priority

based arbitration scheme usually results in loss of information, which makes decision

making much more difficult. In their system, instead of each behaviour outputting a single

control value, they output a set of nodes. Each node corresponds to a possible control

decision. A certain activation level is assigned to each of the nodes, which represents the

confidence regarding the control decision. An example of this is shown in figure 58, which

represents the situation given in figure 56. This shows one of their networks for combining

the two behaviours Turn-for-Obstacle and Track-Road-Edges. The size and colour of each

node represents the behaviours' activation for that command. A node's size represents the

magnitude of its activation. Solid black colours represent positive activation while white

colours represent negative activation. For example, the Turn-for-Obstacle behaviour in

figure 57 has a large positive activation level for the "hard left" node and a large negative

activation for the "straight ahead" node. To combine the outputs of two behaviours, a

weighted sum technique is used to combine the activation strengths of corresponding

nodes. The weight associated with a behaviour reflects the degree of importance of the

behaviour's suggestion. For example, the Turn-for-Obstacle behaviour has a higher weight

than the Track-Road-Edges behaviour since it is more important to avoid colliding with

obstacles than to follow the track. The final control command is the node with the largest

positive activation in the combined behaviour based on the winner-take-all selection

strategy.

103

Figure 57 A Payton and Rosenblatt network for fusing two behaviours

5.2.2 Using Fuzzy Logic

Another technique for combining the outputs from two behaviours is by using fuzzy logic.

In this system, each behaviour consists of a set of fuzzy control rules and a fuzzy inference

module. The output from each behaviour is a fuzzy set. These sets are then combined

through a command fusion module and defuzzified to produce a crisp output value. In order

to test how successful this procedure is, a navigation system consisting of a target following

behaviour and an obstacle avoidance behaviour was developed which uses fuzzy logic to

combine the two behaviours.

Before the technique is explained, a brief description of fuzzy logic will be given. Fuzzy

logic is a suitable alternative to conventional control systems when a mathematical model

for the control system is unavailable. This is particularly true in the case of unstructured

and dynamic environments where a large amount of uncertainty exists. In designing a fuzzy

logic system, human experience and expertise is employed in the form of heuristic control

knowledge. In a fuzzy logic controller, a set of IF-THEN rules are used to capture the

relationship between the observed input variables and the output control variables. The

output of all the rules are then combined to obtain a fuzzy conclusion for each control

variable. These fuzzy conclusions are finally defuzzified resulting in a crisp output value.

104

5.3 Fuzzy Logic Navigation System

The navigation system being described here consists of two basic behaviours - an obstacle

avoidance behaviour and a target following behaviour. Each behaviour has two

components. These consist of a set of fuzzy rules and a fuzzy inference module. The fuzzy

rules explicitly capture the control strategy of the behaviour in the form of linguistic rules,

while the fuzzy inference module implements a fuzzy inference scheme appropriate for the

behaviour. The fuzzy control recommendations generated by the two behaviours are fused

together and defuzzified to produce a crisp output value. This output value represents the

most appropriate direction for the robot to steer towards. Figure 58 shows a block diagram

of the controller. The basic procedure for determining the crisp output value consists of the

following four steps: (1) The target following behaviour produces a fuzzy set that

represents the desired turning directions. (2) The obstacle avoidance behaviour produces a

fuzzy set that represents the disallowed turning directions. (3) The command fusion module

combines these two fuzzy sets into one output fuzzy set. (4) This output fuzzy set is then

defuzzified to produce a crisp output value. The output from each behaviour is maintained

in fuzzy set form so as to reduce possible loss of information in command fusion.

Sonar
Sensors

Target
Angle

Fuzzy
Inference

Fuzzy
Inference

Fuzzy Rules for
Target Following

Fuzzy Rules for
Obstacle Avoidance

Disallowed
Direction

Desired
Direction

Command Fusion Defuzzification
Crisp

Output
Value

Figure 58 Fuzzy Logic Navigation Controller

105

As an example on the technique works, the situation shown in figure 59 will be used. In this

example, the robot is facing straight ahead. The target following behaviour suggests that the

robot should turn to the left to head towards the target. However, to avoid colliding with the

obstacle on the left, the robot must go straight ahead for a little while longer.

Obstacle

Robot

Target

Obstacle

Target Angle = -30°

Figure 59 Example

5.3.1 Target Following Behaviour

The input to the target following behaviour is a value representing the angle between the

robot’s current heading and the location of the target. In order to give the robot a certain

amount of flexibility in reaching its target, this specific angle is broadened into a more

general desired direction by using a set of fuzzy rules. If this were not done, the robot

would not be able to turn in order to avoid any obstacles. For the example shown in figure

59, the robot is facing 0° and the target angle is -36°. To keep the example as simple as

possible, only two fuzzy rules are used here by the target following behaviour. These are

shown below:

If Target Angle is Around 0° Then Desired Direction is Forward

If Target Angle is Around -45° Then Desired Direction is Left-Forward

106

Around 0° and Around -45° are membership functions of the variable Target Angle.

Forward and Left-Forward are membership functions of the variable Desired Direction.

These are shown in figure 60 below.

1

1

1

0-45

0-45 45

-45 45-135

0 90-90

Around -45°

Around 0°

Left-Forward

Forward

If Target Angle is Around -45°
Then Desired Direction is Left-Forward

Rule 1

If Target Angle is Around 0°
Then Desired Direction is Forward

Rule 2

Figure 60 Membership Functions and Fuzzy Rules for Target Following

The fuzzy inference module for the target following behaviour combines the desired

directions recommended by the fuzzy rules using a weighted sum technique. An example of

this is shown in figure 61 for a target angle of -36° using the two rules given above. The

107

membership functions of the variable Target Angle are designed such that the sum of their

membership values for an angle is exactly one.

For a target angle of -36°, the degree of membership of the function Around -45° is 0.8 and

the degree of membership of the function Around 0° is 0.2. These values are used to set the

activation levels for the membership functions of the output variable Desired Direction. In

the case of rule 1, the activation level for the function Left-Forward is 0.8. For the second

rule, the activation level for the function Forward is 0.2.

1 1

0-36

Left-Forward

Forward

0.8 0.8

0.2

Around -45°Around 0°

-36 0

0.2

1

-36 0

Combination of both directions

Figure 61 Computing Desired Direction

5.3.2 Obstacle Avoidance Behaviour

This behaviour uses sonar sensors to determine the distance to obstacles located around the

robot. This information is then used to generate a fuzzy set that represents the disallowed

directions of travel. A disallowed direction is a direction that would result in the robot

coming into contact with or passing close to a nearby obstacle. The behaviour has one input

variable for each sonar sensor. Additionally, each variable has one membership function

108

associated with it. This function is called NEAR and represents the degree of how close an

obstacle is to the robot. In keeping with the example above, this behaviour only uses two

fuzzy rules. These are shown below:

If 0° Sensor Distance is Near Then Disallowed Direction is Forward

If -45° Sensor Distance is Near Then Disallowed Direction is Left-Forward

Near is a membership function of 0° Sensor Distance and -45° Sensor Distance. Forward

and Left-Forward are membership functions of the variable Disallowed Direction. These

are shown in figure 62 below.

1

1

50

-45 0-90

0 45-45

Near

Left-Forward

Forward

If 0° Sensor Distance is Near
Then Disallowed Direction is Forward

Rule 1

If -45° Sensor Distance is Near
Then Disallowed Direction is Left-Forward

Rule 2

20

1

35

Near

15

Figure 62 Membership Functions and Fuzzy Rules for Obstacle Avoidance

109

In the case of the 0° Sensor, for any obstacles located less than 20 inches away, the degree

of membership of the function NEAR is 1. For obstacles located greater than 20 inches

away and less than 50, the degree of membership gradually decreases to 0. It is worthwhile

pointing out that the shape of the membership function NEAR for the 0° Sensor and the -

45° Sensor are slightly different to each other. This is due to the fact that obstacles detected

at the front of the robot pose more of a threat than ones at the sides. For example, an

obstacle detected at a distance of 20 inches by the 0° Sensor is considered closer than an

object detected at the same distance by the -45° Sensor.

The fuzzy inference module for the obstacle avoidance behaviour combines the disallowed

directions recommended by the fuzzy rules using the MAX operator. An example of this is

shown in figure 63 for sensor inputs based on the situation given in figure 59. The MAX

operator is used by the fuzzy inference module because it is consistent with the intuition

that the degree a travel direction is disallowed should be determined by the sensor that has

the strongest opinion about it.

1

1

50

0-90

Near

80

90

0.8

1

35

Near

20

0.8

1

35

Near

13

0° Sensor 45° Sensor

-45° Sensor Disallowed
Direction

Sensor
Angle

Distance
Returned

Rule Firing
Strength

0° 80 0
-45° 13 1

45° 20 0.8

Figure 63 Calculating Disallowed Direction

110

5.3.3 Command Fusion

The third component of the fuzzy logic navigation controller is a command fusion module.

This combines the two fuzzy sets produced by the target following behaviour and the

obstacle avoidance behaviour into one output fuzzy set. This output fuzzy set represents

the steering angle for the robot. The steering angle is both Desired from the viewpoint of

the target following behaviour and Not Disallowed from the viewpoint of the obstacle

avoidance behaviour. In fuzzy logic, an AND operation is carried out using the MIN

operator. The following equation calculates the degree of membership for each angle in the

output fuzzy set:

µSteering Angle(x) = µDesired AND Not Disallowed(x)

= min(µDesired(x), µNot Disallowed(x))

= min(µDesired(x), 1 - µDisallowed(x))

µDesired(x) is the degree of membership for the angle x in the target following output fuzzy

set. µDisallowed(x) is the degree of membership for the angle x in the obstacle avoidance

output fuzzy set. µNot Disallowed(x) is the fuzzy complement of µDisallowed(x). The fuzzy set

Disallowed represents the directions in which the robot should not steer. In contrast to this,

the fuzzy set Not Disallowed represents the directions in which the robot is allowed to steer.

Not Disallowed can also be referred to as the Allowed direction of travel.

Figure 64 shows the resultant fuzzy set produced by combining the fuzzy sets from each

behaviour. This is based on the example shown in figure 59. In this example, even though

the target angle is -36°, most of the fuzzy set produced by the command fusion module

resides around 0°. This is correct since 0° is the most appropriate angle for the robot to

steer given the presence of the obstacle on the left of the robot. The next section gives a

detailed description of how the output fuzzy set is defuzzified to produce a crisp value.

111

1

0

1

0-90 90

0.8
1

0-90 90

Disallowed Direction Allowed Direction

Desired Direction

1

Allowed Direction
Desired Direction

0-90 90

1

0-90 90

Steering Angle

This is the output
fuzzy set.

Figure 64 Command Fusion

5.3.4 Defuzzification

The fourth and final component of the fuzzy logic navigation controller is a defuzzification

module. This converts the fuzzy output set into a crisp control command which represents

the steering angle for the robot. A number of different defuzzification methods exist.

Popular ones include the Mean of Maximum (MOM) method and the Centre of Area

(COA) method. In order to select a particular method, it is important to understand the

linguistic meaning than underlies the defuzzification process.

The MOM method computes the average of the values with the highest degree of

membership in the fuzzy set. An example of this is shown in figure 65 below. In this

example, the crisp output value produced is 0°. This would steer the robot safely away from

112

the obstacle. The MOM defuzzification method is basically a winner-take-all arbitration

scheme. One of the major drawbacks of using the MOM method on a robot, however, is

that it does not use all of the information contained in the fuzzy set. The problem with this

is that the crisp values produced will have difficulty in steering the robot smoothly over

time.

1

0-90 90

Steering Angle

1

0-90 90

Crisp
Output
Value

Figure 65 MOM Defuzzification

Another defuzzification method is the Centre of Area method. This computes the centre of

gravity of the entire fuzzy set to produce a crisp output value. The following equation is

used to calculate this value:

∑

∑

=

==
n

k
k

n

k
kk

A

AA
ValueCrisp

1

1

)(

).(

µ

µ

In this equation, µ(Ak) is the degree of membership for the angle Ak. Ak is the angle located

at coordinate k along the x-axis. To represent all angles for a complete 360° circle, k must

have a value from 1 to 360. Also, Ak may have a value from 1 to 360 or alternatively from

-180 to 180.

An example of using the COA method is shown in figure 66 below. In this example, the

crisp output value produced is -37°. Clearly if the robot headed in this direction, it would

collide with the obstacle on its left. This points out one of the drawbacks of the COA

defuzzification method. If the output fuzzy set has a number of peaks in it, then the crisp

value produced may be a value that lies in between them.

113

1

0-90 90

Steering Angle

Crisp
Output
Value

1

0-90 90

-37

Figure 66 COA Defuzzification

Steering the robot in this direction can often cause it to collide with an obstacle. This can be

seen in the example above. The value of -37° lies in between the two peaks in the fuzzy set.

Also, the degree of membership for this value is 0 indicating that this is a bad direction in

which to steer. The COA method does not ensure that prohibited regions in the fuzzy set

are avoided. When defuzzifying the fuzzy set, the COA method comes up with the "best

compromise". However, for a mobile robot navigation system, it is more important to come

up with the "most plausible result". This requires a different defuzzification technique to be

used.

This method is known as Centroid of Largest Area (CLA). This method partitions a

multiple peak fuzzy set into several disjoint fuzzy subsets, each of which corresponds to a

feasible fuzzy command. The fuzzy subset with the largest area is then selected and

defuzzified separately using the COA method. An example of this is shown in figure 67.

Here, the fuzzy set consists of two subsets. The subset on the right has the largest area, so

this is selected and defuzzified separately using the COA method. This results in a crisp

value of 5°. This is a valid steering angle for the robot which will steer it safely around the

obstacle on its left.

114

1

0-90 90

Steering Angle

Crisp
Output
Value

1

-90 90

5

Figure 67 CLA Defuzzification

5.3.5 Implementation

This section describes the implementation of the fuzzy logic navigation controller. The

controller has two behaviours - an obstacle avoidance behaviour and a target following

behaviour. The input to the target following behaviour is the angle between the robot's

current heading and the direction of the target. The obstacle avoidance behaviour gets its

input from a group of 8 sonar sensors distributed equally around the robot. The controller

consists of four modules - a fuzzification module, a fuzzy inference module, a command

fusion module and a defuzzification module. Figure 68 shows a block diagram of the

various modules.

The obstacle avoidance behaviour has eight input variables - one for each sonar sensor.

Additionally, each variable has one function or term associated with it. This function is

called NEAR and represents the degree of how close an obstacle is to the robot. The first

task that the controller must perform is to fuzzify the input variables for the obstacle

avoidance behaviour. This takes the values from each sonar sensor and determines the

degree of membership for the function NEAR in each variable. The shapes of the

membership functions NEAR are similar to each other. These shapes were chosen so as to

reflect the threat an obstacle poses to the robot. For obstacles located near to the robot, the

degree of membership of the function will be one, indicating that the obstacle is extremely

close to the robot. For obstacles located further away, the degree of membership gradually

115

decreases to zero, indicating a safe condition. An example of the membership function

NEAR for the forward looking sonar sensor is shown in figure 69.

Left

Right

Left_Forward

Right_Forward

Left_Rear

Right_Rear

Rear

Forward

Rule
Base

Target Angle Rule
Base

Disallowed Direction

Allowed Direction

Command Fusion Defuzzification

Fuzzification

Fuzzy
Inference

S
O
N
A
R

S
E
N
S

R
O

S

Figure 68 Fuzzy Controller Modules

0 18 36
0

0.5

1.0

0.25

0.75
NEAR

Distance to Obstacle

D
E

M

O

G
R
E
E

F

E
M
B
E
R
S
H
I
P

Figure 69 Membership Function Near for Forward Looking Sensor

116

It can be seem from this function that objects located less than 18 inches away are

considered extremely close. Obstacles located between 18 inches and 36 inches away also

pose a threat, but not to the same extent. Any obstacle located more than 36 inches away is

unimportant.

Once all of the input variables for the obstacle avoidance behaviour have been fuzzified,

the next task for the controller to perform is fuzzy inference. The fuzzy inference process

calculates the truth value for the premise of each rule in the fuzzy rule base and applies this

to the conclusion part of each rule. The output membership function for the rule is clipped

off at a height corresponding to the rule premise's computed degree of truth. The following

table shows the eight rules which are used.

If Forward Sensor Distance is Near Then Disallowed Direction is Forward

If Left Sensor Distance is Near Then Disallowed Direction is Left

If Right Sensor Distance is Near Then Disallowed Direction is Right

If Left_Forward Sensor Distance is Near Then Disallowed Direction is Left_Forward

If Right_Forward Sensor Distance is Near Then Disallowed Direction is Right_Forward

If Left_Rear Sensor Distance is Near Then Disallowed Direction is Left_Rear

If Right_Rear Sensor Distance is Near Then Disallowed Direction is Right_Rear

If Rear Sensor Distance is Near Then Disallowed Direction is Rear

Fuzzy inference consists of two components: aggregation and composition. Aggregation

computes the IF part of a fuzzy rule while composition computes the THEN part. Each rule

defines an action to be taken in the THEN part. The degree to which this action is valid is

given by the truth value in the premise of the rule. Take the following rule as an example:

If Forward Sensor Distance is Near Then Disallowed Direction is Forward

If the forward looking sensor detects an obstacle located 27 inches away, then the degree of

membership for the function Near will be 0.5. The truth value for the premise of the rule is

therefore 0.5. In this situation the disallowed direction of travel is forward and the degree to

which this action is considered valid is 0.5.

117

The obstacle avoidance behaviour has one output variable called Disallowed Direction.

Within this variable, there are eight membership functions, each of which is trapezoidal in

shape. Each membership function represents a certain disallowed direction of travel and is

centred around the direction of one of the sonar sensors. An example of the membership

function FORWARD is shown in figure 70.

0 -45 45
0

0.5

1.0

0.25

0.75

Angle

D
E

M

O

G
R
E
E

F

E
M
B
E
R
S
H
I
P

0

FORWARD

Figure 70 Membership Function Forward

This membership function represents the disallowed direction of travel for the forward

looking sonar sensor. If the fuzzy controller considers forward to be a disallowed direction,

then any angle between -22.5° and 22.5° will a degree of membership of 1. This indicates a

highly disallowed direction. For angles between 22.5° and 45°, the degree of membership

gradually decreases to 0. Directions within this region are also considered disallowed, but

not to the same extent. All of the other seven membership functions are similar to this one.

The table below shows the angle on which each function is centred around:

118

Membership
Function

Centre
Value

Forward 0
Left_Forward -45
Right_Forward 45
Left -90

Right 90

Left_Rear -135
Right_Rear 135
Rear 180

The next task for the controller to perform is to fuzzify the input variable for the target

following behaviour. This behaviour has only one input variable, which is called Target

Angle. This represents the angle between the robot's current heading and the direction of

the target. The variable has eight membership functions, which are all triangular in shape.

Each membership function represents a certain target angle - for example, 0°, 45° etc. An

example of the membership functions 0° and 45° are shown in figure 71. It is important to

note that the membership functions are centred around the same points in which the sonar

sensors are facing.

0 -45 45
0

0.5

1.0

0.25

0.75

Target Angle

D
E

M

O

G
R
E
E

F

E
M
B
E
R
S
H
I
P

0

ZERO FORTHY_FIVE

36

0.2

0.8

Figure 71 Membership Functions Zero and Forthy_Five

119

If the input to the target following behaviour happens to be an angle of 36°, then the degree

of membership for the function 0° is 0.2 and the degree of membership for the function 45°

is 0.8. In this case, the target angle is considered to be more in the 45° direction than in the

0° direction. All of the other six membership functions are similar to these two with the

only difference being the centre value of each function. The table below shows each of

these values:

Membership
Function

Centre
Value

0° 0
-45° -45
45° 45
-90° -90

90° 90

-135° -135
135° 135
180° 180

Having fuzzified the input variable for the target following behaviour, the next task for the

controller to perform is fuzzy inference. The following table shows the eight rules used by

this behaviour.

If Target Angle is 0° Then Desired Direction is Forward

If Target Angle is -45° Then Desired Direction is Left

If Target Angle is 45° Then Desired Direction is Right

If Target Angle is -90° Then Desired Direction is Left_Forward

If Target Angle is 90° Then Desired Direction is Right_Forward

If Target Angle is -135° Then Desired Direction is Left_Rear

If Target Angle is 135° Then Desired Direction is Right_Rear

If Target Angle is 180° Then Desired Direction is Rear

The target following behaviour has one output variable called Desired Direction. Within

this variable, there are eight membership functions, each of which is trapezoidal in shape.

120

Each membership function represents a certain desired direction of travel for the robot. This

variable is an exact copy of the output variable for the obstacle avoidance behaviour and so

won't be discussed here. Refer to page 127 for a description of this.

5.3.6 Development

A fuzzy logic development system has been designed in Visual C++ in order to develop

and test the fuzzy logic navigation controller. This development package allows a new

controller to be developed from scratch based upon a standard template. Initially, there are

no rules or memberships functions for any of the behaviours. These must be added by the

user. It is possible to add additional input variables for the obstacle avoidance behaviour.

This may be done if additional sensors are added to the robot. The target following

behaviour has just one input variable, which cannot be changed. In addition, each behaviour

also has one output variable. These too cannot be changed. New membership functions can

be added for each behaviour. A special membership function editor allows new functions to

be added and allows the shape of the membership function to be changed. There is also a

rulebase editor which allows new rules to be added and old ones to be modified.

To help test and debug the system, it is possible to simulate the fuzzy controller online.

This can be done from two different perspectives. Firstly, it is possible to view the

movement of the robot in a simulated environment. This gives an insight into how the robot

may behave in a real world environment. During this simulation, the initial starting point

for the robot and the finish point can be specified by the user. It is also possible to place

various obstacles at different locations around the environment. Secondly, it is possible to

view the output from the different modules in the controller. This allows the shape of the

output fuzzy sets from each behaviour to be seen along with the fuzzy set generated by the

command fusion module. Being able to see this information can help in fine tuning the

controller and helps in solving problems which may arise.

121

5.3.6 Simulation Examples

The following screenshots show the paths followed by the robot during various simulated

scenarios. In each case, the robot has a start position and a finish position. The robot travels

along a smooth path in reaching its destination. If any obstacles are encountered, the robot

will smoothly work its way around them.

Finish

Start

Finish

Start

Figure 72 Simulation Example

122

Start

Finish

Figure 73 Simulation Example

5.4 Summary

This chapter has described the design of a fuzzy logic navigation system for a mobile robot.

The advantage of using fuzzy logic for navigation is that it allows for the easy combination

of various behaviours’ outputs through a command fusion process. In subsumption, the

fixed priority arbitration scheme only allows a single behaviour to be active at any one

time. Implementing a navigation system using this basic system could result in a zigzag

path being produced. By combining the output of two behaviours, a much smoother path

can be produced. The navigation system has been tested in simulation and has shown

promising results.

123

6. EXPERIMENTAL RESULTS

This chapter presents results from tests carried out with the robot. The experiments were

designed to investigate how well the behaviours work individually and also how they

interact with each other through the robot's environment to perform seemingly intelligent

tasks.

6.1 Test Environment

The robot's test environment was a rectangular room approximately 3.5m x 2.5m in size.

The room could be customised for performing different types of experiments. A number of

straight edges were obtained to construct imaginary walls and corners to test the edge

following and landmark detection behaviours.

6.2 Testing the Simple Low-Level behaviours

Behaviour based systems are modular making them easy to design, test and debug. When

implementing a control architecture based on this system, lower levels of competence are

added first, such as obstacle avoidance. Once this layer has been thoroughly tested and

shown to exhibit the correct behaviour, further layers can be added, increasing the level of

competence of the robot. The first experiments to be carried out were designed to test the

implementation of the simple low-level behaviours. These behaviours were built to

demonstrate that the robot could operate reactively based on sensor stimuli. The three

behaviours consist of a cruise behaviour, an obstacle avoidance behaviour and a light

following behaviour.

124

6.2.1 Cruise behaviour

The first behaviour to be tested was the cruise behaviour. This is an extremely simple

behaviour whose sole purpose is to simply travel straight ahead. To test this behaviour, the

robot was placed in the test environment. If it maintained a continuous forward motion, it

could reasonably be concluded that the behaviour was performing as expected. As one

would expect for such a simple behaviour, it performed flawlessly.

6.2.2 Obstacle Avoidance Behaviour

The next behaviour to be tested was the obstacle avoidance behaviour. This is a somewhat

more complex behaviour. In conjunction with this behaviour, the control system also

included the cruise behaviour at this stage so the robot could maintain a continuous forward

motion in the absence of any obstacles. The first experiment to be carried out using this

behaviour was performed in an empty environment with no obstacles present. The only

features the robot would encounter that would hinder its progress were the walls around the

perimeter of the room. Figure 74 shows an example of the path followed by the robot as it

wandered about. It can be seen from the figure that the robot travels straight ahead under

normal situations. Only when it is in close proximity to the walls does it turn. To carry out

a second experiment for this behaviour, the test environment was prepared by locating a

number of obstacles at random around the floor. Figure 75 shows the resulting path

followed by the robot in this situation.

125

Start

Finish

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches

Figure 74 Path Followed by the Robot Under Obstacle Avoidance

Start

Finish

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches

Figure 75 Path Followed by the Robot Under Obstacle Avoidance

126

6.2.3 Light Following Behaviour

This behaviour allows the robot to seek or follow a light source. In conjunction with this

behaviour, the control system also included the cruise behaviour at this stage so the robot

could maintain a continuous forward motion in the absence of any light source. The robot

was initially placed in the test environment with no light sources present. Under this

condition, the cruise behaviour would steer the robot straight ahead. To conduct the

experiment, a light source was obtained. This was simply a normal handheld torch. As the

robot traveled straight ahead under the influence of the cruise behaviour, the light source

was shone into each of the LDRs. In all cases, the robot would attempt to steer in the

direction of the brightest LDR. Figure 76 shows an example of the path followed by the

robot. Each of the black dots represent the position where the LDRs where stimulated by

the light.

Start

Finish

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches

Figure 76 Path Followed by the Robot under Light Following

127

As another experiment, the obstacle avoidance behaviour was added to the control system

increasing the robot's overall competence. During this experiment, the robot performed

similar to the experiment described above. If an obstacle was detected, however, the

obstacle avoidance behaviour would become active and steer the robot away from it. Since

the obstacle avoidance behaviour has a higher priority than the light following behaviour,

the robot would avoid obstacles irrespective of whether the LDRs were being stimulated by

the light source.

6.3 Testing the Mapping and Navigation Behaviours

The implementation of the obstacle avoidance, cruise and light following behaviours

illustrated the robot's capability to react directly to sensor stimuli, and perform seemingly

intelligent tasks by interacting with each other through the robot's environment. Following

the successful implementation and testing of these behaviours, the next set of behaviours

which were developed and tested endow the robot with the ability to explore and map its

environment. The robot can build up a map of a previously unknown environment and use

it to navigate to certain locations. The first behaviours to be tested were the edge following

behaviour and the landmark detection behaviours. It is important that these can operate

reliably and robustly in order to ensure that an accurate map can be constructed.

6.3.1 Edge Following Behaviour

This behaviour causes the robot to follow a straight edge at a certain pre-defined distance.

One of the assumptions that this behaviour makes is that the robot should initially be placed

parallel to an edge before edge following can begin. To satisfy this condition the robot was

placed parallel to a wall. The test environment for this experiment contained a number of

long straight edges for the robot to follow. In initial experiments carried out with this

behaviour, it was found that the range readings returned by the -45° sensor would often be

incorrect by quite a large margin. This problem is due to the characteristic of a sonar beam

when fired at an angle to a surface. The beam can often be reflected causing an incorrect

distance to be obtained. Figure 77 shows an example of a path followed by the robot in this

128

situation. It can be seem that an oscillatory motion tends to result while following the edge.

To overcome this problem, the angle of the sensor was changed to -60°. This has proven to

be quite effective resulting in the robot following a smooth path along the edge. Figure 78

shows typical example of this.

Start Finish

130 inches

130 inches

45 inches45 inches

Figure 77 Edge Following

Start Finish

130 inches

130 inches

45 inches45 inches

Figure 78 Edge Following

The edge following behaviour was tested for both left and right sided edges. In all cases,

the results were the same.

129

6.3.2 Concave Corner and Convex Corner Behaviours

These behaviours watch out for specific types of landmarks in the robot's environment such

as concave and convex corners. If such a feature is detected, the robot will attempt to turn.

To test these behaviours, the environment was set up to include a number corners and a

door. In general, it was found that the robot could successfully negotiate its way around a

corner. Figure 79 shows an example of the path followed by the robot as it works its way

around the environment. Whenever the robot detected a convex corner, it would initially

travel straight ahead for a certain distance to determine if the feature detected was either a

door or a corner. In the example shown, the robot does not find an edge at point A so it

backtracks and turns to continue following the edge.

Start

73 inches

57 inches

130 inches

60 inches

40 inches

A

Figure 79 Detecting Corners

130

In certain situations, it was found that the concave corner behaviour was incapable of

turning correctly at a corner. This was due to incorrect readings being returned from the

sonar sensors. When this occurred, the corner could be detected a second time. In most

cases, the robot would be capable of turning correctly this second time round. However,

detecting a corner twice is an undesirable situation. It will decrease the accuracy of the map

constructed by the Mapping behaviour. Fortunately, this situation didn't occur very often.

Figure 80 shows an example of an environment containing a door. Here the robot initially

follows the straight edge leading to the door. When the door is detected by the convex

corner behaviour, the robot will travel straight ahead for a certain distance to determine if

this is either a door or a convex corner. At point A, an edge is detected again so this is

treated as a door and the robot continues on.

Start

130 inches

130 inches

45 inches45 inches

A

Door

Figure 80 Detecting a Door

6.3.3 Mapping Behaviour

Testing this behaviour was quite straightforward. All that needs to be done is to compare

the topological map generated by the behaviour with the actual features and dimensions of

the environment. To carry out this experiment, the robot was allowed to map the

environment in its entirety. Once a complete map was obtained, the robot would stop and

remain stationary. The mapping behaviour was slightly modified for this experiment so it

could write the complete map to file in a format that could be easily interpreted. The test

131

environment shown in figure 81 was used to carry out this experiment. Included in the

figure are the node numbers associated with each landmark that the robot detects. The

following table shows the nodes constructed for this environment. In this experiment, the

first landmark to be detected by the robot is labeled 1 and the robot is travelling in a

clockwise direction.

Landmark 1 2 3 4 5 6

Type of Landmark Concave Convex Concave Concave Concave Concave

Number of Next Node 2 3 4 5 6 1

Distance to Next Node 77 37 59 105 138 59

Number of Previous Node 6 1 2 3 4 5

Distance to Previous Node 59 77 37 59 105 138

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches

1 2

3 4

56

Figure 81 Test Environment for Mapping Behaviour

A number of other experiments were carried out in various types of environment. In all

cases, the Mapping behaviour constructed a reasonable map of the environment. The

132

distance calculated between nodes will never exactly match the real environment values.

Errors will always crop up either due to sonar sensor errors or odometry errors.

6.3.4 Search for Edge Behaviour

The purpose of this behaviour is to lock onto an edge and ensure that the robot is parallel to

it. To test this behaviour, the robot was placed at random locations in the environment (see

figure 82). From each of these locations, the robot would initially travel straight ahead until

an edge was detected. It would then attempt to turn to be parallel with the edge. Depending

on the robot's orientation to the edge when it arrives, it will lock onto it either from its left

hand side or its right hand side.

Robot

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches Robot

Robot

Figure 82 Testing the Search for Edge Behaviour

133

6.3.5 Localization and Navigation Behaviours

Rather than test each these behaviours individually, they were tested as a pair. The logic

behind this is simple. In order for the navigation behaviour to be capable of travelling to

specific locations in the environment, it must initially be aware of its starting position. The

localization behaviour ensures that this requirement can be met. Before this experiment can

be carried out, the Mapping behaviour must have previously constructed a map of the

environment for the navigation and localization behaviours to use. For this experiment, the

robot's initial starting point is some random location in the environment. When the robot is

switched on, it will first lock onto an edge using the Search For Edge behaviour. The

localization behaviour will then become active and attempt to determine the current

position of the robot. Once the current position is known, the robot can navigation towards

its destination. Both of these behaviours were tested in various types of environments. In

each case, the destination was specified as a node to travel to. In all cases, the robot was

successful in achieving its goal. Figure 83 shows an example of the path taken by the robot.

73 inches

57 inches

130 inches

100 inches

60 inches

40 inches

1 2

3 4

56

Start

Figure 83 Testing the Localization and Navigation Behaviours

134

In this example, the robot's starting position is as shown and its destination is node 5. The

robot locks onto the wall and follows it around the environment. By the time it reaches

node 3, its current position is known. It can then navigate all the way to the destination

where it stops and remains stationary.

135

7. CONCLUSIONS

This chapter discusses the work presented in this thesis and comments on how effectively it

met its aims. Future work to enhance and extend the functionality of the robot will also be

discussed.

7.1 Discussion

This thesis has described the design of an autonomous mobile robot built as a testbed for

behaviour based control and experimentation. By building a real working robot,

experiments can be carried out in real world giving a true insight into how the robot

behaves. The physical design of the robot was chosen to allow it to operate effectively in

most types of environments. This was achieved by using a cylindrical design and using a

differential drive system for motion control. The advantage of such a design is that the

robot cannot be caught in tight corners since the differential drive system allows it to turn

on the spot. From the experiments carried out, this has proven to be quite effective. A

modular hardware control architecture has been implemented on the robot which distributes

the workload and offloads sensor data stream processing to a dedicated processors.

The design of the robot has been heavily influenced by the need for real-time sensing and

decision making in order to operate in dynamic and unstructured environments. This has

been achieved by adopting a behaviour based control architecture and tightly coupling

behaviours with sensor inputs with actuator outputs in a reactive way. The robot's control

system is based on the standard subsumption architecture. An initial set of behaviours were

developed and tested to demonstrate that the robot could operate reactively based on sensor

stimuli. It was shown that the interaction of these behaviours with each other through the

robot's environment resulted in seemingly intelligent tasks being performed.

Following the successful implementation of these behaviours, a modified form of a

behaviour based control architecture was developed for the robot. This is based on the

standard subsumption architecture with the addition of a concept known as a blackboard.

136

The blackboard acts as a central data repository where behaviours can deposit and extract

information to help them go about their tasks. To test this control system, a set of

behaviours were developed to allow the robot to successfully explore, map, and navigate

around its environment. In situations when the robot becomes lost or is unaware of its

position, it can perform localisation to re-establish its correct position in a relative fashion.

Experiments carried out with the robot in a test environment have shown that the system

can operate robustly. Some problems were encountered, however, with sonar sensors.

Occasionally at a concave corner, the robot could have difficulty in turning correctly. It was

also found that during edge following, one of the robot's sonar sensors could give incorrect

readings. This problem was overcome, however, by changing the angle of the sensor.

The design of a fuzzy logic navigation system has also been presented in this thesis. Such a

design overcomes one of the main limitations of the subsumption architecture. Rather than

have a fixed priority arbitration scheme that only allows a single behaviour to be active at

any one time, the fuzzy logic controller combines the output of two behaviours. This results

in much smoother paths being produced. Tests carried out in simulation have shown this to

be the case.

7.2 Future Work

Due to the highly distributed hardware control architecture used on the robot, it is easy to

enhance the system by the addition of further modules. A vision system could be

implemented by the addition of a camera and extra control circuitry. The high speed and

processing power of the main central controller will allow the implementation of relatively

sophisticated vision control algorithms. In addition, a collision ring could also be added to

the robot. This would take the form of a ring of tactile sensors located around the perimeter

of the robot. The purpose of this would be to serve as a failsafe or a backup in the event that

the sonar sensors fail to detect an object. A more complex set of landmark detection

behaviours could be implemented. For example, behaviours could be implemented to detect

corridors and intersections. Also, a more complex mapping system could be introduced.

With the present system, each node in the map can contain at most two links to other

landmarks. It would be desirable if this could be extended to any number. It would also be

137

desirable if the robot could dynamically update the map in real time to take account of

changing environments.

138

REFERENCES

[1] Albus, J. S., Barbera, A.J. and Nagel, R.N., 1981. "Theory and Practice of

Hierarchical Control" Proceedings of the 23rd IEEE Computer Society International

Conference, 18-27.

[2] Arkin, R. C., 1986. "Path Planning for a Vision-Based Autonomous Robot"

Proceedings of the SPIE Conference on Mobile Robots, 240-249.

[3] Arkin, R. C., 1989. "Motor Schema-Based Mobile Robot Navigation" International

Journal of Robotics Research, 92-112.

[4] Arkin, R. C., 1998. Behaviour-Based Robotics. MIT Press.

[5] Borenstein, J., 1991. "The Vector Field Histogram - Fast Obstacle Avoidance for

Mobile Robots" IEEE Transactions on Robotics and Automation, 278-288.

[6] Brooks, R. A., 1986. “A Robust Layered Control System for a Mobile Robot” IEEE

Journal of Robotics and Automation, Vol. RA-2, No. 1, 14-23.

[7] Brooks, R. A., 1989. “A Robot That Walks: Emergent Behaviour From a Carefully

Evolved Network”, Neural Computation, 253-262.

[8] Brooks, R. A., 1990. “Elephants Don’t Play Chess” Robotics and Autonomous

Systems 6, 3-15.

[9] Brooks, R. A., Connell, J. H. and Ning, P., 1987. "Herbert: A second Generation

Mobile Robot" MIT AI Memo 984.

[10] Connell, J. H., 1987. "Creature Building with the Subsumption Architecture" IJCAI-

87, Milan, 1124-1126.

139

[11] Donnett, J. G., 1992. Analysis and Synthesis in the Design of Locomotor and Spatial

Competences for a Multisensory Mobile Robot. PhD Dissertation, University of

Edinburgh.

[12] Elfes, A., 1989. "Using Occupancy Grids for Mobile Robot Perception and

Navigation" Computer, 46-57.

[13] Flynn, A. M., Brooks, R. A., Wells, W. M. and Barrett, D. S., 1989. "The World's

Largest One Cubic Inch Robot" Proceedings IEEE Micro Electro Mechanical

Systems, Salt Lake City, 98-101.

[14] Gat, E., 1991. Reliable Goal-Directed Reactive Control of Autonomous Mobile

Robots. PhD Dissertation, Virginia Polytechnic Institute and State University.

[15] Kortenkamp, D., Bonasso, R. P. and Murphy, R., 1998. Artificial Intelligence and

Mobile Robots. MIT Press.

[16] Kurz, A., 1996. "Constructing Maps for Mobile Robot Navigaion Based on

Ultrasonic Range Data" IEEE Transactions on Systems, Man and Cybernetics, Vol.

26, No. 2, 233-242.

[17] Lee, D., 1996. The Map-Building and Exploration Strategies of a Simple Sonar-

Equipped Mobile Robot. Cambridge University Press.

[18] Leyden, M., Toal, D., Flanagan, C., 1999. "A Fuzzy Logic Based Navigation System

for a Mobile Robot" Proceedings of 2nd Wismar Symposium on Automatic Control,

Germany.

[19] Leyden, M., Toal, D., Flanagan, C., 2000 a. "Pitfalls of Simulation for Mobile Robot

Controller Development" MIM 2000, Greece.

[20] Leyden, M., Toal, D., Flanagan, C., 2000 b. "An Autonomous Mobile Robot Built to

Investigate Behaviour Based Control" Mechatronics 2000, Atlanta.

140

[21] Mataric, M. J., 1989. "Qualitative Sonar Based Environment Learning for Mobile

Robots." SPIE Mobile Robots, Philadelphia.

[22] Mataric, M. J., 1990. "Navigating With a Rat Brain: A Neurobiologically-Inspired

Model for Robot Spatial Representation" Proceedings of Simulation of Adaptive

Behaviour, 169-175.

[23] Moravec, H. P., 1988. "Sensor Fusion in Certainty Grids for Mobile Robots" AI

Magazine, 61-74.

[24] Nehmzow, U. and Smither, T., 1991. "Using Motor Actions for Location

Recognition" Proceeding of the First Conference on Artificial Life, 96-104.

[25] Nehmzow, U., 2000. Mobile Robotics: A Practical Introduction. Springer

[26] Nilsson, N. J., 1969 "A Mobile Automation: An Application of AI Techniques"

Proceedings of the First International Joint Conference on Artificial Intelligence,

509-520.

[27] Orlando, N. E., 1984. "An Intelligent Robotics Control Scheme" American Control

Conference.

[28] Payton, D., Rosenblatt, J. and Keirsey, D., 1990. “Plan Guided Reaction” IEEE

Transactions on Systems, Man and Cybernetics, Vol. 20, No. 6, 1370-1382.

[29] Saffiotti, A., 1997. "Handling Uncertainty in Control of Autonomous Robots"

Technical Report TR/IRIDIA/97-8.

[30] Toal, D., Flanagan, C., Jones, C. and Strunz, B., 1996. “Subsumption Architecture for

the Control of Robot” IMC-13, Limerick.

[31] Zimmer, U., 1996. "Robust World Modelling and Navigation in a Real World"

Neurocompputing, Vol. 13, No. 2-4.

141

APPENDIX 1

Robot Specifications

Weight 3 kg
Height 30 cm
Width 30 cm
Maximum Speed 0.5 m/s
Power Source 12V Lead Acid Battery or

External Power Supply
Motion 2 12V DC Motors
Motion Feedback 2 Incremental Shaft Encoders
Drive System Differential
Main Controller 586 CPU

8 MB RAM
2 MB Solid State Hard Disk

Sensors 8 Sonar Sensors

142

APPENDIX 2

Motor Data

The motors used on the robot were 12V DC Motors from Maxon. The table below lists

some of the important operating parameters for them.

Assigned power rating 4 Watts

Nominal voltage 12V

No load speed 4090 rpm

Stall torque 31.9 mNm

Speed/torque gradient 129 rpm/mNm

No load current 12.3 mA

Starting Current 1150 mA

Terminal Resistance 10.4 Ω

Max. permissible speed 6400 rpm

Max. continuous current 493mA

Max. continuous torque 13.66 mNm

Max. power output at nominal voltage 3410 mW

Max. efficiency 81%

Torque constant 27.7 mNm/A

Speed constant 345 rpm/V

Rotor inertia 24.8 g/cm2

143

APPENDIX 3

Sonar Software Listing

/***
* *
* Sonar System Control Software *
* Version 1.0 *
* *
* Written By Mark Leyden *
* 20 August 1999 *
* *
***/

#include <at89x52.h>
#include <stdio.h>
#include <math.h>

#define Baud_300 0xA0
#define Baud_600 0xD0
#define Baud_1200 0xE8
#define Baud_2400 0xF4
#define Baud_4800 0xFA
#define Baud_9600 0xFD

/* First Sensor Group */
#define SENSOR_0 P2_0
#define SENSOR_45 P0_6
#define SENSOR_90 P0_7

/* Second Sensor Group */
#define SENSOR_135 P2_1
#define SENSOR_180 P2_2
#define SENSOR_225 P2_3

/* Third Sensor Group */
#define SENSOR_270 P2_4

144

#define SENSOR_315 P2_5
#define SENSOR_360 P2_6

/* Initiate signals for the ultrasonic ranging boards */
#define INIT1 P0_0
#define INIT2 P0_2
#define INIT3 P0_1
/* Echo signals from the ultrasonic ranging boards */
#define ECHO1 P1_0
#define ECHO2 P1_2
#define ECHO3 P1_1

/* Blank Inhibit signals for the ultrasonic ranging boards */
#define BINH1 P0_3
#define BINH2 P0_5
#define BINH3 P0_4

#define true 1
#define false 0
#define BOOL unsigned int

void main(void)
{
 unsigned int blanking_time;
 unsigned int delay_time;
 unsigned int echo_time;

 /* These store the echo times returned from each sensor */
 unsigned int sensor_echo1_time[3];
 unsigned int sensor_echo2_time[3];
 unsigned int sensor_echo3_time[3];

 unsigned int firing_sensor_group; /* Specifies which group is currenty active */
 BOOL ECHO1_RECEIVED; /* Indicate if echoes have been received */
 BOOL ECHO2_RECEIVED;
 BOOL ECHO3_RECEIVED;

 unsigned int distance_0;
 unsigned int distance_45;
 unsigned int distance_90;
 unsigned int distance_135;
 unsigned int distance_180;
 unsigned int distance_225;
 unsigned int distance_270;
 unsigned int distance_315;
 unsigned int distance_360;

 /* Set up serial communications */
 SCON = 0x52;

145

 TMOD = 0x22;
 TCON = 0xC0;

 TH1 = Baud_2400;
 TR1 = 1; /* Enables timer 1 */
 TI = 1;
 /* Set up timer zero */
 TMOD &= 0xF0; /* Sets timer 0 up in mode 1 */
 TMOD |= 1; /* 16-bit timer incrementing every machine cycle */

 firing_sensor_group = 1;

 /* Activate the sensors for the first firing group */
 SENSOR_0 = 1;
 SENSOR_45 = 0;
 SENSOR_90 = 0;

 SENSOR_135 = 1;
 SENSOR_180 = 0;
 SENSOR_225 = 0;

 SENSOR_270 = 1;
 SENSOR_315 = 0;
 SENSOR_360 = 0;

 INIT1 = 0;
 INIT2 = 0;
 INIT3 = 0;
 ECHO1 = 1; /* Writing a one to these pins makes them an input */
 ECHO2 = 1;
 ECHO3 = 1;
 BINH1 = 0;
 BINH2 = 0;
 BINH3 = 0;

 TL0 = 0;
 TH0 = 0;
 TR0 = 1;
 delay_time = 0;

 /* Provides a 5 ms delay */
 while (delay_time < 4608)
 {
 delay_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 delay_time <<= 8;
 delay_time |= (int)TL0;
 }

146

 TR0 = 0;

 while (1)
 {
 for (firing_sensor_group = 1; firing_sensor_group < 4; firing_sensor_group++)
 {
 ECHO1_RECEIVED = false;
 ECHO2_RECEIVED = false;
 ECHO3_RECEIVED = false;

 /* The following statements check which firing group is currently active, and then
 select the appropiate sensors for that particular group. This is accomplished by
 writing a logic one to the gate of each sensor's mosfet. */

 if (firing_sensor_group == 1)
 {
 SENSOR_0 = 1; SENSOR_45 = 0; SENSOR_90 = 0;
 SENSOR_135 = 1; SENSOR_180 = 0; SENSOR_225 = 0;
 SENSOR_270 = 1; SENSOR_315 = 0; SENSOR_360 = 0;
 }

 else if (firing_sensor_group == 2)
 {
 SENSOR_0 = 0; SENSOR_45 = 1; SENSOR_90 = 0;
 SENSOR_135 = 0; SENSOR_180 = 1; SENSOR_225 = 0;
 SENSOR_270 = 0; SENSOR_315 = 1; SENSOR_360 = 0;
 }

 else if (firing_sensor_group == 3)
 {
 SENSOR_0 = 0; SENSOR_45 = 0; SENSOR_90 = 1;
 SENSOR_135 = 0; SENSOR_180 = 0; SENSOR_225 = 1;
 SENSOR_270 = 0; SENSOR_315 = 0; SENSOR_360 = 1;
 }

 /* Initiate each ultrasonic ranging board */
 INIT1 = 1;
 INIT2 = 1;
 INIT3 = 1;
 TL0 = 0;
 TH0 = 0;
 TR0 = 1;
 blanking_time = 0;

 /* In order to prevent ringing of the transducers from being detected as a return signal,
 the receive input of the ultrasonic ranging board's control IC is inhibited by internal
 blanking for 2.38 ms after the initiate signal. With this blanking time, only distances
 of 1.33 ft and over can be measured. To detect objects closer than this, the internal

147

 blanking time must be reduced. This is achived by taking the BINH (blank inhibit)
 input high. By taking this input high after 0.45 ms, distances of as little as 7 to 8
 inches can be measured. */

 while (blanking_time < 830) /* Provides a 0.45 ms delay */
 {
 blanking_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 blanking_time <<= 8;
 blanking_time |= (int)TL0;
 }

 BINH1 = 1;
 BINH2 = 1;
 BINH3 = 1;

 while (ECHO1_RECEIVED == false || ECHO2_RECEIVED == false ||
 ECHO3_RECEIVED == false)
 {
 if (ECHO1 == 1 && ECHO1_RECEIVED == false)
 {
 echo_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 echo_time <<= 8;
 echo_time |= (int)TL0;
 sensor_echo1_time[firing_sensor_group - 1] = echo_time;
 ECHO1_RECEIVED = true;
 }

 if (ECHO2 == 1 && ECHO2_RECEIVED == false)
 {
 echo_time = (int)TH0;
 echo_time <<= 8;
 echo_time |= (int)TL0;
 sensor_echo2_time[firing_sensor_group - 1] = echo_time;
 ECHO2_RECEIVED = true;
 }

 if (ECHO3 == 1 && ECHO3_RECEIVED == false)
 {
 echo_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 echo_time <<= 8;
 echo_time |= (int)TL0;
 sensor_echo3_time[firing_sensor_group - 1] = echo_time;
 ECHO3_RECEIVED = true;
 }
 }

 delay_time = 0;
 while (delay_time < 46080)
 {

148

 delay_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 delay_time <<= 8;
 delay_time |= (int)TL0;
 }

 TR0 = 0;
 TL0 = 0;
 TH0 = 0;
 TR0 = 1;
 delay_time = 0;

 while (delay_time < 46080)
 {
 delay_time = (int)TH0; /* Read in timer's counter and convert to an integer */
 delay_time <<= 8;
 delay_time |= (int)TL0;
 }

 TR0 = 0; /* Switch timer off */

 INIT1 = 0;
 INIT2 = 0;
 INIT3 = 0;
 BINH1 = 0;
 BINH2 = 0;
 BINH3 = 0;
 }

 distance_0 = (sensor_echo1_time[0] * 13.02) / 1800;
 distance_45 = (sensor_echo1_time[1] * 13.02) / 1800;
 distance_90 = (sensor_echo1_time[2] * 13.02) / 1800;
 distance_135 = (sensor_echo2_time[0] * 13.02) / 1800;
 distance_180 = (sensor_echo2_time[1] * 13.02) / 1800;
 distance_225 = (sensor_echo2_time[2] * 13.02) / 1800;
 distance_270 = (sensor_echo3_time[0] * 13.02) / 1800;
 distance_315 = (sensor_echo3_time[1] * 13.02) / 1800;
 distance_360 = (sensor_echo3_time[2] * 13.02) / 1800;

 printf("S%03d%03d%03d%03d%03d%03d%03d%03d%03dE", distance_0,
 distance_45, distance_90, distance_135, distance_180, distance_225,
 distance_270, distance_315,distance_360);

 }
}

149

APPENDIX 4

Control Software Listing

/**

*
*
* Robot Control Software Version 1.0
*
*
*
* Written By Mark Leyden
*
* 3 February 2000
*
*
*
*
*
*
*

******/

#include "includes.h"
#include <math.h>

#define TASK_STK_SIZE 512 /* Size of each task's stacks (# of
WORDs) */

#define TASK_START_ID 0 /* Application tasks IDs
*/
#define TASK_SONAR_ID 1
#define TASK_MOTOR_ID 2
#define TASK_CRUISE_ID 3
#define TASK_ARBITRATOR_ID 4
#define TASK_LIGHT_ID 5
#define TASK_TARGET_ID 6
#define TASK_EDGE_ID 7
#define TASK_MAP_ID 8
#define TASK_LEFT_WALL_ID 9
#define TASK_CONCAVE_ID 10
#define TASK_CONVEX_ID 11
#define TASK_RIGHT_WALL_ID 12
#define TASK_NAVIGATE_ID 13
#define TASK_LOCALIZATION_ID 14
#define TASK_SEARCH_FOR_WALL_ID 15

#define TASK_START_PRIO 10 /* Application tasks priorities
*/
#define TASK_SONAR_PRIO 11
#define TASK_MOTOR_PRIO 12

150

#define TASK_CRUISE_PRIO 13
#define TASK_ARBITRATOR_PRIO 14
#define TASK_LIGHT_PRIO 15
#define TASK_TARGET_PRIO 16
#define TASK_EDGE_PRIO 17
#define TASK_MAP_PRIO 18
#define TASK_LEFT_WALL_PRIO 19
#define TASK_CONCAVE_PRIO 20
#define TASK_CONVEX_PRIO 21
#define TASK_RIGHT_WALL_PRIO 22
#define TASK_NAVIGATE_PRIO 23
#define TASK_LOCALIZATION_PRIO 24
#define TASK_SEARCH_FOR_WALL_PRIO 25

/* Address of com port 2 */
#define PORT1 0x2F8

/* Motor definitions */
#define forward 0
#define reverse 1
#define LEFT 1
#define RIGHT 0

#define true 1
#define false 0

/* Register definitions for the 8255 */
#define ppi_control 0x303
#define ppi_portc 0x302
#define ppi_portb 0x301
#define ppi_porta 0x300
#define ppi_control2 0x30B
#define ppi_portc2 0x30A
#define ppi_portb2 0x309

/* Register definitions for the ADC */
#define adc_in1 0x310
#define adc_in2 0x311

#define con 100
#define convex 0
#define concave 1
#define door 2

unsigned char cruise_left_motor_speed;
unsigned char cruise_right_motor_speed;
unsigned char cruise_left_motor_direction;
unsigned char cruise_right_motor_direction;

unsigned char avoid_left_motor_speed;
unsigned char avoid_right_motor_speed;
unsigned char avoid_left_motor_direction;
unsigned char avoid_right_motor_direction;

unsigned char light_left_motor_speed;
unsigned char light_right_motor_speed;
unsigned char light_left_motor_direction;
unsigned char light_right_motor_direction;

151

unsigned char follow_left_motor_speed;
unsigned char follow_right_motor_speed;
unsigned char follow_left_motor_direction;
unsigned char follow_right_motor_direction;

unsigned char concave_left_motor_speed;
unsigned char concave_right_motor_speed;
unsigned char concave_left_motor_direction;
unsigned char concave_right_motor_direction;

unsigned char convex_left_motor_speed;
unsigned char convex_right_motor_speed;
unsigned char convex_left_motor_direction;
unsigned char convex_right_motor_direction;

unsigned char search_left_motor_speed;
unsigned char search_right_motor_speed;
unsigned char search_left_motor_direction;
unsigned char search_right_motor_direction;

unsigned int obstacle_avoidance_behaviour_active;
unsigned int cruise_behaviour_active;
unsigned int light_following_behaviour_active;
unsigned int edge_following_behaviour_active;
unsigned int convex_corner_or_door_behaviour_active;
unsigned int concave_corner_behaviour_active;
unsigned int left_wall_following_behaviour_active;
unsigned int right_wall_following_behaviour_active;
unsigned int search_for_wall_behaviour_active;
unsigned int navigation_behaviour_active;

unsigned int distance[20];
unsigned int convex_corner;
unsigned int concave_corner;
unsigned int door_detected;

unsigned int concave_corner_complete;
unsigned long distance_behind;
unsigned long distance_to_start_of_convex_corner_or_door;

int num_nodes;
int count;
int stop;
int counter;
int node_type[3];
int node_distance_to_previous[3];
int current_node;
int locked_onto_left_wall;
int locked_onto_right_wall;
int map_exists;

/* Helper Functions */
unsigned char Read_Register(unsigned int motor, unsigned char
reg_address);
void Write_To_Register(unsigned int motor, unsigned char reg_address,
unsigned char value);
void Goto_Position(unsigned int motor, unsigned long distance, unsigned
char direction);

152

void Set_Integral_Velocity(unsigned int motor, unsigned char velocity,
unsigned char acceleration, unsigned char direction);
void Set_Trapezoid_Profile_Move(unsigned int motor, unsigned long
distance, unsigned char velocity, unsigned char acceleration, unsigned
char direction);
unsigned long Read_Actual_Position(unsigned int motor);
unsigned int _min(unsigned int x, unsigned int y);
void Clear_Motor_Flag_Registers(void);
void Reset_Motor_Counters(void);
unsigned char Lsb2Msb(unsigned char ch);
void Write_Nodes_To_File(void);

/* Task Functions */
void Acquire_Sonar_Data(void *data);
void Obstacle_Avoidance(void *data);
void Cruise(void *data);
void Arbitrator(void *data);
void Follow_Light(void *data);
void Goto_Target(void *data);
void Mapping(void *data);
void Follow_Left_Wall(void *data);
void Follow_Right_Wall(void *data);
void Detect_Concave_Corner(void *data);
void Detect_Convex_Corner_Or_Door(void *data);
void Navigate(void *data);
void Localization(void *data);
void Search_For_Wall(void *data);
void TaskStart(void *data);

OS_STK TaskStartStk[TASK_STK_SIZE];
OS_STK Acquire_Sonar_DataStk[TASK_STK_SIZE];
OS_STK CruiseStk[TASK_STK_SIZE];
OS_STK ArbitratorStk[TASK_STK_SIZE];
OS_STK LightStk[TASK_STK_SIZE];
OS_STK TargetStk[TASK_STK_SIZE];
OS_STK MapStk[TASK_STK_SIZE];
OS_STK LeftWallStk[TASK_STK_SIZE];
OS_STK RightWallStk[TASK_STK_SIZE];
OS_STK ConcaveStk[TASK_STK_SIZE];
OS_STK ConvexStk[TASK_STK_SIZE];
OS_STK NavigateStk[TASK_STK_SIZE];
OS_STK LocalizationStk[TASK_STK_SIZE];
OS_STK Search_For_WallStk[TASK_STK_SIZE];

struct node_structure
{
 int type;
 int next;
 unsigned long distance_to_next;
 int previous;
 unsigned long distance_to_previous;
} node[100];

struct temp_node_structure
{
 int type;
 int next;
 unsigned long distance_to_next;

153

 int previous;
 unsigned long distance_to_previous;
} temp_node[100];

void main (void)
{

/* Set up serial communications for com port two.
 Baud rate is set to 2400. */
outportb(PORT1 + 1, 0);
outportb(PORT1 + 3, 0x80);
outportb(PORT1 + 0, 0x30);
outportb(PORT1 + 1, 0x00);
outportb(PORT1 + 3, 0x03);
outportb(PORT1 + 2, 0xC7);
outportb(PORT1 + 4, 0x0B);

/* Initialize variables */
counter = 0;
num_nodes = 0;
stop = 0;
count = 0;
distance_behind = 0;
current_node = -1;
convex_corner = false;
concave_corner = false;
door_detected = false;
concave_corner_complete = false;
locked_onto_left_wall = false;
locked_onto_right_wall = false;
map_exists = true;

cruise_behaviour_active = 0;
obstacle_avoidance_behaviour_active = 0;
light_following_behaviour_active = 0;
edge_following_behaviour_active = 0;
left_wall_following_behaviour_active = 0;
right_wall_following_behaviour_active = 0;
concave_corner_behaviour_active = 0;
convex_corner_or_door_behaviour_active = 0;
search_for_wall_behaviour_active = 0;
navigation_behaviour_active = 0;

OSTimeDlyHMSM(0, 0, 2, 0);

OSInit(); /* Initialize uC/OS-II
*/

PC_DOSSaveReturn(); /* Save environment to return to DOS
*/

PC_VectSet(uCOS, OSCtxSw); /* Install uC/OS-II's context switch vector
*/

OSTaskCreateExt(TaskStart, (void *)0, &TaskStartStk[TASK_STK_SIZE-1],
TASK_START_PRIO,

 TASK_START_ID, &TaskStartStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSStart(); /* Start multitasking
*/
}

154

void TaskStart(void *data)
{

data = data; /* Prevent compiler warning
*/

OS_ENTER_CRITICAL();
PC_VectSet(0x08, OSTickISR); /* Install uC/OS-II's clock tick

ISR */
PC_SetTickRate(OS_TICKS_PER_SEC); /* Reprogram tick rate

*/
OS_EXIT_CRITICAL();

OSStatInit(); /* Initialize uC/OS-II's statistics
*/

OSTaskCreateExt(Acquire_Sonar_Data, (void *)0,
&Acquire_Sonar_DataStk[TASK_STK_SIZE-1], TASK_SONAR_PRIO,

 TASK_SONAR_ID, &Acquire_Sonar_DataStk[0], TASK_STK_SIZE,
(void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
/*OSTaskCreateExt(Obstacle_Avoidance, (void *)0,

&MotorStk[TASK_STK_SIZE-1], TASK_MOTOR_PRIO,
 TASK_MOTOR_ID, &MotorStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Cruise, (void *)0, &CruiseStk[TASK_STK_SIZE-1],
TASK_CRUISE_PRIO,

 TASK_CRUISE_ID, &CruiseStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);*/

OSTaskCreateExt(Arbitrator, (void *)0, &ArbitratorStk[TASK_STK_SIZE-
1], TASK_ARBITRATOR_PRIO,

 TASK_ARBITRATOR_ID, &ArbitratorStk[0], TASK_STK_SIZE,
(void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
/*OSTaskCreateExt(Follow_Light, (void *)0, &LightStk[TASK_STK_SIZE-1],

TASK_LIGHT_PRIO,
 TASK_LIGHT_ID, &LightStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Goto_Target, (void *)0, &TargetStk[TASK_STK_SIZE-1],
TASK_TARGET_PRIO,

 TASK_TARGET_ID, &TargetStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Edge_Following, (void *)0, &EdgeStk[TASK_STK_SIZE-1],
TASK_EDGE_PRIO,

 TASK_EDGE_ID, &LightStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);*/

OSTaskCreateExt(Follow_Left_Wall, (void *)0,
&LeftWallStk[TASK_STK_SIZE-1], TASK_LEFT_WALL_PRIO,

 TASK_LEFT_WALL_ID, &LeftWallStk[0], TASK_STK_SIZE, (void
*)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
OSTaskCreateExt(Follow_Right_Wall, (void *)0,

&RightWallStk[TASK_STK_SIZE-1], TASK_RIGHT_WALL_PRIO,
 TASK_RIGHT_WALL_ID, &RightWallStk[0], TASK_STK_SIZE, (void

*)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Detect_Concave_Corner, (void *)0,
&ConcaveStk[TASK_STK_SIZE-1], TASK_CONCAVE_PRIO,

 TASK_CONCAVE_ID, &ConcaveStk[0], TASK_STK_SIZE, (void *)0,

155

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
OSTaskCreateExt(Detect_Convex_Corner_Or_Door, (void *)0,

&ConvexStk[TASK_STK_SIZE-1], TASK_CONVEX_PRIO,
 TASK_CONVEX_ID, &ConvexStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Search_For_Wall, (void *)0,
&Search_For_WallStk[TASK_STK_SIZE-1], TASK_SEARCH_FOR_WALL_PRIO,

 TASK_SEARCH_FOR_WALL_ID, &Search_For_WallStk[0],
TASK_STK_SIZE, (void *)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
OSTaskCreateExt(Mapping, (void *)0, &MapStk[TASK_STK_SIZE-1],

TASK_MAP_PRIO,
 TASK_MAP_ID, &MapStk[0], TASK_STK_SIZE, (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(Navigate, (void *)0, &NavigateStk[TASK_STK_SIZE-1],
TASK_NAVIGATE_PRIO,

 TASK_NAVIGATE_ID, &NavigateStk[0], TASK_STK_SIZE, (void
*)0,

 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);
OSTaskCreateExt(Localization, (void *)0,

&LocalizationStk[TASK_STK_SIZE-1], TASK_LOCALIZATION_PRIO,
 TASK_LOCALIZATION_ID, &LocalizationStk[0], TASK_STK_SIZE,

(void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

while (1)
{

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

/**

*
*
* Acquire_Sonar_Data Routine
*
*
*
* This function reads in the sonar data from the serial port. This data
is *
* transmitted from the 8051 every time a complete scan of all the
ultrasonic *
* sensors is performed. This occurs approximately 2 times a second. The
data *
* is transmitted in the form of a packet. At the start of the packet is
a *
* START character denmoted by the letter 'S'. This is used to signify
the *
* start of the packet. Following this are 27 bytes which comprise the
sonar *
* data. Since 9 ultrasonic sensors are used on the robot, each range
reading *
* consists of 3 bytes. For example, if a sensor detected an obstacle at
25 *
* inches away, the three character bytes transmitted for this value
would be *
* '025'. At the end of the packet is an END character which signifies
the end *

156

* of the packet. The function constantly polls the serial port for any
*
* received characters. Initially, the function waits till a start
character *
* is received. Once this is received, the next 27 bytes are stored in an
*
* array. After this, the function waits till the END character is
received. *
* Following this, the function processes the 27 bytes received and
stores *
* the range readings for each of the ultrasonic sensors in a series of
global *
* variables. These variables can then be read by any other function.
*
*
*

******/

void Acquire_Sonar_Data(void *data)
{
 int c, ch, counter, start_char;
 char sentence[50];

 data = data;

 start_char = FALSE;
 counter = 0;

 while (1)
 {

c = inportb(PORT1 + 5);
if (c & 1)
{
 ch = inportb(PORT1);

 if (start_char == FALSE && ch == 'S') start_char = TRUE;
 else if (start_char == TRUE)
 {

sentence[counter++] = ch;
if (counter == 27) sentence[counter] = '\n';
if (counter == 28)
{
 if (ch == 'E')
 {

sscanf(sentence, "%3d%3d%3d%3d%3d%3d%3d%3d%3d",
 &distance[0], &distance[1], &distance[2],
 &distance[3], &distance[4], &distance[5],
 &distance[6], &distance[7], &distance[8]);

 }
 start_char = FALSE;
 counter = 0;
}

 }
}
OSTimeDlyHMSM(0, 0, 0, 5);

 }
}

157

/**

*
*
* Obstacle Avoidance Routine
*
*
*
* This function is the obstacle avoidance behaviour. Depending on which
*
* sensor detects an obstacle, the speed of the motors is increased and
*
* decreased by varying amounts. The behaviour will only become active if
an *
* obstacle is detected within a certain range.
*
*
*

******/

/*void Obstacle_Avoidance(void *data)
{
 unsigned int index;
 unsigned long position;

 unsigned int forward_distance;
 unsigned int left_distance;
 unsigned int right_distance;
 unsigned int left_forward_distance;
 unsigned int right_forward_distance;
 unsigned int reverse_distance;
 unsigned int left_reverse_distance;
 unsigned int right_reverse_distance;

 unsigned int s[9];
 int left_o, right_o;
 int speed_l, speed_r;
 int temp;
 unsigned char speed;
 //int w_l[6] = { 1, 2, 0, -9, -5, -2 };
 //int w_r[6] = { -2, -5, -9, 0, 2, 1 };
 int w_l[6] = { 1, 2, 0, -9, -3, -2 };
 int w_r[6] = { -2, -3, -9, 0, 2, 1 };
 int cond[6] = { 15, 18, 20, 20, 18, 15 };

 data = data;

 //outportb(ppi_control2, 0x83);
 //outportb(ppi_portc2, 0xF0);

 Write_To_Register(LEFT, 0x00, 0x00);
 Write_To_Register(LEFT, 0x02, 0x00);
 Write_To_Register(LEFT, 0x03, 0x00);
 Write_To_Register(LEFT, 0x04, 0x00);
 Write_To_Register(LEFT, 0x05, 0x00);

 Write_To_Register(RIGHT, 0x00, 0x00);
 Write_To_Register(RIGHT, 0x02, 0x00);

158

 Write_To_Register(RIGHT, 0x03, 0x00);
 Write_To_Register(RIGHT, 0x04, 0x00);
 Write_To_Register(RIGHT, 0x05, 0x00);

 Write_To_Register(RIGHT, 0x13, 0x00); // Sets actual position counter
to zero
 Write_To_Register(RIGHT, 0x0F, 0xFF); // Sets sample timer period to
4096 uS
 Write_To_Register(RIGHT, 0x05, 0x03);
 Write_To_Register(LEFT, 0x13, 0x00); // Sets actual position counter to
zero
 Write_To_Register(LEFT, 0x0F, 0xFF); // Sets sample timer period to
4096 uS
 Write_To_Register(LEFT, 0x05, 0x03);

 while (1)
 {

s[0] = distance[6];
s[1] = distance[7];
s[2] = distance[8];
s[3] = distance[0];
s[4] = distance[1];
s[5] = distance[2];

left_o = 0;
right_o = 0;

for (index = 0; index < 6; index++)
{
 if (s[index] < cond[index])
 {

left_o += w_l[index];
right_o += w_r[index];

 }
}

speed_l = 8 + left_o;
speed_r = 8 + right_o;

if (speed_l < 0)
{
 temp = abs(speed_l);
 avoid_left_motor_speed = (unsigned char)temp;
 avoid_left_motor_direction = reverse;
}
else
{
 avoid_left_motor_speed = (unsigned char)speed_l;
 avoid_left_motor_direction = forward;
}

if (speed_r < 0)
{
 temp = abs(speed_r);
 avoid_right_motor_speed = (unsigned char)temp;
 avoid_right_motor_direction = reverse;
}
else
{

159

 avoid_right_motor_speed = (unsigned char)speed_r;
 avoid_right_motor_direction = forward;
}

// Determines if the behaviour should become active
if (!(speed_l == 8 && speed_r == 8))
 obstacle_avoidance_behaviour_active = 1;
else
 obstacle_avoidance_behaviour_active = 0;

OSTimeDlyHMSM(0, 0, 0, 10);
 }
}*/

/**

*
*
* Cruise Routine
*
*
*
* This function is the cruise behaviour. It simply causes the robot to
drive *
* around. Since this is the lowest level behaviour, it is always active.
*
*
*

******/

/*void Cruise(void *data)
{
 data = data;

 while (1)
 {

cruise_left_motor_speed = 8;
cruise_right_motor_speed = 8;
cruise_left_motor_direction = forward;
cruise_right_motor_direction = forward;
cruise_behaviour_active = 1;

OSTimeDlyHMSM(0, 0, 0, 10);
 }
}*/

/**

*
*
* Follow_Light Routine
*
*
*
* This function is the light following behaviour. It is used to track a
light *
* source detected by the robots photcells.
*

160

*
*

******/

/*void Follow_Light(void *data)
{
 unsigned char chl;
 unsigned char chr;
 int diff;

 data = data;

 outportb(ppi_control2, 0x93);
 outportb(ppi_portc2, 0xF0);

 //outportb(ppi_control2, 0x91);
 //outportb(ppi_portc2, 0xF0);

 while (1)
 {

//outportb(ppi_portb2, 0x55);
outportb(adc_in1, 0x00);
OSTimeDlyHMSM(0, 0, 0, 1);
chl = inportb(adc_in1);
chl = Lsb2Msb(chl);

OSTimeDlyHMSM(0, 0, 0, 10);

outportb(adc_in2, 0x00);
OSTimeDlyHMSM(0, 0, 0, 1);
chr = inportb(adc_in2);
chr = Lsb2Msb(chr);

diff = (int)chl - (int)chr;

printf("num1 = %d num2 = %d ..\n", (int)chl, (int)chr);
OSTimeDlyHMSM(0, 0, 0, 333);

// If the right photocell detects a light, then turn right
if (abs(diff) > 35 && chl < chr)
{
 light_left_motor_speed = 10;
 light_right_motor_speed = 5;
 light_left_motor_direction = forward;
 light_right_motor_direction = reverse;

 light_following_behaviour_active = 1;
}

// If the left photocell detects a light, then turn left
else if (abs(diff) > 35 && chl > chr)
{
 light_left_motor_speed = 5;
 light_right_motor_speed = 10;
 light_left_motor_direction = reverse;
 light_right_motor_direction = forward;

 light_following_behaviour_active = 1;

161

}

else
 light_following_behaviour_active = 0;

OSTimeDlyHMSM(0, 0, 0, 10);
 }
}*/

/**

*
*
* Goto_Target Routine
*
*
*
* This function is the target seeking behaviour. It drives the robot
towards *
* a predefined target location.
*
*
*

******/

/*void Goto_Target(void *data)
{
 int x1, y1, x2, y2;
 double heading;
 double wheel;
 //double cur_heading;
 double distance;
 double angle;

 data = data;

 //OSTimeDlyHMSM(0, 0, 5, 0);

 outportb(ppi_control2, 0x83);
 outportb(ppi_portc2, 0xF0);

 while (1)
 {

Clear_Motor_Flag_Registers();

//Write_To_Register(RIGHT, 0x13, 0x00); // Sets actual position
counter to zero

Write_To_Register(RIGHT, 0x0F, 0xFF); // Sets sample timer period to
4096 uS

Write_To_Register(RIGHT, 0x05, 0x03);
//Write_To_Register(LEFT, 0x13, 0x00); // Sets actual position counter

to zero
Write_To_Register(LEFT, 0x0F, 0xFF); // Sets sample timer period to

4096 uS
Write_To_Register(LEFT, 0x05, 0x03);

x1 = 0;
y1 = 0;

162

x2 = 48;
y2 = 48;

if (x2 > x1 && y1 == y2) heading = 90.;
else if (x2 < x1 && y1 == y2) heading = 270.;
else if (x1 == x2 && y1 < y2) heading = 0.;
else if (x1 == x2 && y1 > y2) heading = 180.;

else
{

angle = atan(((double)(y2 - y1) / (double)(x2 - x1)));
angle = angle * 57.3;
if (x2 > x1 && y2 > y1) heading = 90. - angle;
else if (x2 < x1 && y2 < y1) heading = 270. - angle;
else if (x2 < x1 && y2 > y1) heading = 270. - angle;
else if (x2 > x1 && y2 < y1) heading = 90. - angle;

}

if (heading < 0) heading = heading + 360;
//if (cur_heading < heading) heading -= cur_heading;
//else heading += cur_heading;

if (heading < 0) heading = 0 - heading;

distance = sqrt((double)(x2 - x1)*(double)(x2 - x1) + (double)(y2 -
y1)*(double)(y2 - y1));

distance = distance / 8.29576 * 2000;
//wheel = (14.82439 / 360 * heading) / 8.29576 * 2000;
//heading = 45.0;
//distance = 50;
//printf("Heading = %f\n", heading);
if (heading >= 0 && heading <= 180)
{

wheel = (31.0 / 360 * heading) / 8.29576 * 2000;
Set_Trapezoid_Profile_Move(LEFT, (unsigned long)wheel, 8, 15,

forward);
Set_Trapezoid_Profile_Move(RIGHT, (unsigned long)wheel, 8, 15,

reverse);
}
else
{

wheel = (31.0 / 360 * (360 - heading)) / 8.29576 * 2000;
Set_Trapezoid_Profile_Move(LEFT, (unsigned long)wheel, 8, 15,

reverse);
Set_Trapezoid_Profile_Move(RIGHT, (unsigned long)wheel, 8, 15,

forward);
}

while ((inportb(ppi_portc2) & 0x05) != 0x00) ;
Set_Trapezoid_Profile_Move(LEFT, (unsigned long)distance, 8, 15,

forward);
Set_Trapezoid_Profile_Move(RIGHT, (unsigned long)distance, 8, 15,

forward);
while ((inportb(ppi_portc2) & 0x05) != 0x00) ;

while (1) ;
//exit(0);

OSTimeDlyHMSM(0, 0, 0, 10);

163

 }
}*/

/**

*
*
* Arbitrator Routine
*
*
*
* This function is the arbitrator. This is used to decide which beaviour
*
* should be active at any given time. Since subsumption is used as the
*
* control architecture, a priority based arbitration mehanism is used.
Higher *
* level behaviours are given higher precedence over lower level
behaviours. *
*
*

******/

void Arbitrator(void *data)
{
 INT32U clk;
 INT32U clk_start;

 data = data;

 OSTimeDlyHMSM(0, 0, 2, 0);
 Clear_Motor_Flag_Registers();
 Reset_Motor_Counters();

 while (1)
 {

if (search_for_wall_behaviour_active == true)
{

Set_Integral_Velocity(LEFT, search_left_motor_speed, 20,
search_left_motor_direction);

Set_Integral_Velocity(RIGHT, search_right_motor_speed, 20,
search_right_motor_direction);

}

else if (concave_corner_behaviour_active == true)
{

Set_Integral_Velocity(LEFT, concave_left_motor_speed, 20,
concave_left_motor_direction);

Set_Integral_Velocity(RIGHT, concave_right_motor_speed, 20,
concave_right_motor_direction);

}

else if (convex_corner_or_door_behaviour_active == true)
{

Set_Integral_Velocity(LEFT, convex_left_motor_speed, 20,
convex_left_motor_direction);

Set_Integral_Velocity(RIGHT, convex_right_motor_speed, 20,
convex_right_motor_direction);

164

}

else if (left_wall_following_behaviour_active == true)
{

Set_Integral_Velocity(LEFT, follow_left_motor_speed, 20,
follow_left_motor_direction);

Set_Integral_Velocity(RIGHT, follow_right_motor_speed, 20,
follow_right_motor_direction);

}

else if (right_wall_following_behaviour_active == true)
{

Set_Integral_Velocity(LEFT, follow_left_motor_speed, 20,
follow_left_motor_direction);

Set_Integral_Velocity(RIGHT, follow_right_motor_speed, 20,
follow_right_motor_direction);

}

OSTimeDlyHMSM(0, 0, 0, 10);
 }
}

unsigned long Read_Actual_Position(unsigned int motor)
{
 unsigned long temp, position;
 unsigned char reg1, reg2, reg3;

 reg3 = Read_Register(motor, 0x14);
 reg2 = Read_Register(motor, 0x13);
 reg1 = Read_Register(motor, 0x12);
 temp = (long)reg2;
 temp <<= 8;
 temp |= (long)reg3;
 position = (long)reg1;
 position <<= 16;
 position |= temp;
 return (position / 241);
}

/**

*
*
* Write_To_Register Routine
*
*
*
* This function writes an 8-bit value to a specified register of the
*
* HCTL-1100. The function takes three parameters - the desired motor to
use *
* (either left or right), the address of the register to write to and
the *
* 8-bit value to be written. The non-overlapped mode of interfacing is
used *
* used when writing a value to the controller.
*

165

*
*

******/

void Write_To_Register(unsigned int motor, unsigned char reg_address,
unsigned char value)
{
 unsigned int wait;
 outportb(ppi_control, 0x80);

 if (motor == LEFT)
 {

outportb(ppi_portc, reg_address);
outportb(ppi_porta, 0xFD); // ALE low
for (wait = 0; wait < con; wait++) ;
outportb(ppi_porta, 0xFA); // ALE high, CS low, R/W low
outportb(ppi_portc, value);
outportb(ppi_porta, 0xFE); // CS high
outportb(ppi_porta, 0xFF); // R/W high

 }

 else if (motor == RIGHT)
 {

outportb(ppi_portb, reg_address);
outportb(ppi_porta, 0xDF); // ALE low
for (wait = 0; wait < con; wait++) ;
outportb(ppi_porta, 0xAF); // ALE high, CS low, R/W low
outportb(ppi_portb, value);
outportb(ppi_porta, 0xEF); // CS high
outportb(ppi_porta, 0xFF); // R/W high

 }
}

/**

*
*
* Read_From_Register Routine
*
*
*
* This function reads an 8-bit value from a specified register of the
*
* HCTL-1100. The function takes two parameters - the desired motor to
use *
* (either left or right) and the address of the register to read from.
The *
* 8-bit value read from the controller is stored as a return value to
the *
* calling function. The non-overlapped mode of interfacing is used used
when *
* writing a value to the controller.
*
*
*

******/

166

unsigned char Read_Register(unsigned int motor, unsigned char
reg_address)
{
 unsigned char reg_value;
 unsigned int wait;

 outportb(ppi_control, 0x80);

 if (motor == LEFT)
 {

outportb(ppi_portc, reg_address);
outportb(ppi_porta, 0xFD); // ALE low
for (wait = 0; wait < con; wait++) ;
outportb(ppi_porta, 0xFB); // ALE high, CS low
outportb(ppi_porta, 0xFF); // CS high
outportb(ppi_porta, 0xF7); // OE low
outportb(ppi_control, 0x89);
reg_value = inportb(ppi_portc);
outportb(ppi_porta, 0xFF); // OE high

 }

 else if (motor == RIGHT)
 {

outportb(ppi_portb, reg_address);
outportb(ppi_porta, 0xDF); // ALE low
for (wait = 0; wait < con; wait++) ;
outportb(ppi_porta, 0xBF); // ALE high, CS low
outportb(ppi_porta, 0xFF); // CS high
outportb(ppi_porta, 0x7F); // OE low
outportb(ppi_control, 0x82);
reg_value = inportb(ppi_portb);
outportb(ppi_porta, 0xFF); // OE high

 }

 return reg_value;
}

/**

*
*
* Position Control Routine
*
*
*
* This routine sets up the HCTL-1100 to perform position control. This
*
* performs point to point position moves with no velocity profiling. The
user *
* specifies a 24-bit position command which the controller compares to
the *
* 24-bit actual position. The position error is calculated, the full
digital *
* lead compensation is applied and the motor command is output. The
*
* controller will remain position locked at a destination until a new
*
* position command is given. The function takes three parameters - the
*

167

* desired motor to use (either left or right), the distance to move and
the *
* direction in which to move (either forward or reverse).
*
*
*
* Registers used: OOH Flag register (all flags should be cleared)
*
* 0CH Command Position MSB (two's complement)
*
* 0DH Command Position (two's complement)
*
* 0EH Command Position LSB (two's complement)
*
*
*
* Parameters: motor - LEFT or RIGHT
*
* distance - Distance to move in encoder quadrature
*
* counts. One wheel revolution is equal
to *
* 2000 counts.
*
* direction - forward or reverse
*
*
*

******/

void Goto_Position(unsigned int motor, unsigned long distance, unsigned
char direction)
{
 unsigned long temp;

 if (direction == reverse) distance = 0xFFFFFF - distance;
 temp = distance >> 16;
 temp &= 0x0000FF;
 Write_To_Register(motor, 0x0C, (unsigned char)temp);
 temp = distance >> 8;
 temp &= 0x0000FF;
 Write_To_Register(motor, 0x0D, (unsigned char)temp);
 temp = distance & 0x0000FF;
 Write_To_Register(motor, 0x0E, (unsigned char)temp);
}

/**

*
*
* Integral Velocity Routine
*
*
*
* This routine sets up the HCTL-1100 to perform integral velocity
control. *

168

* This performs continuous velocity profiling. The function takes four
*
* parameters - the desired motor to use (either LEFT or RIGHT),
velocity, *
* acceleration and the direction of rotation for the motor (either
forward or *
* reverse).
*
*
*
* Registers used: OOH Flag register (F5 set to begin move)
*
* 26H Acceleration LSB
*
* 27H Acceleration MSB
*
* 3CH Command Velocity (two's complement)
*
* OFH Sample Timer
*
*
*
* Parameters: motor - LEFT or RIGHT
*
* velocity - A value between 0 and 15
*
* acceleration - A value between 0 and 20
*
* direction - forward or reverse
*
*
*

******/

void Set_Integral_Velocity(unsigned int motor, unsigned char velocity,
unsigned char acceleration, unsigned char direction)
{
 Write_To_Register(motor, 0x27, 0x00);
 Write_To_Register(motor, 0x26, acceleration);

 if (direction == forward)
 {

Write_To_Register(motor, 0x3C, velocity);
 }
 else if (direction == reverse)
 {

Write_To_Register(motor, 0x3C, 0xFF - velocity);
 }

 Write_To_Register(motor, 0x00, 0x0D);
}

/**

*
*
* Trapezoidal Profile Routine
*

169

*
*
* This routine sets up the HCTL-1100 to perform a trapeziodal profile
move. *
* This performs point to point position moves while at the same time
*
* profiling the velocity trajectory to a trapezoid or triangle. The
function *
* takes five parameters - the desired motor to use (either LEFT or
RIGHT), *
* the distance to move, acceleration, maximum velocity and the direction
in *
* which to move (either forward or reverse). The HCTL-1100 computes the
*
* necessary profile to conform to the command data. If maximum velocity
is *
* reached before the distance halfway point, the profile will be
trapezoidal, *
* otherwise the profile will be triangular.
*
*
*
* Registers used: OOH Flag register (F0 set to begin move)
*
* 26H Acceleration LSB
*
* 27H Acceleration MSB
*
* 28H Maximum Velocity
*
* 29H Final Position LSB
*
* 2AH Final Position
*
* 2BH Final Position MSB
*
* 13H Position Counter
*
* 0CH Command Position MSB (two's complement)
*
* 0DH Command Position (two's complement)
*
* 0EH Command Position LSB (two's complement)
*
* OFH Sample Timer
*
*
*
* Parameters: motor - LEFT or RIGHT
*
* distance - Distance to move in encoder quadrature
*
* counts. One wheel revolution is equal
to *
* 2000 counts.
*
* velocity - A value between 0 and 15
*

170

* acceleration - A value between 0 and 20
*
* direction - forward or reverse
*
*
*

******/

void Set_Trapezoid_Profile_Move(unsigned int motor, unsigned long
distance, unsigned char velocity, unsigned char acceleration, unsigned
char direction)
{
 unsigned long temp;

 Write_To_Register(motor, 0x0C, 0x00); // Sets the command position to 0
 Write_To_Register(motor, 0x0D, 0x00);
 Write_To_Register(motor, 0x0E, 0x00);

 Write_To_Register(motor, 0x13, 0x00); // Sets actual position counter
to zero

 Write_To_Register(motor, 0x27, 0x00);
 Write_To_Register(motor, 0x26, acceleration);

 Write_To_Register(motor, 0x28, velocity);

 if (direction == reverse) distance = 0xFFFFFF - distance;
 temp = distance >> 16;
 temp &= 0x0000FF;
 Write_To_Register(motor, 0x2B, (unsigned char)temp);
 temp = distance >> 8;
 temp &= 0x0000FF;
 Write_To_Register(motor, 0x2A, (unsigned char)temp);
 temp = distance & 0x0000FF;
 Write_To_Register(motor, 0x29, (unsigned char)temp);

 Write_To_Register(motor, 0x00, 0x08);
}

unsigned int _min(unsigned int x, unsigned int y)
{
 return ((x < y) ? x : y);
}

void Clear_Motor_Flag_Registers(void)
{

Write_To_Register(LEFT, 0x00, 0x00);
Write_To_Register(LEFT, 0x02, 0x00);
Write_To_Register(LEFT, 0x03, 0x00);
Write_To_Register(LEFT, 0x04, 0x00);
Write_To_Register(LEFT, 0x05, 0x00);

Write_To_Register(RIGHT, 0x00, 0x00);
Write_To_Register(RIGHT, 0x02, 0x00);
Write_To_Register(RIGHT, 0x03, 0x00);
Write_To_Register(RIGHT, 0x04, 0x00);
Write_To_Register(RIGHT, 0x05, 0x00);

171

}

void Reset_Motor_Counters(void)
{

Write_To_Register(RIGHT, 0x13, 0x00); // Sets actual position counter
to zero

Write_To_Register(RIGHT, 0x0F, 0xFF); // Sets sample timer period to
4096 uS

Write_To_Register(RIGHT, 0x05, 0x03);
Write_To_Register(LEFT, 0x13, 0x00); // Sets actual position counter

to zero
Write_To_Register(LEFT, 0x0F, 0xFF); // Sets sample timer period to

4096 uS
Write_To_Register(LEFT, 0x05, 0x03);

}

unsigned char Lsb2Msb(unsigned char ch)
{

unsigned char num;

num = 0;

if ((ch & 0x01) == 0x01) num = num | 0x80;
if ((ch & 0x02) == 0x02) num = num | 0x40;
if ((ch & 0x04) == 0x04) num = num | 0x20;
if ((ch & 0x08) == 0x08) num = num | 0x10;
if ((ch & 0x10) == 0x10) num = num | 0x08;
if ((ch & 0x20) == 0x20) num = num | 0x04;
if ((ch & 0x40) == 0x40) num = num | 0x02;
if ((ch & 0x80) == 0x80) num = num | 0x01;

return num;
}

void Detect_Concave_Corner(void *data)
{

int diff;

data = data;
OSTimeDlyHMSM(0, 0, 2, 0);

while (1)
{

if (distance[8] < 14 && left_wall_following_behaviour_active ==
true)

{
concave_corner = true;
concave_left_motor_speed = 2;
concave_left_motor_direction = forward;
concave_right_motor_speed = 2;
concave_right_motor_direction = reverse;
concave_corner_behaviour_active = true;

diff = distance[7] - distance[6];
while ((diff < 1) || distance[8] < 18 || distance[0] < 18)
{

diff = distance[7] - distance[6];
OSTimeDlyHMSM(0, 0, 0, 10);

}

172

concave_left_motor_speed = 0;
concave_left_motor_direction = forward;
concave_right_motor_speed = 0;
concave_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 1, 0);
concave_corner_complete = true;

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}

else if (distance[8] < 14 && right_wall_following_behaviour_active
== true)

{
concave_corner = true;
concave_left_motor_speed = 2;
concave_left_motor_direction = reverse;
concave_right_motor_speed = 2;
concave_right_motor_direction = forward;
concave_corner_behaviour_active = true;

diff = distance[1] - distance[2];
while ((diff < 1) || distance[8] < 18 || distance[0] < 18)
{

diff = distance[1] - distance[2];
OSTimeDlyHMSM(0, 0, 0, 10);

}

concave_left_motor_speed = 0;
concave_left_motor_direction = forward;
concave_right_motor_speed = 0;
concave_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 1, 0);
concave_corner_complete = true;

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}

else concave_corner_behaviour_active = false;

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Detect_Convex_Corner_Or_Door(void *data)
{

int diff;
data = data;
OSTimeDlyHMSM(0, 0, 2, 0);

while (1)
{

if (distance[6] > 20 && distance[7] > 25 &&
left_wall_following_behaviour_active == true)

{
distance_to_start_of_convex_corner_or_door =

Read_Actual_Position(LEFT);

173

if (navigation_behaviour_active == true && node[current_node +
1].type == convex)

{
convex_corner = true;

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 2, 0);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);
convex_left_motor_speed = 0;
convex_left_motor_direction = forward;
convex_right_motor_speed = 4;
convex_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 3, 500);
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[6] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);
//OSTimeDlyHMSM(0, 0, 5, 0);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();
continue;

}

else if (navigation_behaviour_active == true &&
node[current_node + 1].type == door)

{
door_detected = true;

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 9, 500);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();
continue;

}

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;

174

convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 9, 500);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);

if (distance[6] > 20)
{

convex_left_motor_speed = 3;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 3;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 5, 0);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);

convex_corner = true;

convex_left_motor_speed = 0;
convex_left_motor_direction = forward;
convex_right_motor_speed = 4;
convex_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 3, 500);
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[6] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);

//OSTimeDlyHMSM(0, 0, 5, 0);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}

else
{

door_detected = true;
while (distance[6] < 20)
{

convex_left_motor_speed = 2;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 2;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 10);

}
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[6] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);
//OSTimeDlyHMSM(0, 0, 2, 0);

175

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}
}

else if (distance[2] > 20 && distance[1] > 25 &&
right_wall_following_behaviour_active == true)

{
distance_to_start_of_convex_corner_or_door =

Read_Actual_Position(LEFT);

if (navigation_behaviour_active == true && node[current_node +
1].type == convex)

{
convex_corner = true;

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 2, 0);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);
convex_left_motor_speed = 4;
convex_left_motor_direction = forward;
convex_right_motor_speed = 0;
convex_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 3, 500);
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[2] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);
//OSTimeDlyHMSM(0, 0, 5, 0);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();
continue;

}

else if (navigation_behaviour_active == true &&
node[current_node + 1].type == door)

{
door_detected = true;

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 9, 500);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;

176

OSTimeDlyHMSM(0, 0, 0, 500);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();
continue;

}

convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
convex_corner_or_door_behaviour_active = true;
OSTimeDlyHMSM(0, 0, 9, 500);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);

if (distance[2] > 20)
{

convex_left_motor_speed = 3;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 3;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 5, 0);
convex_left_motor_speed = 0;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 0;
convex_right_motor_direction = reverse;
OSTimeDlyHMSM(0, 0, 0, 500);

convex_corner = true;

convex_left_motor_speed = 4;
convex_left_motor_direction = forward;
convex_right_motor_speed = 0;
convex_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 3, 500);
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[2] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);
//OSTimeDlyHMSM(0, 0, 5, 0);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}

else
{

door_detected = true;
while (distance[2] <= 20)
{

convex_left_motor_speed = 2;
convex_left_motor_direction = reverse;
convex_right_motor_speed = 2;
convex_right_motor_direction = reverse;

177

OSTimeDlyHMSM(0, 0, 0, 10);
}
convex_left_motor_speed = 3;
convex_left_motor_direction = forward;
convex_right_motor_speed = 3;
convex_right_motor_direction = forward;
while (distance[2] >= 20) OSTimeDlyHMSM(0, 0, 0, 10);
//OSTimeDlyHMSM(0, 0, 2, 0);

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}
}

else convex_corner_or_door_behaviour_active = false;

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Follow_Left_Wall(void *data)
{

int left_o, right_o;
int temp;

data = data;
OSTimeDlyHMSM(0, 0, 2, 0);

while (1)
{

if (locked_onto_left_wall == true)
{

if (stop == 1)
{

follow_left_motor_speed = 0;
follow_left_motor_direction = forward;
follow_right_motor_speed = 0;
follow_right_motor_direction = forward;
left_wall_following_behaviour_active = true;

}

else
{

left_o = 3;
right_o = 3;

if (distance[6] < 12) { left_o += 1; right_o -= 1; }
if (distance[6] > 11 && distance[6] < 17) { left_o -= 1;

right_o += 1; }
if (distance[6] > 11 && distance[7] < 18) { left_o += 1;

right_o -= 1; }
if (distance[6] < 12 && distance[7] > 17) { left_o -= 1;

right_o += 1; }

if (distance[6] > 16 && distance[7] > 22) { left_o = 3;
right_o = 3; }

if (distance[6] > 11 && distance[6] < 17 && distance[7] > 30)
{ left_o = 3; right_o = 3; }

178

temp = abs(left_o);
follow_left_motor_speed = (unsigned char)temp;
temp = abs(right_o);
follow_right_motor_speed = (unsigned char)temp;

if (left_o >= 0) follow_left_motor_direction = forward;
else follow_left_motor_direction = reverse;
if (right_o >= 0) follow_right_motor_direction = forward;
else follow_right_motor_direction = reverse;

left_wall_following_behaviour_active = true;
}

}

else left_wall_following_behaviour_active = false;

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Follow_Right_Wall(void *data)
{

int left_o, right_o;
int temp;

data = data;
OSTimeDlyHMSM(0, 0, 2, 0);

while (1)
{

if (locked_onto_right_wall == true)
{

if (stop == 1)
{

follow_left_motor_speed = 0;
follow_left_motor_direction = forward;
follow_right_motor_speed = 0;
follow_right_motor_direction = forward;
right_wall_following_behaviour_active = true;

}
else
{

left_o = 3;
right_o = 3;

if (distance[2] < 12) { left_o -= 1; right_o += 1; }
if (distance[2] > 11 && distance[2] < 17) { left_o += 1;

right_o -= 1; }
if (distance[2] > 11 && distance[1] < 18) { left_o -= 1;

right_o += 1; }
if (distance[2] < 12 && distance[1] > 17) { left_o += 1;

right_o -= 1; }

if (distance[2] > 16 && distance[1] > 22) { left_o = 3;
right_o = 3; }

if (distance[2] > 11 && distance[2] < 17 && distance[7] > 30)
{ left_o = 3; right_o = 3; }

temp = abs(left_o);

179

follow_left_motor_speed = (unsigned char)temp;
temp = abs(right_o);
follow_right_motor_speed = (unsigned char)temp;

if (left_o >= 0) follow_left_motor_direction = forward;
else follow_left_motor_direction = reverse;
if (right_o >= 0) follow_right_motor_direction = forward;
else follow_right_motor_direction = reverse;

right_wall_following_behaviour_active = true;
}

}

else right_wall_following_behaviour_active = false;

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

/**

*
*
* Mapping Routine
*
*
*

******/

void Mapping(void *data)
{

unsigned long distance_travelled;
int index;
data = data;

while (1)
{

if (map_exists == true)
{

OSTimeDlyHMSM(0, 0, 0, 10);
continue;

}

if (concave_corner_complete == true)
{

distance_behind = distance[4];
concave_corner_complete = false;

}

if (convex_corner == true || concave_corner == true ||
door_detected == true)

{
distance_travelled = Read_Actual_Position(LEFT);
/*if (door_detected == true) distance_travelled =

distance_travelled + distance_behind + 8 - 32;
if (concave_corner == true) distance_travelled =

distance_travelled + (distance[8] + distance_behind + 15);

180

if (convex_corner == true) distance_travelled =
distance_travelled + distance_behind + 8;*/

if (concave_corner == true) distance_travelled =
distance_travelled + (distance[8] + distance_behind + 15);

if (convex_corner == true || door_detected == true)
distance_travelled = distance_to_start_of_convex_corner_or_door +
distance_behind + 8;

if (convex_corner == true) node[num_nodes].type = convex;
else if (concave_corner == true) node[num_nodes].type = concave;
else if (door_detected == true) node[num_nodes].type = door;
if (num_nodes != 0)
{

if (node[num_nodes - 1].type == door) distance_travelled =
distance_travelled + 32 - distance_behind - 8;

if (node[num_nodes - 1].type == convex) distance_travelled =
distance_travelled - distance_behind - 8;

node[num_nodes - 1].next = num_nodes;
node[num_nodes - 1].distance_to_next = distance_travelled;
node[num_nodes].previous = num_nodes - 1;
node[num_nodes].distance_to_previous = distance_travelled;

}

node_type[count] = node[num_nodes].type;
node_distance_to_previous[count++] = distance_travelled;

//if (num_nodes > 4) { Write_Nodes_To_File(); stop = 1; return;
}

if (num_nodes >= 4 && count == 2)
{

 for (index = 0; index < num_nodes - 4; index++)
 {

if (node_type[0] == node[index].type &&
node_type[1] == node[index + 1].type &&
(float)node_distance_to_previous[0] >=

(float)node[index].distance_to_previous*0.75 &&
(float)node_distance_to_previous[0] <=

(float)node[index].distance_to_previous*1.25 &&
(float)node_distance_to_previous[1] >=

(float)node[index + 1].distance_to_previous*0.75 &&
(float)node_distance_to_previous[1] <=

(float)node[index + 1].distance_to_previous*1.25)
{

node[0].previous = num_nodes - 3;
node[0].distance_to_previous = node[num_nodes -

2].distance_to_previous;
node[num_nodes - 3].next = 0;
num_nodes -= 2;
//if (nodes_written == 0)
Write_Nodes_To_File();
//nodes_written = 1;
stop = 1;
return;

}
 }

}
if (count == 2)
{

181

node_type[0] = node_type[1];
node_distance_to_previous[0] = node_distance_to_previous[1];
count = 1;

}

num_nodes++;
convex_corner = false;
concave_corner = false;
door_detected = false;

Clear_Motor_Flag_Registers();
Reset_Motor_Counters();

}

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Write_Nodes_To_File(void)
{

FILE *fptr;
int index;
char *types[3] = { "Convex", "Concave", "Door" };

fptr = fopen("nodes.txt", "w");

for (index = 0; index < num_nodes; index++)
{

fprintf(fptr, "%s NN=%d NND=%ld PN=%d PND=%ld\n",
types[node[index].type], node[index].next,

 node[index].distance_to_next,
 node[index].previous,

node[index].distance_to_previous);
}

fclose(fptr);

fptr = fopen("location.map", "wb");
fwrite(&num_nodes, sizeof(int), 1, fptr);

for (index = 0; index < num_nodes; index++)
{

fwrite(&node[index], sizeof(node[index]), 1, fptr);
}

fclose(fptr);
}

void Navigate(void *data)
{

FILE *fptr;
int index, destination_node;
data = data;

destination_node = 2;

if ((fptr = fopen("location.map", "rb")) != NULL)

182

{
fread(&num_nodes, sizeof(int), 1, fptr);

for (index = 0; index < num_nodes; index++)
{

fread(&node[index], sizeof(node[index]), 1, fptr);
}

fclose(fptr);
map_exists = true;

}
else map_exists = false;

while (1)
{

if (locked_onto_right_wall == true)
destination_node = num_nodes - 1 - destination_node;

if (navigation_behaviour_active == true)
{

if (convex_corner == true || concave_corner == true ||
door_detected == true)

{
current_node++;
if (current_node == num_nodes) current_node = 0;
convex_corner = false;
concave_corner = false;
door_detected = false;

}

if (current_node == destination_node)
{

stop = 1;
return;

}
}

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Localization(void *data)
{

unsigned long distance_travelled;
int num, index;
int first, second;
data = data;
num = 0;

while (1)
{

if ((convex_corner == true || concave_corner == true ||
door_detected == true) && current_node == -1 && map_exists == true)

{
num++;
if (num == 1)
{

convex_corner = false;
concave_corner = false;

183

door_detected = false;
continue;

}
distance_travelled = Read_Actual_Position(LEFT);
/*if (door_detected == true) distance_travelled =

distance_travelled + distance_behind + 8 - 32;
if (concave_corner == true) distance_travelled =

distance_travelled + (distance[8] + distance_behind + 15);
if (convex_corner == true) distance_travelled =

distance_travelled + distance_behind + 8;*/
if (concave_corner == true) distance_travelled =

distance_travelled + (distance[8] + distance_behind + 15);
if (convex_corner == true || door_detected == true)

distance_travelled = distance_to_start_of_convex_corner_or_door +
distance_behind + 8;

if (convex_corner == true) node_type[count] = convex;
else if (concave_corner == true) node_type[count] = concave;
else if (door_detected == true) node_type[count] = door;

if (count != 0)
{

if (node_type[count - 1] == door) distance_travelled =
distance_travelled + 32 - distance_behind - 8;

}

node_distance_to_previous[count++] = distance_travelled;

if (count == 2)
{

 for (index = 0; index < num_nodes; index++)
 {

first = index;
second = index + 1; if (second == num_nodes) second = 0;

// wrap around to start
if (node_type[0] == node[first].type &&

node_type[1] == node[second].type &&
(float)node_distance_to_previous[0] >=

(float)node[first].distance_to_previous*0.75 &&
(float)node_distance_to_previous[0] <=

(float)node[first].distance_to_previous*1.25 &&
(float)node_distance_to_previous[1] >=

(float)node[second].distance_to_previous*0.75 &&
(float)node_distance_to_previous[1] <=

(float)node[second].distance_to_previous*1.25)
{

current_node = index + 1;
if (current_node == num_nodes) current_node = 0;
navigation_behaviour_active = true;
break;

}
 }

}

if (count == 2)
{

node_type[0] = node_type[1];
node_distance_to_previous[0] = node_distance_to_previous[1];
count = 1;

184

}

convex_corner = false;
concave_corner = false;
door_detected = false;

}

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

void Search_For_Wall(void *data)
{

int diff, temp;
int index, dex;

data = data;
OSTimeDlyHMSM(0, 0, 2, 0);

while (1)
{

if (locked_onto_left_wall == false && locked_onto_right_wall ==
false)

{
search_left_motor_speed = 3;
search_left_motor_direction = forward;
search_right_motor_speed = 3;
search_right_motor_direction = forward;

search_for_wall_behaviour_active = true;

while (distance[8] > 15 && distance[6] > 15 && distance[7] > 15
 && distance[0] > 15 && distance[2] > 15 && distance[1] >

15) OSTimeDlyHMSM(0, 0, 0, 10);

if ((distance[8] < 15 || distance[6] < 15 || distance[7] < 15)
&& (distance[7] < distance[1]))

{
search_left_motor_speed = 2;
search_left_motor_direction = forward;
search_right_motor_speed = 2;
search_right_motor_direction = reverse;

diff = distance[7] - distance[6];
while ((diff < 1) || distance[8] < 18 || distance[0] < 18)
{

diff = distance[7] - distance[6];
OSTimeDlyHMSM(0, 0, 0, 10);

}

search_left_motor_speed = 0;
search_left_motor_direction = forward;
search_right_motor_speed = 0;
search_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 1, 0);
locked_onto_left_wall = true;

}

185

else if ((distance[0] < 15 || distance[2] < 15 || distance[1] <
15) && (distance[1] < distance[7]))

{
search_left_motor_speed = 2;
search_left_motor_direction = reverse;
search_right_motor_speed = 2;
search_right_motor_direction = forward;

diff = distance[1] - distance[2];
while ((diff < 1) || distance[8] < 18 || distance[0] < 18)
{

diff = distance[1] - distance[2];
OSTimeDlyHMSM(0, 0, 0, 10);

}

search_left_motor_speed = 0;
search_left_motor_direction = forward;
search_right_motor_speed = 0;
search_right_motor_direction = forward;
OSTimeDlyHMSM(0, 0, 1, 0);
locked_onto_right_wall = true;
if (map_exists == true)
{
 for (index = 0; index < num_nodes; index++)
 {

temp_node[index].type = node[num_nodes - 1 - index].type;
//dex = num_nodes - 2 - index; if (dex == -1) dex =

num_nodes - 1;
temp_node[index].next = node[index].next;
dex = num_nodes - 2 - index; if (dex == -1) dex =

num_nodes - 1;
temp_node[index].distance_to_next =

node[dex].distance_to_next;
temp_node[index].previous = node[index].previous;
dex = num_nodes - index; if (dex == num_nodes) dex = 0;
temp_node[index].distance_to_previous =

node[dex].distance_to_previous;
 }

 for (index = 0; index < num_nodes; index++)
 {

if (temp_node[index].type != door &&
temp_node[temp_node[index].next].type == door)

temp_node[index].distance_to_next -= 32;
if (temp_node[index].type == door &&

temp_node[temp_node[index].next].type != door)
temp_node[index].distance_to_next += 32;

if (temp_node[index].type == door &&
temp_node[temp_node[index].previous].type != door)

temp_node[index].distance_to_previous -= 32;
if (temp_node[index].type != door &&

temp_node[temp_node[index].previous].type == door)
temp_node[index].distance_to_previous += 32;

 }

 for (index = 0; index < num_nodes; index++)
 {

node[index].type = temp_node[index].type;

186

node[index].next = temp_node[index].next;
node[index].distance_to_next =

temp_node[index].distance_to_next;
node[index].previous = temp_node[index].previous;
node[index].distance_to_previous =

temp_node[index].distance_to_previous;
 }
}

}
}

else search_for_wall_behaviour_active = false;

OSTimeDlyHMSM(0, 0, 0, 10);
}

}

187

APPENDIX 5

Published Papers

1. Leyden, M., Toal, D., Flanagan, C., 1999. "A Fuzzy Logic Based Navigation System

for a Mobile Robot" Proceedings of 2nd Wismar Symposium on Automatic Control,

Germany.

2. Leyden, M., Toal, D., Flanagan, C., 2000. "Pitfalls of Simulation for Mobile Robot

Controller Development" MIM 2000, Greece.

3. Leyden, M., Toal, D., Flanagan, C., 2000. "An Autonomous Mobile Robot Built to

Investigate Behaviour Based Control" Mechatronics 2000, Atlanta.

