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Lymph Node Status in Colorectal Cancer

John Hogan, MB,∗ Conor Judge, MB,∗ Michael O’Callaghan, MB,∗ Amir Aziz, MB,∗ Cormac O’Connor, MB,∗

John Burke, PhD,∗ Colum Dunne, PhD,† Stewart Walsh, Msc, MB,∗† Matthew Kalady, PhD,‡
and J. Calvin Coffey, PhD∗†

Objective: This study aims to harness the potential of public gene expres-
sion repositories, to develop gene expression profiles that could accurately
determine nodal status in colorectal cancer.
Background: Currently, techniques that determine lymph node positivity (be-
fore resection) have poor sensitivity and specificity. The ability to determine
lymph node status, based on preoperative biopsies, would greatly assist in
planning treatment in colorectal cancer. This is particularly relevant in polyp-
detected cancers.
Methods: Public gene expression repositories were screened for experiments
comparing metastatic and nonmetastatic colorectal cancer. A customized
graphic user interface was developed to extract genes dysregulated across
most identified studies (ie, consensus profiles). The utility of consensus pro-
files was tested by determining whether classifiers could be derived that de-
termined nodal positivity or negativity. Consensus profiles-derived classifiers
were tested on separate Affymetrix- and Illumina-based experiments, and
collated outputs were compiled in summary receiver operator curve char-
acteristic format, with area under the curve (AUC) reflecting accuracy. The
association between classification and oncologic outcome was determined us-
ing an additional, independent data set. Final validation was conducted using
the Ingenuity network-linkage environment.
Results: Four consensus profiles were generated from which classifiers were
derived that accurately determined node positive and negative status (pooled
AUC were 0.79 ± 0.04 and 0.8 ± 0.03 for nodal positivity and negativity,
respectively). Overall AUC ranged from 0.73 to 0.86, demonstrating high
accuracy across consensus profile type, classification technique, and array
platform used. As consensus profile enabled classification of nodal status,
survival outcomes could be compared for those predicted node negative or
positive. Patterns of disease-free and overall survival were identical to those
observed for standard histopathologic nodal status. Genes contained within
consensus profiles were strongly linked to the metastatic process and included
(among others) FYN, WNT5A, COL8A1, BMP, and SMAD family members.
Conclusions: Microarray expression data available in public gene expression
repositories can be harnessed to generate consensus profiles. The latter are a
source of classifiers that have prognostic and predictive properties.
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C olorectal cancer is a significant cause of mortality, with more
than 40,000 new cases diagnosed annually in the United

Kingdom contributing to more than 16,000 deaths.1 The presence
of lymph node metastasis is an important prognostic feature after
curative resection in colorectal cancer and is strongly associated
with disease recurrence.2–4 Advances in neoadjuvant strategies
have created a pressing need for accurate identification of high-risk
(node positive) tumors before surgical resection.5,6 With the intro-
duction of screening programs, the dilemma increasingly posed by
polyp-detected cancers means that mechanisms must be sought that
determine lymph node status, and thereby guide the need for surgical
resection.

Preoperative clinical staging (ie, the combination of endo-
scopic and radiologic findings) is used to determine tumor, nodal, and
metastasis status in both colon and rectal cancer.7,8 Unfortunately, the
overall accuracy of imaging modalities in determining nodal stage is
extremely variable and oftentimes limited. Significant discrepancy
exists between the reported sensitivities and specificities of com-
puted tomography (CT) in identifying lymph node positivity.9–11 In
particular, poor specificity and a high false-positive rate preclude CT
evaluation in preoperative nodal classification in colon cancer. Mag-
netic resonance imaging and endoanal ultrasonography, though useful
in assessing local tumor burden, are limited in discriminating between
malignant and benign lymph nodes.12,13 These limitations generate
a compelling argument for development of an accurate method of
preoperative nodal staging. Ideally, the discriminatory accuracy of 1
such test should surpass that of radiologic staging and closely corre-
late with surgical staging (ie, the gold standard in determining lymph
node status).

Over the past decade, gene expression profiles emerged with
predictive properties capable of identifying biologic states. For ex-
ample, the 5 luminal subtypes of breast cancer can be characterized
by their gene expression profiles.14 However, a number of issues have
precluded their widespread application in the clinical setting. Chief
among these is disparity of findings across almost all studies, which
prompts questions related to reproducibility, reliability, and corre-
lation of data.15 The lack of concordance between gene lists arises
because of (a) studies including too few samples, (b) a lack of strin-
gency in bioinformatic workflows, (c) variations relating to technique
and microarray platform processing, and (d) lack of concordance
between probe sets.16–18

A number of developments recently converged that could col-
lectively address the earlier-mentioned clinicobioinformatic issues.
First, the Microarray Quality Control consortium demonstrated in-
terplatform correlation with significant concordance between gene
lists derived from separate laboratories, using (a) different microar-
ray platforms and (b) defined optimal algorithms for identifying genes
for inclusion in classifier data sets.19,20 Second, microarray data de-
posited in public gene expression repositories (PGER) such as Gene
Expression Omnibus (GEO), CIBEX, Array Express, and the Stan-
ford database, mean that investigators are no longer hampered by
the limitations of small numbers of gene expression profiles.21–24

In PGER, data are imported according to strict reporting criteria as
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set out in Minimum Information About a Microarray Experiment.25

Microarray data (corresponding to gene expression) are clinically
annotated, enabling the investigator correlate with various tumor-
(eg, stage) and patient- (eg, sex, age, etc) related characteristics.
Surprisingly, few studies to date have attempted to harness the po-
tential inherent in these repositories, with a view to developing
expression profiles that could accurately determine biologic states.
More importantly, no study has applied the bioinformatics rigor
proposed by Microarray Quality Control with the data available
in PGER in the determination of lymph node status in colorectal
malignancy.

The first objective of this study was to generate gene lists that
were common to most experiments that (a) compare early- with late-
stage colorectal cancer and (b) are available in PGER. A second aim
was to test the utility of these lists in the prediction of histopatho-
logic lymph node status. To facilitate this, software was developed to
generate “consensus profiles,” that is, gene expression profiles com-
prising genes commonly altered across most experiments in PGER.
Consensus profiles provided a resource of classifiers highly accurate
in determining nodal status (ie, predictive) and oncologic outcome
(ie, prognostic).

METHODS
Overview of Workflow

The following is an overview of the work-flow process
(Fig. 1).

Phase 1—generation of consensus profiles: Public gene expres-
sion repositories were searched for experiments pertaining to
metastatic and nonmetastatic colorectal cancer. Raw data were
downloaded, and genes significantly dysregulated between the 2
disease states were retained and imported into “Consensus Profile
Developer” (CPD). Consensus Profile Developer generated a con-
sensus list of dysregulated genes common to most experiments.
The resultant 4 lists were referred to as consensus profiles.

Phase 2—testing the utility of consensus profiles in the determination
of nodal status: A PERL script was used to extract expression
data for genes in each consensus profile from separate and in-
dependent Affymetrix- and Illumina-based experiments. In both,
staging status was conducted on postoperative resection speci-
mens (ie, surgical staging). The extracted expression data were
subjected to a rigorous and standardized bioinformatic workflow

FIGURE 1. Flowchart summarizing key
stages in experimental workflow. CCBMS and
DCBMS are concordant and discordant con-
sensus profiles generated when both lym-
phatic and metastatic expression data sets
are included. CCLM and DCLM are concor-
dant and discordant consensus profiles gen-
erated when only lymphatic metastatic data
sets are included. Step a, All PGER relat-
ing to colorectal cancer were examined and
filtered to retain only those 7 that were
fully Minimum Information About a Microar-
ray Experiment compliant. All were located
within GEO. Steps b and c, Raw expression
data were used in MultiExperiment Viewer,
to generate 7 lists of dysregulated genes,
which were then imported into a customized
graphic user interface. Steps d and e, The
latter outputted all 4 consensus profiles. A
PERL script was used to extract expression
data for genes in each consensus profile
from independent Affymetrix- and Illumina-
based experiments. These were imported to
Chipster and processed to retain only those
genes that were significantly differentially
expressed between node negative (stage 2)
and node positive (stage 3) colorectal can-
cer. The discriminant properties of the 4 clas-
sifier data sets were assessed using an ar-
ray of classification techniques. Sensitivities/
specificity profiles were established using
SROC and the area under the curve, in
meta-disc. Data sets were then further func-
tionally analyzed in Ingenuity. Affy indicates
Affymetrix; GUI, graphic user interface; OS,
overall survival; VBA, Visual Basic Algorithm.
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generating and testing classifiers of nodal status. The oncologic
outcome of patients classified as either node positive or negative
was determined and compared with histopathologic correlates.

Appraisal and Filtration of Public Gene Expression
Repository Data

In step a (Fig. 1), all PGER experiments comparing condi-
tions associated with early primary colorectal cancer (ie, colorectal
cancer without metastases) with late stage (ie, colorectal cancer with
lymphatic and/or hepatic metastases) were identified. The specific
origin of genomic data is provided in Supplementary Digital Content
Table 2 at http://links.lww.com/SLA/A484. In 6 experiments, tran-
scriptomic data derived from primary tumors provided the standard
against which comparisons were made (in 1 experiment, transcrip-
tomic data were derived from a primary tumor cell line). This ap-
proach was adopted, as the identification of expression differences
between extreme stages of cancer could be used to predict inter-
mediate stages.25 Online archives containing relevant experiments
included GEO, Array Express (European), CIBEX, and the Stan-
ford database. In each, a search was conducted using “Colorec-
tal [OR] Colon [+] Cancer [OR] Carcinoma” search terms. Ex-
periments comparing data derived from early-stage conditions (ie,
nonmetastatic) with samples derived from late-stage conditions (ie,
metastatic) were retained (Supplementary Digital Content Table 1A
at http://links.lww.com/SLA/A484). According to the American Joint
Committee on Cancer, stages 1 and 2 (ie, early) of colorectal cancer
are nonmetastatic, whereas stages 3 and 4 (ie, late) are metastatic.
Although, theoretically, early- and late-stage properties may over-
lap during tumor progression, current classification/staging systems
do not cater for this. Minimum Information About a Microarray
Experiment compliance was used an index of completeness of the
reporting process.26 A 6-point scoring system was developed, in-
corporating the main Minimum Information About a Microarray
Experiment features (Supplementary Digital Content Table 1B at
http://links.lww.com/SLA/A484). Each of 12 suitable experiments
was scored, and only those satisfying all criteria (ie, score of 6)
were retained for further analysis (Supplementary Digital Content
Table 1C at http://links.lww.com/SLA/A484). At completion of step a
(Fig. 1), 7 experiments were retained, comprising 332 microarray
samples generating 17,506 instances of differential gene expression
(Supplementary Digital Content Table 2 at http://links.lww.com/SLA/
A484).

Importation of Data and Consensus Profile
Generation

As part of steps b and c, MultiExperiment Viewer (MeV)
was used to generate a list of differentially expressed genes for each
study retained in step a. Raw data were downloaded, imported to
MeV, and normalized (robust multilevel and quartile normalization
were used for Affymetrix and single-channel microarray platforms,
respectively).27 Experimental conditions were compared using an un-
paired t test without adjustment for multiple sampling and using a
P < 0.05 cutoff (ie, with a view to maximizing the capture of genes
and thus possible overlaps, see hereafter).

To generate consensus profiles, a novel graphic user interface
CPD was generated using Visual Basic (Windows Office 7) (see sup-
plementary materials for instructions, usage, and code). This enabled
a cross-comparison of all 7 data sets in Excel and outputted 2 types
of consensus profile (see hereafter). Within each profile, genes were
rank ordered according to frequency and direction of differential ex-
pression. As CPD entries included experiment number, gene symbol,
and up- or downregulated status only, CPD is not condition-dependant
and can thus be applied broadly.

“Consensus” was deemed to be present when dysregulation
(defined as the presence of a significant difference in gene expres-
sion on MeV analysis) was evident across most experiments. Genes
similar in expression (ie, not dysregulated) across the majority of
experiments could also provide a type of consensus profile; however,
this was not analyzed in the present study. Thereafter, 2 subtypes
of consensus were possible; a consensus could be in the same di-
rection when a gene was either significantly up- or downregulated
across most experiments. This was arbitrarily termed a concordant
consensus and abbreviated to “CC.” A discordant consensus (“DC”)
arose when a gene was significantly dyrsregulated across most ex-
periments, but where expression changes occurred in either direction
(ie, up- and downregulated included). Consensus Profile Developer
outputted both consensus types.

Two groups of concordant (ie, CC) and discordant (ie, DC)
consensus profiles were then generated using CPD (Fig. 1). Group-1
consensus profiles were derived from all 7 experiments (ie, experi-
ments involving hepatic or lymphatic metastatic disease as compara-
tors). Group-2 consensus profiles were derived solely from experi-
ments that compared early primary colorectal cancer with late-stage
cancer involving lymphatic (but not hepatic) metastatic disease. The
following notations were generated to clarify the grouping and types
of consensus profile:

CCLM and DCLM: concordant (CC) and discordant (DC) profiles
where comparators were associated with lymphatic metastatic dis-
ease (LM) only

CCBMS and DCBMS: concordant (CC) and discordant (DC) profiles
where comparators were associated with both metastatic disease
types (BMS)

Consensus Profile Assessment Through Prediction
of Nodal Status

The discriminatory properties of all profiles were assessed
by determining the capacity to differentiate node negative and node
positive colorectal cancer in 2 independent experiments. Nodal status
is the single strongest determinant of hepatic metastasis development,
and thus is intimately related to overall survival in colorectal cancer.

GSE31595 is a file in GEO containing expression data from
37 Affymetrix Human Genome U133 Plus 2.0 microarrays. The
Affymetrix Human Genome U133 Plus 2.0 is a commonly used mi-
croarray platform. Of the 37 samples, 20 and 17 were derived from
stages 2 (node negative) and 3 (node positive) tumors, respectively,
as per surgical staging on resected specimens. A PERL script was
generated to extract expression data for each consensus profile, from
GSE31595 (see supplementary methods for code). These were im-
ported to Chiptser, renormalized, and 2 group testing was conducted
using EmpiricalBayes (with a Benjamini-Hochberg P-value adjust-
ment for multiple sampling). In this manner, the consensus profiles
were filtered to include only those genes differentially expressed be-
tween node negative and node positive disease. This generated 4
classifier data sets (ie, 1 for each consensus profile type), using the R
packages limma and LPE (Supplementary Digital Content Table 3 at
http://links.lww.com/SLA/A484).28 Clustering via sample and gene
expression was evaluated for each data set, using R packages ape and
amap.28

As classification results vary according to the data set and
technique used, classification was conducted separately using
the K-nearest neighbor (knn), linear discriminant analysis (lda),
discriminant analysis (slda), and using svm, rpart, lvq, naiveBayes,
and bagging techniques. This generated 9 confusion matrices for
each consensus profile classifier (ie, 36 confusion matrices in total)
(data not included). For each classifier, the optimal 3 classification
outputs were combined, then analyzed using the Meta-analytical
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Integration of Diagnostic Accuracy Studies command, after which
the area-under-the-curve (AUC) values were calculated using
Meta-Disc version 1.4 (Universidad Complutense, Madrid, Spain).

As GSE31595 was generated using an Affymetrix hgu133
plus2 Array platform, the earlier-mentioned process was repeated
on an independent data set generated using the Illumina 6v2 plat-
form. The latter comprised 158 colorectal tumor samples (Illumina
6v2 platform). Staging of these had been conducted on postoperative
resection specimens. Methodology detailing RNA extraction, qual-
ity control, and hybridization is available in Supplementary Digital
Content Methodology Section 2 at http://links.lww.com/SLA/A484.
In this, arbitrarily termed the Illumina experiment, importation and
comparison workflow processes were identical to those described
earlier and the end product consisted of 4 classifier data sets (1 for
each consensus profile classifier) (Supplementary Digital Content
Table 4 at http://links.lww.com/SLA/A484). The earlier-mentioned
classification process was repeated, generating 36 confusion matri-
ces (ie, 9 confusion matrices for each consensus profile type) (data
not included). The optimal 3 outputs were again pooled to generate
summary receiver operating characteristic curves as described earlier.

Correlation Between Classification With Consensus
Profiles and Oncologic Outcomes

GSE17536 is a GEO-based data set comprising 177 samples
annotated with disease-free and overall survival data. As this data
set had not been used in either consensus profile generation or
validation, it was fully independant. GSE17536 was downloaded,
and samples contained were classified as either lymph node positive
or negative, using the consensus profile-based approach described
earlier. After samples were classified as lymph node positive or
negative, Kaplan-Meier estimates were plotted and compared
between groups (for both disease-free and overall survival), using
a log-rank analysis. Kaplan-Meier estimates were also generated
for patients classified as either node negative or positive on routine
histopathologic (ie, surgical) assessment. Both sets of KM esti-
mates (ie, from transcriptomic and histopathologic classification
approaches) were then compared (Supplementary Digital Content
Figure 1 at http://links.lww.com/SLA/A484).

Functional Annotation
Each consensus data set containing HUGO Gene Nomencla-

ture Committee gene identifiers and frequencies was imported into
Ingenuity (ILP) for functional annotation.29 Ingenuity permits a cross-
referencing of genes against published literature to identify linkages.
A detailed description of the associated methodology is included in
the supplementary materials. Within the Ingenuity environment, the
“functional analysis” tool was used to determine the relationship be-
tween consensus profile genes and the gastrointestinal metastatic pro-
cess. For each consensus profile, the topmost 5 disease functions were
filtered sequentially to retain only genes associated with gastroin-
testinal cancer metastasis. All genes contained within the consensus
profiles, and not associated with gastrointestinal metastases, were ex-
cluded. The final 4 outputs were combined to generate a “customized
pathway,” including only those genes most strongly associated with
gastrointestinal metastases.

RESULTS
Consensus Profile Generation

Four consensus profiles were generated using CPD, as detailed
in Methods. The content of each is described in the following.

Group 1: Concordant and discordant consensus profiles derived from
expression data where data were derived from experiments based
on both metastatic subtypes (CCBMS and DCBMS).

CCBMS comprised 58 genes concordantly dysregulated across
most experiments (23 and 35 up- and downregulated, respectively).
Supplementary Digital Content Table 5 at http://links.lww.com/SLA/
A484 lists the functions, direction, and frequency of dysregulated
genes. No gene was upregulated in greater than 4 experiments. Al-
though no gene was downregulated in more than 5 experiments,
prostaglandin D2 synthase and bone morphogenetic protein type 2
were significantly downregulated in 5 experiments. DCBMS com-
prised 155 genes discordantly dysregulated across most of the 7
experiments. Supplementary Digital Content Table 6 at http://links
.lww.com/SLA/A484 demonstrates the frequencies and distribution
of up- and downregulated genes in DCBMS. Adipocyte differentiation-
related protein was significantly up- and downregulated across 5 and
1 experiment, respectively. As adipocyte differentiation-related pro-
tein was significantly dysregulated in both directions it was included
in DCBMS and not in CCBMS.

Group 2: Concordant and discordant consensus profiles derived from
expression data where data were derived from experiments based
on lymphatic metastases (CCLM and DCLM).

CCLM comprised 84 genes (44 and 40 up- and downregulated, re-
spectively). Supplementary Digital Content Table 7 at http://links
.lww.com/SLA/A484 lists the functions, direction, and frequency of
dysregulated genes in CCLM. WSB2, a member of the WD subfamily
of proteins, was upregulated across all 4 experiments. Tetratricopep-
tide repeat domain 1 was downregulated across all 4 experiments
included. One hundred ninety-seven genes were discordantly dys-
regulated across most experiments (ie, DCLM). Supplementary Digi-
tal Content Table 8 at http://links.lww.com/SLA/A484 demonstrates
the distribution of up- and downregulated genes and frequencies in
DCLM. Although adipocyte differentiation-related protein was the
only gene upregulated across 3 experiments, polymerase III polypep-
tide G was the only gene downregulated across 3 experiments.

Consensus Profile Testing
To test the utility of consensus profiles in discriminating tu-

mor properties, expression data for each gene in all 4 consensus
profiles were extracted from separate Affymetrix- and Illumina-
based experiments. Consensus profiles together with new expression
data sets were imported to Chipster and classifiers derived that pre-
dicted nodal status in colorectal cancer. Classifiers were generated
on the basis of 2 group testing with P-value adjustment for mul-
tiple sampling (Supplementary Digital Content Tables 3 and 4 at
http://links.lww.com/SLA/A484). This retained only those genes that
were significantly differentially expressed, between node negative and
node positive colorectal tumors. As there were 4 consensus profiles
to begin with, this generated 8 classifiers (ie, 4 each for Affymetrix-
and Illumina-based experiments) (Supplementary Digital Content
Tables 3 and 4 at http://links.lww.com/SLA/A484). The discriminant
properties of each of the 8 classifiers were then assessed in 2 manners.
First, classification results were pooled to determine false-negative,
false-positive, true-negative, and true-positive ranges. Second, pooled
classification results permitted summary receiver operator curve de-
velopment and AUC comparisons.

Testing of Data Sets Against Independent Experiments:
Confusion Matrices—Pooled Analysis

Classification outputs varied according to test used. To illus-
trate this, an array of confusion matrices is included in Supplementary
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Digital Content Table 9 at http://links.lww.com/SLA/A484. Accu-
racy in determining lymph node negativity was first assessed. When
all classification outcomes were pooled, false-negative rates ranged
from 13% to 46% (24% ± 11%), with the lowest associated with
the classifier from CCLM (13%). The mean false-positive rate was
22% ± 10%, and the lowest false-positive rate was associated with
the CCBMS-derived classifier at 3% (in the Illumina-based experi-
ment). The mean true-positive rate was 79% ± 9.3%, and the highest
occurred with the classifier from CCBMS at 97% (also observed in the
Illumina-based experiment). Similarily, a pooled analysis of classi-
fication outputs demonstrated that true-negative percentages ranged
from 65% to 97%, with the highest again associated with the CCBMS-
derived classifier at 97% (in the Illumina-based experiment). Accu-
racy in determining lymph node positivity was next assessed. False-
negative rates ranged from 3% to 35% (22% ± 10%), with the lowest
associated with the CCBMS classifier. The mean false-positive rate
was 31% ± 5.6%, and the lowest false-positive rate was associated
with the classifier from CCLM (ie, 25%). For true-positive rates, the
mean was 69% ± 5.6%, and the highest rate was also associated with
the CCLM classifier (ie, 75%). True-negative percentages ranged from
65% to 97% (mean 79% ± 9.3%).

Testing of Data Sets Against Independent Experiments:
Area Under the Summary Receiver Operating
Characteristic Curve—Pooled Analysis

The sensitivity/specificity of each classifier data set is further
summarized in Figure 2, demonstrating the AUC for each test. Values
of AUC represent the sensitivity/specificity of the pooled classifica-
tion results for each of 8 classifiers. Hence, each AUC value refers to
a particular test and classifier. Two tests were used, (a) the detection of
lymph node positive status and (b) the detection of lymph node neg-
ative status, in determining the clinical utility associated with each
classifier (and thus, each consensus profile). This workflow gener-
ated an array of AUC results that was then compared between the
following categories: (a) test type, (b) Affymetrix versus Illumina,
(c) concordant versus discordant consensus profile, and (d) group 1
(where data were derived from experiments involving both metastatic
subtypes) versus group 2 (where data were derived from experiments
involving from lymphatic metastases only). An exhaustive within-
category comparison of each parameter is beyond the scope of the
article.

The mean pooled AUC for all results was 0.802 ± 0.04. Mean
pooled AUC for all tests related to lymph node positivity alone was
0.79 ± 0.04. Mean pooled AUC for all tests relating to lymph node
negativity was similar at 0.80 ± 0.03 (P = 0.96). Thus, classifiers
were equally sensitive and specific in determining rates of lymph
node positivity and negativity. Pooled AUC values for Affymetrix-
and Illumina-based tests were 0.75 ± 0.01 and 0.83 ± 0.01, respec-
tively (P < 0.001), indicating that classifiers had greater discrim-
inatory capability in testing with Illumina-derived data. All AUC
results were pooled for group 1 and 2 related tests. To recap, group 1
classifiers were generated from consensus profiles based on both
metastatic subtypes, whereas group 2 classifiers were generated from
experiments referring to lymphatic metastases only. Mean AUC did
not differ between the 2 (0.79 ± 0.03 vs 0.80 ± 0.04, respectively;
P = 0.76). Similarly, there were no AUC differences when classifiers
from concordant profiles were compared with those from discordant
profiles (0.79 ± 0.05 and 0.80 ± 0.02; P = 0.5).

Examining the Affymetrix test context alone, AUC was sig-
nificantly greater for classifiers generated from discordant versus
concordant consensus profiles (0.79 ± 0.02 vs 0.75 ± 0.02; P =
0.027). In the Illumina setting, the reverse occurred, with classifiers
from concordant consensus profiles associated with a greater (albeit

nonsignificantly) AUC at 0.83 ± 0.01 versus 0.81 ± 0.01 (P = 0.095).
In the Affymetrix setting, AUC from group 1 and 2 classifiers were
compared, with no significant difference emerging (0.77 ± 0.01 and
0.78 ± 0.05, respectively; P = 0.46). Similar observations were
apparent for the Illumina context (0.84 ± 0.02 vs 0.81 ± 0.1;
P = 0.5). There were no significant differences in AUC returned
when determining rates of lymph node positivity was compared with
determining lymph node negativity; for Affymetrix: 0.77 ± 0.03 ver-
sus 0.76 ± 0.03, respectively (P = 0.69); and for Illumina: 0.82 ±
0.01 versus 0.82 ± 0.02, respectively (P = 0.752).

Finally, individual AUC results were compared for classifiers
within each experimental context. Within the Affymetrix setting, the
DCBMS classifier was most accurate at identifying rates of node neg-
ativity and positivity. In the Illumina context, the CCLM classifier had
the highest AUC in relation to both node negative and node positive
tumors (0.84 and 0.86, respectively). CCLM-classifier AUC values
were third highest in the Affymetrix/GSE31959 study, whereas the
DCBMS-classifier AUC values were lowest in the Illumina study.

Correlation Between Classification With Consensus
Profiles and Oncologic Outcomes

Samples from GSE17536 were classified as node positive
or negative, using the consensus profile-based approach described
earlier. When Kaplan-Meier estimates were compared between
groups, both disease-free and overall survival were significantly
and markedly reduced in patients whose samples were classified
as node positive (Supplementary Digital Content Figure 1 at http://
links.lww.com/SLA/A484). For the purposes of comparison,
disease-free and overall survival were also plotted for patients
classified as lymph node negative or positive based on standard
histopathologic classification. As can be seen from Supplementary
Digital Content Figure 1 at http://links.lww.com/SLA/A484, the
overall survival patterns for transcriptomic and histopathologic nodal
status designation were remarkably similar.

As a final test, the ability of consensus profiles to determine
risk of recurrence was assessed in the GSE31595 experimental con-
text. Primary tumor samples in GSE31595 are divided into recurrent
and nonrecurrent, on the basis of whether they were followed by
recurrence (the type of recurrence and time to recurrence are not
documented in GSE31595). Again, classifiers could be developed
that were predictive of recurrent and nonrecurrent status. Although
the overall AUC was 0.77, specificity and false-positive rates were
85.7% and 14.3%, respectively.

Functional Analysis of Data Sets
Within the Ingenuity environment, all consensus profile com-

ponents were cross-referenced against published literature to identify
those genes most strongly associated with gastrointestinal metasta-
sis to date. The results, termed “outputs,” were compared in terms
of networks, molecular and physiologic functions, disease, canonical
pathways, and transcription factors associated. Notch was associated
with both CCBMS and CCLM, whereas HOXa9 was associated with
both DCBMS and DCLM. The top 2 diseases and molecular func-
tions associated with each are summarized in Supplementary Digital
Content Table 10 at http://links.lww.com/SLA/A484. In all except
the CCBMS profile, “cancer” was the strongest associated disease
state, with genetic abnormalities second. The association with cancer
was strongest for both CCBMS and DCBMS classifiers. The profile
of molecular functions was similar between sets, and again the as-
sociations with DCBMS and CCBMS were strongest (Supplementary
Digital Content Table 10 at http://links.lww.com/SLA/A484).

When all 4 consensus profiles were analyzed for the 5 topmost
cancer-associated functions, “metastasis” was associated with each.
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FIGURE 2. Summary receiver operator curves were generated using the DerSimonian and Laird procedure for random effects in
Meta-Disc. The top 2 rows refer to the Illumina-based experiment. The first row graphs were generated from classifiers of the
consensus profiles examining lymphatic metastases (ie, CCLM and DCLM). The second row graphs were generated from classifiers
of consensus profiles examining both metastatic subtypes (ie, CCBMS and DCBMS). The bottom 2 rows follow an identical pattern
and relate to the Affymetrix-based experiment. The central figures in each line graph are the respective AUC values. The first
and third columns of line graphs relate to sensitivities/specificities associated with stage 3 status, whereas the second and fourth
columns refer to testing stage 2 status.
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This process highlighted specific molecules that were (a) present in
each consensus profile and (b) strongly associated with colorectal
cancer metastasis. These were compiled in what is referred to as “a
network pathway” for metastatic colorectal cancer (Fig. 3), that is, a
compilation of those genes most strongly associated with metastasis
in published literature. Finally, an “IPA My Pathway Report” was
generated from this network pathway, which highlights established
biologic therapies known to target the associated molecular pathways.
For example, FYN (a src kinase targeted by Dasatinib) and COL18A1
(a collagen subtype targeted by collagenase clostridium histolyticum)
were highlighted using this approach (Fig. 3).

DISCUSSION
The present study screened all known PGER for experiments

that (a) satisfied particular reporting criteria and (b) compared early-
(ie, primary nonmetastatic) with late-stage (ie, metastatic) colorectal
cancer. From experiments undergoing a stringent filtration process,
genes that were common across all were collated from consensus
profiles (of which there were 4 types). These were gene lists from
which small-set classifiers were derived that determined lymph node
status. When tested against independent surgical staging, high lev-
els of sensitivity and specificity persisted. When classification was
correlated with oncologic outcomes, patterns identical to those ob-
served for histopathologic-based prognosis were apparent. Hence,
consensus profiles are a resource of genetic classifiers that (a) ac-

FIGURE 3. Network of molecules that (1) are associated
with gastrointestinal metastases, (2) contained within the
Ingenuity Knowledge database, and (3) overlap with the 4 con-
sensus sets. Lines indicate molecules with known links to col-
orectal metastasis in particular. FYN and COL18A1 are targets
for which therapeutic modalities are available (ie, dasatinib and
clostridium collagenase histolyticum, respectively). AKR1C1-3
indicates aldo-ketose reductase family 1 member C1-3; CD9,
CD9 molecule (previously CD9 antigen); COL18A1, collagen
type 18 alpha; FYN, FYN oncogene related to SRC, FGR, YES;
NFKBIB, nuclear factor of kappa polypeptide gene enhancer in
B-cells inhibitor; PLOD2, procollagen-lysine, 2-oxoglutarate 5-
dioxygenase; PPAP2B, phosphatidic acid phosphatase type 2B;
SMAD2, mothers against DPP homologs; WNT5A, wingless-
type MMTV integrations site family member 5A.

curately predict lymph node status and (b) prognosticate oncologic
outcome.

Omics-based technologies (including microarray and gene ex-
pression) developed considerably over the past decade but have yet
to be broadly adopted in the clinical setting. This is due mainly to the
disparity that persists between studies aiming to characterize similar
biologic states.15 Disparity arises because of (a) differences in array
platforms, (b) effects of covariates, (c) feature selection, (d) batch ef-
fects, and (e) varying classification stringency coupled with failure to
collate multiple classification results.30,31 The present study departed
from the normal approach by commencing with all available public
gene expression data to identify genes commonly dysregulated (ie,
consensus profiles) and use these as a platform from which to generate
accurate classifiers. In so doing, batch, covariate, and replicate effects
were reduced. The study used a stringent bioinformatic pipeline to
generate classifiers of nodal status. P-value adjustment, collation of
multiple classification techniques, minimized feature selection, and
the depiction of classifier accuracy in formats recommended by the
Microarray Quality Control consortium were all used to maximize
bioinformatic stringency and prevent an overfitting of relations. The
accuracy of the classifiers generated was reflected in similar results
across independent experiments involving the 2 most commonly used
microarray platforms (ie, Affymetrix and Illumina).32 Accuracy was
further reflected in correlations with oncologic outcome parameters
(ie, disease-free and overall survival), which changed in a manner
identical to that seen with standard histopathologic-based prognosti-
cation.

In almost all the GEO-based experiments used in this study,
transcriptomic data were obtained from biopsy-derived RNA. As the
consensus profiles and classifiers developed herein comprised a lim-
ited number of genes, they are suited to reverse transcription poly-
merase chain reaction–based analyses of tumor biopsies, and hence
to preoperative staging. The high discriminatory accuracy associated
with these classifiers should thus be contextualized by comparison
with accuracy levels for current preoperative staging modalities. Bi-
pat et al29 performed a meta-analysis comparing accuracy of CT,
magnetic resonance imaging, and endoanal ultrasonography in identi-
fying lymph node positivity in rectal cancer. The sensitivities reported
were 67%, 55%, and 66%, respectively, and specificities were 78%,
74% and 76%, respectively. Fluorine-18 2-fluoro-2-deoxy-D-glucose
(18F-FDG) positron emission tomography is a specific preoperative
diagnostic tool (87.9%) in determining lymph node status but is lim-
ited by poor sensitivity (42.9%).11,33 The converse is true when CT
is applied in determining lymph node status in colon cancer (exclu-
sive of rectal cancer), with high reported sensitivity (83%) but low
specificity (38%).34 Although not directly compared with preopera-
tive radiologic modalities for nodal staging in the present study, the
classifiers generated demonstrated both high sensitivity and speci-
ficity (AUC ranging from 0.73 to 0.86). These findings prompt a
prospective comparison of nodal staging using transcriptomic and
radiologic staging modalities.

Importantly, consensus profiles varied (though not signifi-
cantly) in accuracy depending on the question asked (ie, lymph node
positive or negative) and on the platform used. Thus, in deciding
which type consensus profile one should use, the question, platform,
and context should first be determined. In the Affymetrix-based ex-
perimental platform, classifiers derived from discordant consensus
profiles more accurately predicted rates of nodal positivity and neg-
ativity compared with classifiers derived from concordant profiles.
The reverse occurred for the Illumina platform in which concordant
classifiers were most accurate (though not significantly so). These
differences may reflect the number of arrays included in both plat-
form types. The optimal classifier in determining lymph node positive
tumors was derived from a concordant consensus profile. The latter
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was based on studies examining lymphatic metastases (ie, the CCLM
classifier had an AUC of 0.86 in determining lymph node positive
tumors). The optimal classifier in determining lymph node negative
tumors was derived from a discordant consensus profile. The latter
was generated from studies including both metastatic subtypes (ie,
the DCBMS classifier had an AUC of 0.82 in determining lymph node
negative tumors).

In testing the classification properties of consensus pro-
files, classification was tested against 2 independent data sets (ie,
Affymetrix- and Illumina-based). In each of the latter, nodal sta-
tus was confirmed on postresection specimens (ie, surgical staging).
Hence, this study indirectly tested transcriptomic classification of
nodal status with surgical classification. A close correlation was
observed, in so far as areas under the curve ranged from 0.73 to
0.86. It is interesting to note that the mean false-positive rate in the
present study was 22% ± 10%, which closely correlates with estab-
lished false-negative rates associated with histologic determination
of nodal status in colorectal cancer.35–37 The false-positive rates ob-
served in the present study could be explained by a combination of
(a) false-negative rates associated with the histopathologic compo-
nent of surgical staging, (b) genetic heterogeneity, and (c) differential
epidemiologic effects. The data presented prompt the question as
to whether transcriptomic classification could equate with or out-
perform surgical approaches to determining nodal status. Answering
this would require a direct head-to-head comparison of both in terms
of their concordance in classification and correlation with definitive
oncologic outcomes (eg, disease-free and overall survival).

A penultimate validation of the approach used herein was
conducted by comparing the oncologic outcomes of patients clas-
sified as node positive or node negative. Patients, samples, and out-
come data were derived from an independent GEO-based study that
was not used in either consensus profile generation or validation
as described earlier. Both the disease-free and overall survival of
patients classified as node positive (using the consensus profile–
based approach) were significantly poorer than those classified as
node negative. In addition, a comparison of prognostication be-
tween transcriptomic and histopathologic classification approaches
was conducted. Remarkably similar patterns of prognostication were
observed between both groups (Supplementary Digital Content
Figure 1 at http://links.lww.com/SLA/A484). Although GEO archives
do not generally contain information regarding time to recurrence,
some experiments (eg, GSE31595) do compare primary tumors as-
sociated with recurrence (categorized as “recurrent” tumors) with
primary tumors not associated with recurrence (designated as “non-
recurrent” in the GSE31595 experiment). The data here demonstrate
that classifiers derived from consensus profiles were accurate in dif-
ferentiating both types of primary tumor (the AUC, specificity, and
false-positive rates were 0.77, 85%, and 14%, respectively). Hence,
classifiers derived from consensus profiles also had both prognostic
and predictive properties.

The final component of experimentation involved a functional
annotation of consensus profiles in which these were cross-checked
against the Ingenuity Knowledge database. The latter cross-references
against all published literature and thus surpasses other hypergeomet-
ric linkage tools (eg, Onto-Express, MAPPFinder, GoMiner, DAVID,
EASE, GeneMerge, FuncAssociate) in generating and contextualiz-
ing annotations.38 In this manner, only genes significantly associated
with colorectal metastases were retained to form a “network path-
way” for colorectal metastasis. The network pathway identified nu-
merous established targets (including the src tyrosine kinase FYN,
which is targeted by dasatinib).39 Other targets were also identified
for which therapeutic targets are available, but which have yet to be
characterized in the context of colorectal metastases. For example,
COL8A1 is a collagen subtype targeted by clostridium collagenase

histolyticum.40,41 Interestingly, clostridium histolyticum is associated
with colorectal metastases formation. The generation of a metastases
network pathway from consensus profile components thus provides a
fertile ground for investigation of novel therapeutic targets in metas-
tasis formation.

The retrospective nature of this study means that inaccuracies
could arise at a number of points. Probe sequences continue to evolve
with successive iterations of the human genome, and it is feasible that
probes thought firstly to map to 1 gene may actually map with an alter-
native gene.42 Ideally, future comparisons should be directly made in a
prospective manner between transcriptomic and surgical staging and
should be cross-referenced against oncologic outcome and against a
comprehensive molecular characterization of the tumors examined.
Notwithstanding this, the consistency in AUC values observed across
comparisons in the current study reflects a methodologic robustness.
In general, classifiers from concordant or discordant consensus pro-
files had a similar predictive accuracy. Classifiers derived from pro-
files based on lymphatic metastases had similar predictive accuracy
to those derived from profiles based on both metastatic subtypes. In
addition, the overall mean AUC associated with lymph node neg-
ative and positive testing were similar. These similarities, coupled
with the prognostic associations, indicate that approaches exploiting
consensus profiles are robust.

CONCLUSIONS
Microarray data that were (a) available in PGER and (b) com-

pared early- and late-stage colorectal cancer were screened. Genes
that were differentially expressed across most experiments were
used to populate consensus profiles. From the later, small-set classi-
fiers were derived that accurately predicted node positive and nega-
tive status. Classifier-based prognostication was near identical with
histopathologic-based prognostication. These findings prompt a di-
rect comparison of transcriptomic and surgical staging in predicting
lymph node status and in prognosticating oncologic outcome.
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