TITLE: Sprinting Performance and Resistance-Based Training Interventions: A Systematic Review.

Richard Bolger
Biomechanics Research Unit
Department of Physical Education & Sport Sciences
University of Limerick
Ireland
Email: Richard.Bolger@ul.ie
Phone: +353 (0)86-8076331

Dr Ian Kenny PhD
Biomechanics Research Unit
Department of Physical Education & Sport Sciences
University of Limerick
Ireland
Phone: +353 (0)6123 4308
E-mail: ian.kenny@ul.ie

Dr Mark Lyons (BSc, PhD)
Department of Physical Education and Sport Sciences
University of Limerick
Ireland
Tel: 00-353-61202819
Email: mark.lyons@ul.ie

Dr Drew Harrison FISBS
Senior Lecturer in Sports Biomechanics
Department of Physical Education and Sports Science
University of Limerick
IRELAND
Tel: +353 61 202809
Email: drew.harrison@ul.ie
ABSTRACT

The purpose of this systematic review was to search the scientific literature for original research, addressing the effects different forms of resistance-based training have on sprinting performance in competitive sprinters. Specific key words (Sprinters OR Sprint) NOT (Rugby, Soccer, Cycling, Swimming, Paralympic, Nutrition) were used to search relevant databases through November 2013 for related literature. Original research was reviewed using the Physiotherapy Evidence Database (PEDro) scale. Five studies met the inclusion criteria: actively competitive adult male sprinters who participated in a resistance-based intervention (>4 weeks), with outcome measures in the form of 10-100 m sprint times. Exclusion criteria included acute studies (<4 weeks), non-sprinting populations and studies with no performance outcome measures (10-100 m sprint times). Three of the five studies employed both locomotor resistance and fixed plane resistance, whereas the remaining two studies used more fixed plane resistance e.g. squat and leg extension. Three of the studies showed a statistical improvement in sprinting performance measures e.g. a decrease in 30 m sprint time (p = 0.044), whereas one study showed a decrease in sprinting performance. The analysis concluded that resistance-based training has a positive effect on sprinting performance. Varied input of locomotor resistance and fixed plane resistance has resulted in similar percentage change for sprinting performance. This review adds to the body of knowledge by strongly highlighting the dearth of literature exploring the effects of resistance-based training on sprinting performance in competitive sprinters. The short duration and wide range of exercises implemented in studies to date are of concern, but coaches should not hesitate to implement well-planned resistance programs for their sprint athletes.

Key Words: sprinters, resistance training, plyometrics, specificity, transference.
INTRODUCTION

Sprinting performance has captivated audiences across the world since the ancient Olympic games in the 8th Century BC. Numerous studies have been conducted using sprinters as a population. The majority of these are acute studies and investigate a wide variety of topics such as physiological changes (14, 15, 29), alteration in stride length and frequency (1, 6, 16, 19), and acute biomechanical changes (10, 32, 38, 41, 42, 53). There are concerns that resistance training will result in muscle hypertrophy, increasing athlete mass thus impacting on speed (46, 62). Ross and Leveritt (46) have shown an increase (5% - 10%) in Type I and Type II fibre cross-sectional area, in sprinters after prolonged training ranging from 8 weeks to 8 months, which accounts for top-level sprinters’ muscular physiques. Ross and Leveritt also notes that as a physique becomes more muscular, as in the case of a bodybuilder, contractile characteristics (concentric/eccentric) become slower. For clarity, this paper refers to exercises which involve bounding, sled towing, prowler pushing, or any other form of resisted sprint training as locomotor resistance. Exercises such as back squats, squat jumps, leg extensions or exercises, which are performed on the spot, or in a fixed plane, are referred to as fixed plane resistance.

To date, a large number of studies have examined the effects of resistance-based interventions on sprinting performance in team sports athletes, with the greatest volume of research conducted on American football, Rugby and soccer teams. American football studies have focused on various training methods over a season, yet report inconsistent findings about which method can best improve speed development (20, 31). Many of the studies have demonstrated improvements in running performance outcome measures after a season of resistance training (13, 20, 23, 55, 60). However, various methods have been used to elicit improved speed development of these athletes. Many have used fixed plane resistances such as jump squats (22), power cleans (13, 20-23, 34, 47, 60), medicine ball throws (37) and Olympic weightlifting variations (13, 20-23, 47, 60) supplementing their programs with more locomotor-orientated resistance training such as plyometrics (13, 21, 34, 37, 55) and maximal treadmill running (47).
The available studies on Rugby and sprinting performance suggest similar findings as American football. For example, Baker's (3) study report a shorter intervention time of 6-8 weeks, unlike the American football studies which lasted as long as an entire season. These studies have used similar training methods to American football, including many locomotor resistance exercises such as over-speed training (9), resisted sprint training (18, 59), plyometric training (34, 54) and fixed plane resistance exercises such as jump squats (3, 9, 17, 43) and Olympic weightlifting variations (3).

The body of research on soccer has also presented similar findings with interventions lasting from 3-10 weeks (8, 12, 27, 28, 35, 36, 40, 45, 56-58, 61) involving fixed plane resistance training interventions of back squats (27, 35, 36), half squats (35, 40, 45, 61), countermovement jumps (CMJ’s) (35, 45, 56). They also use many locomotor training exercises including repeated sprint training (12, 28, 57, 61), plyometrics (8, 35, 36, 40, 45, 56), speed, agility, quickness (27) and assisted and resisted sprint training (58). Many of these studies have utilised both locomotor and fixed plane resistance programs concurrently, some even using a complex training methods (36).

Several key recommendations have arisen from these studies, primarily a necessity for further research examining the validity, transfer, and periodization method of these programs. The overall theme suggests that longer (>8 weeks) studies yield improved speed development (8, 12, 13, 20-23, 27, 31, 35, 50, 54, 55, 57, 59-61), and that a combined approach of resistance training, and locomotor training improves speed (3, 11, 13, 20, 27, 31, 47, 54, 55, 58, 61, 62). Both American football, and Rugby have position specific considerations, which may influence overall study results (2, 13, 25, 31, 44). The soccer studies showed significant improvements with interventions lasting longer than 8 weeks, again with a combined approach of resistance training and locomotor training (8, 12, 27, 57, 58, 61). There was little focus on running technique development in these studies, and none of the studies tested speed beyond 60 m.
From a broader perspective, the performance outcome measures of the studies are not easily comparable to competitive sprint performance, as it is harder to control subject variability in running mechanics and body mass. This is partly due to an overall difference in focus on body composition, as sprinting strength to weight ratio is important for the expression of force. A greater body mass to strength ratio will aid overall speed production (46), whereas both American football (25, 44) and Rugby (2) place greater emphasis on heavier body mass in conjunction with strength, speed and power due to the collision-based nature of their sports. The absence of resistance training trials within the sprinting population is apparent, yet most are performing resistance training as part of their overall training program. Longitudinal controlled trials involving track athletes, in particular sprinters, are not abundant in the literature (62). This illustrates a gap in the literature on resistance modality and programming for competitive sprinters.

Numerous review papers have aimed to clarify the effects of different modalities of training on sprinting performance (5, 11, 24, 26, 48). The representation of sprinters amongst their population samples, however, is sparse. To date, strength and conditioning professionals and athletics coaches only have a small number of sport-specific studies to draw from to validate their training program selection for the modern sprinter. This systematic review focuses specifically on the prevalence and effects of various resistance training modalities on sprinters’ performance. There is a lack of evidence-based research to support the apparent beneficial effects of various resistance training modalities on performance in competitive sprinters. A key consideration, however, is whether resistance training improves sprinting performance specifically. If so, what type of resistance training modalities or exercises are best suited for increased sprint performance? The purpose of this systematic review was to search the body of scientific literature for original research, addressing the effects of different forms of resistance training on sprinting performance in competitive sprinters.

METHODS

Experimental Approach To The Problem
The Cochrane Collaboration Prisma protocol (33) was used to complete the review. Electronic databases from 1946 to November 2013 were searched including: Pub Med, CINAHL, Science Direct, MEDLINE, Sports Discus, Journal of Strength and Conditioning Research, and the Strength and Conditioning Journal. Key words used were Sprinters OR Sprint NOT Rugby, Soccer, Cycling, Swimming, Paralympic, and Nutrition. Search terms were modified accordingly to fit the requirements or nuances of the database used.

Study Criteria

Studies were eligible if they met the following inclusion criteria: competitive adult male sprinters who participated in a resistance-based intervention (>4 weeks), with outcome measures of sprinting performance (10-100 m sprint times). Sprinters were defined as those who are currently competitive in 100-400 m event distances. Interventions included any resistance training including plyometrics, weight training, calisthenics and resisted running, but not excluding any other novel approaches where resistance is applied to the body. Studies were excluded if they were: acute in nature post-activation potentiation (PAP) studies or biomechanical studies without a training intervention. Studies involving untrained subjects, team sport athletes or non-sprinters were also excluded. Subjects needed to be 16-35 years old, healthy adults with no musculoskeletal injuries.

Quality Assessment

Original research was reviewed using the Physiotherapy Evidence Database (PEDro) scale (33). The PEDro scale consists of 11 items related to scientific rigor including: eligibility criteria, random allocation strategy, concealed allocation, follow-up comparison, baseline comparison, blinding of subjects, therapists (i.e., trainers) and assessors, intention to treat, between-group analysis, and both point and variability measures. Five studies met the inclusion criteria (4, 7, 30, 49, 52) a similar number of studies used in a investigation by Yamamoto (62) on elite endurance runners, which were then independently evaluated by two reviewers using the PEDro scale. Consensus was achieved on scores given to the five articles. A third reviewer was not needed in this case to
Data Extraction

Data were extracted using a standardized form created in Visual Basic to filter the required information into a continuous string in Microsoft Excel™. The form included a hierarchy for assessment including the study citation and the inclusion/exclusion criteria. Studies were assessed firstly by journal title, secondly by abstract and thirdly by full article review, when the journal article was either included or excluded based on the criteria illustrated in Figure 1.

[Figure 1 near here]

RESULTS

PEDro scores for the five selected articles ranged from 6-7 out of a maximum of 11 (Table 1). Concealment of allocation is not entirely relevant in studies of this nature, because given the nature of resistance training and sample selection methods used, it is difficult for researchers to keep themselves and participants unaware of the treatment and groups involved in these types of studies. Blinding of subjects and therapists (i.e., trainers) was also not applicable in this case.

[Table 1 near here]

Three out of the five studies reported increased running performance post training intervention. These studies reported that the increase was statistically significant. A fourth, Blazevich and Jenkins (4), reported that the increase was not statistically significant. The fifth, Satkunskienė et al (49), showed a decrease in running performance post intervention. Three of the five studies (30, 49, 52) used locomotor-orientated resistance training involving unilateral exercises, from plyometrics to parachute resisted running, while the remaining two studies (4, 7) used more traditional bilateral movements or fixed plane resistance such as leg extensions and squats. Notably, all groups used exercises of a dynamic or
explosive nature with the exception of the Blazevich and Jenkins’ (4) study. All five studies are summarized in Tables 2 and 3.

The Kamandulis et al (52) study scored 6/11 on the PEDro scale. Random allocation was not used and blinding of subjects and therapists (i.e., trainers) was not possible in this case. Kamandulis et al (52) examined contractile properties of the quadriceps as well as running performance after 3-weeks of power endurance training. The training intervention consisted of maximal-intensity sprint repetitions with short recovery periods, followed by 1-week recovery and 4-weeks of high-intensity power training. The high-intensity power training involved running with weight attached via a belt, jumps from one step followed by a vertical jump, forward jumps, and crouch-start running. Athletes used intensities of 95-100% of maximum for 5-10 seconds, repeated 5-10 times, with 5 minutes recovery between exercises. The power endurance training involved vertical jumps, multiple forward jumps, running exercises (hurdles, upstairs, uphill, on the spot), and sprints alternating with slow jogging. The athletes performed each exercise at 60-90% of maximum for 20 seconds, which they repeated 5-10 times with 30 second rest intervals between exercises. This combination of power endurance training followed by high-intensity power training resulted in improved 60 m sprint times by 1.83% (SD = 0.96; p < .05, ES = 1.7). The authors suggested that sprint performance is poorly predicted by muscle intrinsic properties, and that neural adaptation provides for the improved adaptation.

Balsalobre-Fernandez et al (7) recorded a score of 6/11 on the PEDro scale due to the small sample size (n=7), the absence of a control group and blinding within the study. Balsalobre-Fernandez et al (7) evaluated the effect of maximal power training on performance in sprinters over a 10-week intervention. They used squat jumps as the primary exercise, starting at 40% of squat jump 1RM
with subsequent increments of 5% until maximum power output was attained (measured using a Myotest Pro™). This was performed twice a week for a 10-week period. Their study suggests that neural adaptation is again the primary mechanism underlying performance gain, although this was not quantified or measured. Balsalobre-Fernandez et al (7) observed improvements in squat jump 1RM of 7.9% with a mean difference pre-post of 13.7 kg (p = 0.021), a 2.3% increase in flight time for the squat jump with a mean pre-post difference of 13.9 ms (p = 0.045), and a 1.43% improvement in 30 m sprint time with a mean pre-post difference of -0.06 s (p = 0.044).

Martinopoulou et al (30) scored highest with 7/11 on the PEDro scale as a result of using random allocation of groups. Martinopoulou et al (30) studied the effects of resisted sprint training on sprint performance in competitive sprinters (n=16). The study was conducted during the pre-competitive phase, lasting 4-weeks. The subjects were divided into a resisted training group (using the parachute), and an unresisted group. The groups both trained three times per week. This included 4 × 30 m and 4 × 50 m maximum effort sprints, with a recovery time of 4-6 minutes respectively. There was a 10-minute recovery time between the last 30 m sprint and the first 50 m sprint. The resistance applied in this study was a large parachute and was adjusted accordingly so that running velocity per 30-50 m set was not allowed to exceed a 10% reduction in the subjects’ un-resisted sprint time for that distance. The resisted group improved significantly over various sprint distances, both in the acceleration phase and in the maximum speed phase; 0-10 m (p = 0.043), 10-20 m (p = 0.017), 0-20 m (p = 0.009) and 40-50 m (p = 0.023). The un-resisted control group showed no significant improvements over the same distances with the exception of the acceleration phase 0-20 m (p = 0.012). The findings suggest that the parachute appears to be a suitable training method for performance improvement in the acceleration phase and maximum speed phase in sprinting.

Blazevich and Jenkins (4) also scored a 7/11 on the PEDro scale as a result of using random group allocation. Blazevich and Jenkins (4) considered the effect of speed of resistance training exercises on competitive nationally ranked sprinters
The intervention consisted of four weeks standardization training to ensure homogeneity between groups by controlling the velocity of the movements prior to the trial. Movement velocities for this period were noted as being slow, with eccentric and concentric phases lasting 1-2 s. This was followed by 7-weeks of resistance training with high and low velocity groups. The results did not demonstrate any significant difference between groups. There was a 1.9% improvement in sprinting performance ($p = 0.08; ES = 0.71$) in the high velocity group with respect to the flying 20 m sprint. The authors suggested resistance training movement speed does not have a significant effect on sprint performance when the resistance training is combined with sprint training in nationally ranked athletes. Blazevich and Jenkins (4) also suggest that its effects would only be significant after longer training periods, due to the level of the athlete's current adaptation to resistance, the emphasis placed on specific sprint training on the track, and short period of time spent resistance training.

Satkunskienė et al (49) scored a 6/11 on the PEDro scale due to the lack of random allocation concealment and blinding. Satkunskienė et al (49) studied the effect of a power training program on running kinematics. Seven elite sprinters participated in the study 3 times per week over an 8-week period. The program comprised an initial 4-weeks of power endurance training at 60-90% of 1RM with 30-60s rest between exercises, followed by 4-weeks of power training at 100% of 1RM with 3-5 minutes rest between exercises.

The power endurance training consisted of standing jumps, multiple hops and jumps, barrier hops, stair runs, uphill runs, and runs on the spot. The intensity was set at 60-90% intensity, and the training comprised of 20 second bouts of activity with 30-60 seconds passive rest in between exercises. The power training consisted of resisted sled-pulling sprints, depth jumps, multiple hops and jumps, block starts and a selection of other assistance exercises (lever seated calf raise, barbell back extension, machine fly, butterfly, lever lying leg curl). The intensity was set at 100% of 1RM with 10 second activity bouts and 3-5 minutes recovery between exercises. The results indicated some improvement but no significant increase in maximal running speed ($pre = 9.62 \pm 0.35$ s, $post = 10.0 \pm$
0.57 s, p = 0.08), ground contact (pre = 119 ± 15.39 s, post = 115 ± 10.41 s, p = 0.50), step length (pre = 2.24 ± 0.16 m, post = 2.28 ± 0.19 m, p = 0.69), step frequency (pre = 4.31 ± 0.39 s, post = 4.42 ± 0.37 s, p = 0.19). There were no significant differences in many of the other parameters including joint angles, hip flexion and foot trajectory.

DISCUSSION

The current review addresses the question of resistance training modalities and performance outcome for sprint athletes. This review is unique because of its narrow focus on competitive sprinters, similar to an investigation by Yamamoto (62) on the effects of resistance training on high level endurance athletes. It comprehensively reviews the literature in the area, and includes a systematic review with, PEDro scaling, and protocols employed. This systematic review of five resistance-training studies suggests that a varied input in the form of locomotor resistance (involving unilateral movement, 2-4 times per week, ranging from 60-100% intensities) and fixed plane resistance (involving bilateral movement, 2-4 times per week, ranging from 30-90% 1RM) can provide for improved sprinting performance. Theses ranges do not provide specific direction for a sprint coach, but the variety of movements emphasizes that a varied input can produce similar performance outcomes. The moderate PEDro scale scores (6-7) should not diminish the quality of the reviewed studies, considering the constraints that training studies have in blinding subjects, therapists (i.e., trainers), and assessors to the treatment received.

Despite the volume of sprint studies available, few have focused specifically on competitive sprinters. One limitation of this review was the small number of studies that met the inclusion criteria, but this further emphasizes that competitive sprint coaches are using various methods of resistance training with unpublished empirical evidence to substantiate the type, frequency, and programing of these activities. Furthermore, the ceiling effect is relevant here as subjects reviewed may have reached a maximal level of strength and power, thus demonstrated smaller improvements in performance. Although the studies included provide evidence that resistance training improves sprinting
performance, further research is needed to elucidate the most effective combinations of training methods for optimal transference and the most effective programming models to elicit improved performance. It is noteworthy that the reviewed studies show a varied input of resistance from that of a locomotor resistance to that of a fixed plane resistance with similar performance outcome improvements. It is also worth noting that all groups used exercises of a dynamic or explosive nature, with the exception of the Blazevich and Jenkins’ (4) study. Sprint performance therefore may be optimized by a variety of resistance training modalities.

Despite the link between resistance training and sprinting performance in these studies, three of the studies (30, 49, 52) used predominantly locomotor type resistance training such as plyometrics, horizontal jumping patterns, anti-phase movement (unilateral) and stair climbs, whereas the remaining two studies (4, 7) used fixed plane resistance movements like squat jumps and leg extensions. Two of the studies (49, 52) used a combination of locomotor training and fixed plane resistance which is mentioned by De Villarreal et al (11), with similarly successful findings. Additionally, while all of the studies in this review consisted of relatively short training periods (average = 7.4 weeks), it is unknown how chronic adaptations to these training methods will affect sprinting performance. Acute improvements in running with resistance training are posited to be associated with neuromuscular adaptations (11, 26, 62), but the effects of chronic resistance training on muscle mass, muscle metabolic activity, or the risk benefit is still unknown. Since the studies in this review assessed competitive sprinters, it was probably difficult to control training for a longer period of time because of the competitive season (62).

To disseminate the results of resistance-based training for sprinters, researchers must consider the different modalities of training available. Firstly, general physical preparation, which involves general conditioning to improve strength, speed, endurance, flexibility and skill followed by more specific training which aims to improve the individual athlete’s performance (51). Secondly, the modality of resistance training, fixed plane resistance training (e.g. squat,
deadlift, bench press) with the option of open and closed chain movements, which has been studied extensively in the broader literature (5, 11, 25, 26, 44, 48, 62), or locomotor resistance training. Locomotor resistance training has been the most frequently studied among competitive sprinters. The population sample remains too small to form conclusive opinion on locomotor resistance training benefit over traditional sprint training on a track (4, 7, 30, 49, 52). It is unclear which forms show the optimal transference to sprinting performance. There are many ways of developing relative strength (51), but it remains unclear whether locomotor resistance or fixed plane resistance show greater transference to sprinting performance. The muscle activation of these movements will reveal more about which exercise mimics the muscle activation, neural adaptations and neural sequencing required to facilitate maximum speed performance outcomes in competitive sprinters. Future research here is certainly warranted.

PRACTICAL APPLICATIONS

Current research supports increased sprinting performance with resistance-based training programs involving unilateral movement, 2-4 times per week at 60-100% of 1RM. The importance of a general strength base in conjunction with dynamically orientated strength programming forms the basis for training competitive sprinters. This review illustrates how different modalities of resistance training result in similar performance improvements yet there is no clear modality, which stands out as being optimal for speed development. Coaches should use structured, periodized resistance training regimens based on the health and ability of individual athletes during each training phase. The positive benefits of resistance-based training in sprinters cannot be overlooked despite the limited body of empirical evidence. However, it is evident that there is a need for further research with highly trained competitive sprinters on the potential benefits of various forms of resistance-based training on sprinting performance. This paper illustrates the need for further research within the sprinting population regarding the specificity of different resistance training modalities to sprinting performance. Research needs to determine whether
there is true transference between many of the resistance-based exercises used in sprint training, from both a neural activation and overall adaptation point of view.

References:

7. Carlos Balsalobre-Fernández CMT-Gl, Juan del Campo-Vecino, Dionisio Alonso-Curiel. The Effects of a Maximal Power Training Cycle on the...

22. Hoffman JR, Ratamess NA, Cooper JJ, Kang J, Chilakos A, and Faigenbaum AD. Comparison of loaded and unloaded jump squat training on

59. West DJ, Cunningham DJ, Bracken RM, Bevan HR, Crewther BT, Cook CJ, and Kilduff LP. Effects of resisted sprint training on acceleration in

Table 1. PEDro Scale (39)

<table>
<thead>
<tr>
<th>Eligibility criteria were specified.</th>
<th>Kamandulis et al (52)</th>
<th>Balsalobre-Fernandez et al (7)</th>
<th>Martinopoulou et al (30)</th>
<th>Blazевич and Jenkins (4)</th>
<th>Satkunskienė et al (49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects were randomly allocated to groups.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Allocation was concealed.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>The groups were similar at baseline regarding the most important prognostic indicators.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>There was blinding of all subjects.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>There was blinding of all therapists who administered the therapy.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>There was blinding of all assessors who measured at least one key outcome.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All subjects for whom outcome measures were available received the treatment or control condition as allocated, or, where this was not the case, data for at least one key outcome were analyzed by intention to treat.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>The result of between-group statistical comparisons is reported for at least one key outcome.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>The study provided both point measures and measures of variability for at least one key outcome.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total points awarded</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Authors</td>
<td>Subject (n)</td>
<td>Description</td>
<td>Anthropometrics</td>
<td>Resistance Training type and duration</td>
<td>Description of Treatment and Control Groups</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kamandulis et al (52)</td>
<td>7 national & international sprinters 100m = 10.81s (SD= 0.22) training experience=6.0 years SD=1.0</td>
<td></td>
<td>M Age=20.7 years, SD=1.8; M Height=1.82m, SD=0.06; M Mass=73.0kg, SD=11.0; M fat %=7.6%, SD=2.9</td>
<td>Power Endurance, 3 wk Recovery, 1 wk Power Training, 4 wk</td>
<td>PE = 60-90% of max for 20s 5-10 times (0.5 min rest) (hurdles, upstairs, uphill, on spot) PT = 95-100% of max for 5-10s 5-10 times [5 min rest]</td>
</tr>
<tr>
<td>Balsalobre-Fernandez et al (7)</td>
<td>7 Spanish High level Hurdlers Personal record = 54.78 ± 2.54s Training experience = national & international competitors</td>
<td></td>
<td>M Age=21.7 ± 2.4 years; M Height=181.8 ± 3.9 cm; M Mass=75.1 ± 4.1Kg;</td>
<td>Maximal Power Training, 10wk 2 times p/w</td>
<td>PT = 40% of 1RM + increments of 5% until max power was attained (Myotest Pro) Squat jumps CT = N/A</td>
</tr>
<tr>
<td>Martinopoulos et al (30)</td>
<td>16 Sprinters Training experience = 4 ± 1.1 years of sprinting 8 Para Chute 8 Control</td>
<td></td>
<td>M Age= 25 ± 4 ; M Height= 172 ± 0.8 M Mass= 61.5 ± 10.2</td>
<td>Resisted Sprint Training Para Chute 3 times p/w</td>
<td>PT =>10% decrease in running velocity (Para Chute) Maximum sprints of 0-50m CT = Maximum sprints of 10-50m Un-resisted training (no para chute)</td>
</tr>
<tr>
<td>Blazevich and Jenkins (4)</td>
<td>10 Nationally ranked Sprinters 100m – 400m Events Training experience = >5 years</td>
<td></td>
<td>M Age= 19.0 ± 1.4 years; M Height= 1.82 ± 0.05 cm; M Mass= 75.7 ± 4.7 Kg;</td>
<td>Standardization Training = 3 wk RT High Velocity = 7 wk RT Low Velocity = 7 wk</td>
<td>ST= 3 sets 10RM Slow HV= 30-50% of 1RM LV= 70-90% of 1RM 4 min recovery CT = N/A</td>
</tr>
<tr>
<td>Satkunskienė et al (49)</td>
<td>7 Sprinters Training experience = Elite 60 m result 6.77—7.51 s</td>
<td></td>
<td>M Age= 26 ± 2.5 years; M Height= 1.80 ± 0.11 cm; M Mass= 76.0 ± 0.27 Kg;</td>
<td>Power Endurance = 4 wk Power Training = 4 wk 3 times per week 8 wk</td>
<td>Power Endurance = 60-90% 30-60s passive rest Power Training = 100% 3-5min passive rest CT = N/A</td>
</tr>
</tbody>
</table>

PE = Power Endurance, PT = Power Training, MVC = Maximum Voluntary Contraction, CMJ = Counter Movement Jump, DJ = Drop Jump, PLY = Plyometric Training, HVG = High Velocity Group
Table 3. Description of treatment and control group training.

<table>
<thead>
<tr>
<th>Author</th>
<th>Locomotor Training</th>
<th>Power Endurance Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kamandulis et al (52)</td>
<td>PE = 60-90% of max for 20s 5-10 times (0.5-1 min rest) Vertical jumps Multiple forward jumps Running exercises (burdles, upstair, uphill, on spot) Sprints alternating with slow jogging</td>
<td>(>10%) decrease in running velocity (Para Chute) Experimental Group Maximum sprints with Para Chute 4 × 30m with 4 min rest 10min rest between 4X50 with 6 min rest</td>
</tr>
<tr>
<td>Balsalobre-Fernandez et al (7)</td>
<td>PE = 95-100% of max for 5-10s 5-10 times (5 min rest) Runs with weight belt One stop vertical jumps Forward jumps Crouch start running Dynamic inertial loads</td>
<td>(\sim) Maximum sprints Un-resisted training (no para chute) 4×30m with 4 min rest 10min rest 4×50 with 6 min rest</td>
</tr>
<tr>
<td>Martinopoulos et al (30)</td>
<td>Power Endurance Training Running jumps, multiple hops and jumps, barrier hops, run up stairs, run up hill, run in place. Exercise intensity = 60---90%, duration = 10 s, 5—10 repetitions with 30—40 s passive rest.</td>
<td>The Power Training Un-resisted sled-pulling sprinting, depth jump, multiple hops and jumps, block start run and exercises for muscle strength: Lever Seated Calf Raise, Barbell Back Extension, Pec Deck Butterfly’s, Lever Lying Leg Curl. Exercise intensity = 100%, duration — 10 s, 5—7 repetitions with 3—5 min passive rest, 5 min rest between sets.</td>
</tr>
<tr>
<td>Blazevich and Jenkins (4)</td>
<td>Power Endurance Training 4×30m with 4 min rest Speed training, multiple sprints with 4 min rest 4×50 with 6 min rest</td>
<td></td>
</tr>
<tr>
<td>Salumasiene et al (49)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Group / Control Group</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Group</td>
<td>6-9 hrs. a week Power Endurance, 3 wk Recovery, 1 wk Power Training, 4 wk Total 8 weeks (27 sessions) 2 times p/w Total 10 weeks</td>
</tr>
<tr>
<td>Control Group</td>
<td>3 times p/w 4 weeks power endurance 4 weeks power training Total 8 weeks</td>
</tr>
</tbody>
</table>

PE = Power Endurance Training PT = Power Training PLY = Plyometric Training RT = Resistance Training CT = Control Trial HP = High Intensity Power Training
Figure 1. Criteria for selection of articles for review

1473 records identified through database searching
- JSCR = 280
- SCJ = 51
- Science Direct = 302
- Medline = 309
- Sports Discus = 221
- CINAHL = 175
- Pub Med = 135

30 additional records identified through other sources / languages = (French/ Lituanian)

1004 records after duplicates removed (duplicates = 469)

1004 records screened

999 full text articles assessed for eligibility

999 full text articles excluded, due to:
- Based on Title = 816
- Based on Abstract = 159
- Based on Article Review = 22

999 full text articles excluded

of studies included in quantitative synthesis (meta-analysis) = 5

Copyright © Lippincott Williams & Wilkins. All rights reserved.