Analytical results for bond percolation and k-core sizes on clustered networks

James P. Gleeson1 and Sergey Melnik1

1Department of Mathematics & Statistics, University of Limerick, Ireland.

An analytical approach to calculating bond percolation thresholds, sizes of k-cores, and sizes of giant connected components on structured random networks with non-zero clustering is presented. The networks are generated using a generalization of Trapman’s [P. Trapman, Theor. Pop. Biol. 71, 160 (2007)] model of cliques embedded in tree-like random graphs. The resulting networks have arbitrary degree distributions and tunable degree-dependent clustering. The effect of clustering on the bond percolation thresholds for networks of this type is examined and contrasted with some recent results in the literature. For very high levels of clustering the percolation threshold in these generalized Trapman networks is increased above the value it takes in a randomly-wired (unclustered) network of the same degree distribution. In assortative scale-free networks, where the variance of the degree distribution is infinite, this clustering effect can lead to a non-zero percolation (epidemic) threshold.

PACS numbers: 89.75.Hc, 64.60.aq, 87.23.Ge, 64.60.ah

I. INTRODUCTION

There has been considerable recent interest in the study of random network models, with a view to understanding the structure and dynamics of the Internet, citation networks, and other social, biological and technological networks; see the reviews [1–4] and references therein. The degree distribution \(P_k\) is a fundamental quantity of interest in these studies; here \(P_k\) is defined as the probability that a randomly chosen node (vertex) in the network has \(k\) neighbors. Random networks with a specified \(P_k\) may be generated using the so-called configuration model [5], which randomly links pairs of nodes to give the correct degree distribution. The properties of networks generated in this manner are now well understood, with analytical results relying on the fact that such networks can be approximated very accurately by tree-like graphs (provided that \(P_k\) decays sufficiently rapidly for large \(k\) [5–7]).

However, most real-world networks are not tree-like, since the density of cycles (loops) of length three in such networks is non-zero, whereas this quantity vanishes (in the limit of infinite network size) for the configuration model. The local clustering coefficient for a node \(A\) is defined as the fraction of pairs of neighbors of node \(A\) which are also neighbors of each other [8]. The degree-dependent clustering \(c_k\) is the average of the local clustering coefficient over the class of all nodes of degree \(k\) [9, 10]. Because analytical results are difficult to obtain for networks containing loops, the question of how models incorporating both \(P_k\) and non-zero \(c_k\) (taken, for example, from real-world network data) differ in structure and dynamics from corresponding randomly-wired networks (where \(c_k \to 0\)) remains of considerable interest.

The bond percolation problem on networks depends strongly on the structure of the underlying graph, and also has several important applications. The problem may be stated as follows: each edge of the network graph is visited once, and damaged (deleted) with probability \(1 - p\) (the quantity \(p\) is the bond occupation probability).

The size of the giant connected component (GCC) of the graph is clearly zero for \(p = 0\) but becomes nonzero at some critical value of \(p > 0\): this critical value of \(p\) is termed the bond percolation threshold \(p_c\). The bond percolation problem has applications in epidemiology, where \(p\) is related to the average transmissibility of a disease and the GCC represents the size of an epidemic outbreak, and in the analysis of technological networks, where the resilience of a network to the random failure of links is quantified by the size of the GCC [11]. The percolation threshold and the GCC size may be determined analytically for configuration model networks [12].

A number of investigations into the effects of clustering on bond percolation have also been undertaken. Newman [13] introduced a bipartite graph model of highly clustered networks, and examined an example of a network in which the existence of clustering decreases the percolation threshold from its value in an unclustered network, see also [14]. Serrano and Boguñá [9, 11, 15] make a detailed analysis of the interdependence of clustering and correlations. They distinguish between two types of clustered networks: those with average clustering \(c_k\) of \(k\)-degree nodes less than \(1/(k-1)\), termed weakly clustered, and those with \(c_k > 1/(k-1)\), termed strongly clustered. The boundary \(c_k = 1/(k-1)\) represents the largest value of clustering achievable without inducing degree-degree correlations in the network. Using approximate analytical methods for the weak clustering cases and numerical simulations [11] for some strongly clustered networks, they compare the bond percolation threshold to the value it would have for an unclustered network with the same degree distribution. Their general conclusion is that weak clustering increases the percolation threshold above its unclustered value, while strong clustering decreases the threshold. The latter conclusion is consistent with the example examined by Newman [13]. On the other hand, it has been pointed out in the epidemiological literature [16, 17] that in clustered networks infection tends to be confined within highly connected groups, and so sufficient clustering should increase the
epidemic (percolation) threshold.

Trapman [18, 19] recently introduced a model of clustering in structured graphs based on embedding cliques (complete subgraphs) within a random tree structure. He uses this model to analytically determine epidemic thresholds on networks with non-zero clustering. In Trapman’s model networks, the degree-dependent clustering c_k is of the form $c_k \propto (k - 2)/k$ for all $k \geq 3$. In particular, c_k increases with increasing degree k, which is contrary to the typically decreasing behavior $c_k \sim k^{-1}$ for large k seen in real-world networks [20, 21]. In this paper we generalize the Trapman construction to allow for more general c_k dependence on k (see equation (4) below), with a view to matching to the degree-dependent clustering of real-world networks. As shown in section III, this generalization leads to clustered networks in which the bond percolation threshold may be either larger or smaller than the threshold in a randomly-wired (configuration model) network with the same degree distribution P_k. Furthermore, we develop methods from [22] to give analytical results for the GCC (epidemic) size on clustered networks. We also demonstrate the adaptability of these methods by calculating the sizes of k-cores on clustered networks. The k-core of a network is the largest subgraph whose nodes have degree at least k [23, 24]; study of k-core decompositions gives insights into the topology of interconnected parts of real-world networks such as the Internet [25]. Analytical results for k-core sizes have been found for configuration model networks [26] and on tree-like random graphs with degree-degree correlations [22], but both these cases assume zero clustering in the network. Very recently, alternative models for random graphs with clustering have been published [27, 28], but these examine only the bond percolation problem.

The layout of the paper is as follows. The generalization of Trapman’s algorithm for generating clustered networks is described in section II. In section III we examine the transition point for bond percolation on such clustered networks, and show that clustering may either increase or decrease the epidemic threshold. Comparisons are drawn with results using data for some real-world networks. Section IV describes an analytical approach to calculating the size of the giant connected component (the epidemic size), and the method is extended in section V to yield k-core sizes. Finally, conclusions are drawn in section VI.

II. GENERATING THE CLUSTERED NETWORK

Here we describe an algorithm based on that of [18, 19] which generates structured random networks with arbitrary degree distributions P_k and with high clustering. The algorithm can be written in three steps, as follows:

(i) An uncorrelated random network is created using the configuration model in the standard way (connecting stubs at random). This network, which we call the super-graph, has a finite-variance degree distribution \tilde{P}_k, related to the desired distribution P_k of the final network by equation (3) below. The nodes of this super-graph are called super-individuals.

(ii) A fraction g_k of all k-degree super-individuals (for $k \geq 3$) are tagged as households. This tagging does not affect the random linking of the configuration model in any way, but is used in the next step of the algorithm. The untagged super-individuals will be referred to as bachelors. Figure 1(a) shows an example of a super-graph, with two households (drawn as larger nodes) and six bachelors.

(iii) Taking the tagged super-graph of step (ii) as input, we generate the individuals graph, in which each node represents a single individual. Each super-individual (of degree k say) which is tagged as a household is expanded into a k- clique of individual nodes. Thus each household in the super-graph is replaced in the individuals graph by k individuals of degree k, all of whom are linked to each other, and each of which has one neighbor outside his own household (see Figure 1(b)). Each bachelor in the super-graph becomes an individual in the individuals graph. When all super-individuals have been replaced in this way we have generated the individuals graph with degree distribution P_k and the algorithm concludes.

Let \tilde{N} be the total number of super-individuals in the super-graph of step (i). When \tilde{N} is sufficiently large, there are approximately $\tilde{N}\tilde{P}_k$ super-individuals of degree k in the network. The bachelors among these become $\tilde{N}\tilde{P}_k(1-g_k)$ individual nodes of degree k, while the households of degree k are expanded to $\tilde{N}\tilde{P}_k g_k$ individuals grouped into k-cliques. Letting N denote the total number of individuals, we sum over all degree classes to obtain the relation

$$N = \tilde{N} \sum_k \tilde{P}_k (1 - g_k + k g_k).$$

Note that taking the limit $\tilde{N} \rightarrow \infty$ therefore implies $N \rightarrow \infty$, and vice versa.

![FIG. 1: (Color online) (a) Graph of super-individuals which consists of two household nodes and six bachelor nodes. (b) Graph of individuals which is generated from (a) by expanding households into k-cliques of individual nodes.](image-url)
It is convenient to introduce the fraction f_k of k-degree nodes in the individuals graph which are members of a k-clique. This fraction is related to the fraction g_k of k-degree super-individuals who were tagged as households in step (ii) of the algorithm:

$$g_k = \frac{f_k}{f_k + k - \frac{k}{k}} \iff f_k = \frac{kg_k}{1 - g_k + kg_k}.$$

(2)

In terms of f_k we have the following relation between the degree distributions P_k and P_k of the super- and individuals graphs respectively:

$$P_k = \frac{P_k (1 - f_k + f_k/k)}{\sum_{k' = 0}^{\infty} P_k' (1 - f_k' + f_k'/k')}.$$

(3)

Trapman’s original model [18, 19] constrains the degree distribution of bachelors within the super-graph to match the distribution P_k of the individuals graph. This case corresponds to choosing f_k to be independent of k, i.e., $f_k = F$ for constant F. As we show in subsequent sections, many new phenomena arise when f_k depends on k; we will refer to this case as the generalized Trapman model.

The degree-dependent clustering coefficients c_k in the final, individuals graph may be calculated by noting that each k-degree individual is either a member of a single k-clique (with probability f_k) or is a member of no clique (with probability $1 - f_k$). Since each node in a k-clique has clustering level $(k - 2)/k$ and nodes connected using the configuration model have effectively zero clustering level in the $N \to \infty$ limit (and assuming P_k has finite variance), the final average clustering for the k-degree nodes in the individuals graph may be written as

$$c_k = \frac{f_k(k - 2)}{k} \text{ for } k \geq 3.$$

(4)

Thus, given a desired degree distribution P_k and degree-dependent clustering coefficients c_k (for $k \geq 3$), the set of f_k values may be obtained from (4) with the degree distribution P_k and fractions g_k for the super-graph of step (i) of the algorithm following from (3) and (2) respectively. Therefore this algorithm can produce structured random graphs with almost any desired level of clustering (limited only by the constraint from (4) that $c_k \leq (k - 2)/k$, to ensure $f_k \leq 1$). Moreover, this model gives analytically tractable results for a number of dynamical processes on networks [22]. Here we shall concentrate on the bond percolation problem and the calculation of k-core sizes. In this context it is worth noting that our algorithm, which permits k-degree nodes to be members of at most one k-clique, can be viewed as a restricted version of Newman’s bipartite graph model [13]. However, unlike Newman’s model, we can specify the degree distribution P_k a priori. As noted above, our model is also analytically tractable for a variety of processes beyond percolation. It must be recognized that the heavily intermittent clustering due to the k-cliques gives a topological structure that may be very different to a real-world network with the same P_k and c_k; nevertheless the model can give some useful insights into the effect of clustering on GCC and k-core sizes in complex networks.

III. BOND PERCOLATION THRESHOLD

A. Calculating p_c in clustered networks

The giant connected component (GCC) of an infinite graph exists if z_2, the expected number of second neighbors of a random node, exceeds z_1, the expected number of first neighbors [5]. Note both z_1 and z_2 are evaluated on the damaged graph, i.e., after a fraction $1 - p$ of the links have been deleted. The lowest value of p for which $z_2/z_1 = 1$ therefore defines the bond percolation threshold p_c. Here we use this criterion to determine the percolation threshold (epidemic threshold) in the individuals graphs generated using the algorithm described in section II.

Note that a giant connected component can exist in the individuals graph only if the super-graph also has a GCC. It is therefore sufficient to determine a condition for the percolation transition in the super-graph, while correctly taking account of the internal k-clique structure of the super-individuals which are tagged as households.

The expected number of first neighbors in the damaged super-graph is $\bar{z}_1 = p \bar{z}$, where $\bar{z} = \sum k P_k$ is the mean degree of the undamaged super-graph. To determine the expected number of second neighbors \bar{z}_2 in the damaged super-graph, we first choose a super-individual at random. On average, this super-individual has \bar{z}_1 first neighbors, with a given first neighbor being of degree k with probability $k P_k/\bar{z}$ [4]. If this first neighbor is a bachelor (which occurs with probability $1 - g_k$) then it connects on average to $(k - 1)p$ super-individuals other than the original. If it is a household (with probability g_k) then the connections to the $(k - 1)p$ further super-individuals may be thwarted by deleted internal links within the k-clique of individuals comprising the household. Thus household first neighbors connect on average to $D_k(p)$ new neighbors, where $D_k(p)$ is a polynomial in p which may be determined exactly by methods used in [13] (see Appendix A), but whose values are bounded by

$$0 \leq D_k(p) \leq (k - 1)p.$$

(5)

Combining the cases listed above, we write the expected number of second neighbors in the damaged super-graph as

$$\bar{z}_2 = \bar{z}_1 \sum_{k = 1}^{\infty} k P_k ((1 - g_k)(k - 1)p + g_k D_k(p)),$$

(6)

and so the bond percolation threshold p_c is the lowest value of p for which $\bar{z}_2/\bar{z}_1 = 1$, i.e. p_c satisfies the polynomial equation

$$\sum_{k = 1}^{\infty} k P_k ((1 - g_k)(k - 1)p_c + g_k D_k(p_c)) = 1.$$

(7)
Using equations (3) and (2) this condition may conveniently be expressed in terms of the degree-distribution P_k of the individuals graph, and the fraction f_k of k-degree individuals in cliques:

$$
\sum_{k=1}^{\infty} P_k (k(k-1)p_c - k+ f_k (k-1) p_c + D_k(p_c))) = 0.
$$

This is a polynomial equation for the percolation threshold p_c, and its solution requires calculation of the $D_k(p)$ functions as specified in Appendix A. Note that if $f_k = F$, a constant for all k, then this reduces to the criterion determined by Trapman’s [19] equation (14). Of particular interest is the relationship between p_c and the percolation threshold in unclustered (configuration model) random networks with the same degree distribution P_k, known to be given explicitly by [12]

$$
p_{c}^{\text{rand}} = \frac{\sum k P_k}{\sum k(k-1) P_k} = \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}.
$$

Here we have introduced the angle bracket notation to denote averaging with respect to the degree distribution P_k. In the remainder of this section we will examine the sign of $p_c - p_{c}^{\text{rand}}$ to determine whether the bond percolation threshold in the clustered network is greater than, or less than, the corresponding threshold in an unclustered network with the same degree distribution.

B. Examples

Figure 2 shows the bond percolation threshold p_c calculated from equation (8) for networks with a Poisson degree distribution $P_k = z^k e^{-z}/k!$. The log-log plots show p_c as a function of the mean degree $z = \langle k \rangle$, and for clique fractions f_k of the form

$$
f_k = \left(\frac{2}{k-1}\right)^{\beta} \text{ for } k \geq 3,
$$

with $f_k = 0$ for $k < 3$ (since k-cliques only exist for $k \geq 3$). We show results for values of β ranging from 0 (giving $f_k \equiv 1$ for all relevant k) to $\beta = 2$ as described in the caption. Also shown (as a thick black curve) is the percolation threshold $p_{c}^{\text{rand}} = 1/z$ in the corresponding unclustered network. For all values of β greater than zero, we find $p_c > p_{c}^{\text{rand}}$ for small values of the mean degree z, but for sufficiently large z the clustered percolation point p_c becomes slightly less than the configuration model value p_{c}^{rand}. Figure 2(b) highlights this clustering-induced decrease of the threshold value by showing that the ratio p_c/p_{c}^{rand} is (slightly) less than unity for the larger z values shown.

Figure 3 shows p_c values for the truncated power-law degree distribution

$$
P_k = \begin{cases}
A k^{-\gamma} & ,3 \leq k \leq k_{\text{max}} \\
0 & , \text{otherwise}
\end{cases},
$$

with $f_k = 0$ for $k < 3$ (since k-cliques only exist for $k \geq 3$). We show results for values of β ranging from 0 (giving $f_k \equiv 1$ for all relevant k) to $\beta = 2$ as described in the caption. Also shown (as a thick black curve) is the percolation threshold $p_{c}^{\text{rand}} = 1/z$ in the corresponding unclustered network. For all values of β greater than zero, we find $p_c > p_{c}^{\text{rand}}$ for small values of the mean degree z, but for sufficiently large z the clustered percolation point p_c becomes slightly less than the configuration model value p_{c}^{rand}. Figure 2(b) highlights this clustering-induced decrease of the threshold value by showing that the ratio p_c/p_{c}^{rand} is (slightly) less than unity for the larger z values shown.

Figure 3 shows p_c values for the truncated power-law degree distribution

$$
P_k = \begin{cases}
A k^{-\gamma} & ,3 \leq k \leq k_{\text{max}} \\
0 & , \text{otherwise}
\end{cases},
$$

with $f_k = 0$ for $k < 3$ (since k-cliques only exist for $k \geq 3$). We show results for values of β ranging from 0 (giving $f_k \equiv 1$ for all relevant k) to $\beta = 2$ as described in the caption. Also shown (as a thick black curve) is the percolation threshold $p_{c}^{\text{rand}} = 1/z$ in the corresponding unclustered network. For all values of β greater than zero, we find $p_c > p_{c}^{\text{rand}}$ for small values of the mean degree z, but for sufficiently large z the clustered percolation point p_c becomes slightly less than the configuration model value p_{c}^{rand}. Figure 2(b) highlights this clustering-induced decrease of the threshold value by showing that the ratio p_c/p_{c}^{rand} is (slightly) less than unity for the larger z values shown.

![Figure 2](image2.png)

FIG. 2: (Color online) (a) Bond percolation threshold p_c in clustered Poisson random graphs with mean degree z. The fraction f_k of individuals of degree k which are members of households (k-cliques) is $f_k = (2/(k-1))^\beta$ with β taking values indicated in the legend. The thick black curve shows the percolation threshold p_{c}^{rand} in the unclustered ($f_k \equiv 0$) case. (b) The ratio p_c/p_{c}^{rand} highlights the decrease in the percolation threshold due to clustering when β is 1 or 2.

![Figure 3](image3.png)

FIG. 3: (Color online) Bond percolation threshold p_c for clustered networks with degree distribution $P_k \propto k^{-2.5}$ and cutoff degree k_{max}. The fraction f_k of individuals of degree k which are members of households (k-cliques) is $f_k = (2/(k-1))^\beta$ with β taking the values from 0 to 2. The thick black curve shows the percolation threshold p_{c}^{rand} in the unclustered ($f_k \equiv 0$) case.
of particular interest are cases where we similarly guarantee that the presence of such clustering increases some implications of this are considered in section III D. We now examine the quantities of these expressions are determined by the signs of their respective numerators.

\[p_\text{c} \leq p_\text{c} \leq p_\text{c} \text{ rand} \]

\[p_\text{c} = \frac{(k-1)(1-f_k) + f_k}{(k-1)(k(1-f_k) + f_k)}, \]

\[p_\text{c} = \frac{(k(1-f_k) + f_k)}{(k-1)(k(1-f_k) + f_k)}. \] (12)

Note that \(p_- \) and \(p_+ \) both reduce to \(p_\text{c} \text{ rand} \) when \(f_k = 0 \). We now examine the quantities \(p_- - p_\text{c} \text{ rand} \) and \(p_+ - p_\text{c} \text{ rand} \) for some specific forms of the clique fractions \(f_k \). Of particular interest are cases where \(p_- - p_\text{c} \text{ rand} \) can be shown to be positive, or where \(p_+ - p_\text{c} \text{ rand} \) is negative. In the former case we obtain \(p_+ > p_- > p_\text{c} \text{ rand} \), and so can guarantee that the presence of such clustering increases the percolation threshold above \(p_\text{c} \text{ rand} \); in the latter case we similarly guarantee that \(p_+ < p_\text{c} \text{ rand} \). After a little manipulation, we obtain the expressions

\[p_- - p_\text{c} \text{ rand} = \frac{\langle k \rangle \langle k(1-f_k) - (k^2) \rangle (1-f_k)}{(k-1)(k(1-f_k) + f_k)}, \]

\[(13) \]

\[p_+ - p_\text{c} \text{ rand} = \frac{\langle k(2^2 - 1)f_k - (k^2) \rangle (1-f_k)}{(k-1)(k(1-f_k) + f_k)}. \] (14)

As the denominators are manifestly positive, the signs of these expressions are determined by the signs of their respective numerators.

1. Clustering increases the percolation threshold when \(f_k \) is constant

We first examine \(p_- - p_\text{c} \text{ rand} \) in the case where \(f_k = F \), a constant, for all \(k \geq 3 \). The numerator of (13) then simplifies to

\[F \left((k^2) - \langle k^2 \rangle - \langle k \rangle (P_0 + 2P_1 + 3P_2) + \langle k^2 \rangle (P_0 + P_1 + P_2) \right). \] (15)

For the power-law degree distribution (11) we have \(P_k \) for \(k < 3 \), and so this expression reduces to \(F \langle k \rangle \) where \(\text{var}(k) \) is the variance \((k^2) - \langle k \rangle \) of the degree distribution. Since this is positive for any \(k_{\text{max}} > 3 \), we have proven that \(p_+ > p_\text{c} \text{ rand} \) for constant \(f_k \) in this case. Similarly, it can be shown that (15) is positive, and hence \(p_+ > p_\text{c} \text{ rand} \) for the Poisson degree distribution. These results are consistent with the \(\beta = 0 \) results for \(p_\text{c} \) (thin black lines) in Figures 2 and 3, which never dip below the \(p_\text{c} \text{ rand} \) values (thick black line).

2. Clustering decreases the percolation threshold if \(f_k = F/(1-k) \)

Next, we consider the numerator of \(p_+ - p_\text{c} \text{ rand} \) for \(f_k \) of the form \(F/(1-k) \) for \(k \geq 3 \), with \(F \) in the range \(0 < F \leq 2 \). The numerator of (14) then simplifies to

\[F \left((k^2) - \langle k^2 \rangle - \langle k \rangle (P_0 + 2P_1 + 3P_2) + \langle k^2 \rangle (P_0 + P_1 + P_2) \right). \] (16)

For the power-law degree distribution (11) this further reduces to \(\langle k \rangle - \text{var}(k) \), and as \(k_{\text{max}} \rightarrow \infty \) this certainly becomes negative. Specifically, for the exponent \(\gamma = 2.5 \) used in Figure 3, this bound guarantees that \(p_\text{c} \) is less than \(p_\text{c} \text{ rand} \) for \(k_{\text{max}} \geq 13 \). This is consistent with the curve for \(\beta = 1 \) in Figure 3. For the Poisson distribution, the numerator simplifies to \(Fz_{z=0} \), however, as this quantity is positive we cannot draw any strong conclusions for this case.

D. Scale-free networks

A scale-free network (SFN) has degree distribution \(P_k \propto k^{-\gamma} \) with \(2 < \gamma < 3 \) for sufficiently large \(k \). Networks with such degree distributions may be generated by taking the limit \(k_{\text{max}} \rightarrow \infty \) of the truncated power-law networks introduced in equation (11). Of particular interest is the bond percolation threshold \(p_\text{c} \) which is known [12, 29–34] to be zero for randomly wired (uncorrelated) SFNs. This can be seen from equation (9); the second moment \(\sum k^2 P_k \) for SFNs is infinite while the mean degree \(z \) is finite, and so the denominator of the expression for \(p_\text{c} \text{ rand} \) grows without bound as the cutoff \(k_{\text{max}} \) is increased, giving the result \(p_\text{c} \text{ rand} \rightarrow 0 \) as \(k_{\text{max}} \rightarrow \infty \).
The results of [33, 35] indicate that correlated (assortative) tree-like networks with scale-free degree distributions also have vanishing percolation threshold, and [11] and [13] hypothesize that clustering cannot cause the percolation threshold to be non-zero. However, Trapman [19] has applied his clustering model to note that if $f_k = 1$ for all k then a non-zero bond percolation threshold is established even in scale-free networks. To see this result, it is convenient to express the lower bound p_- for the percolation threshold given in equation (12) in terms of the degree distribution P_k of the super-graph, using equation (3):

$$p_- = \frac{\sum kP_k}{\sum k(k-1)P_k}.$$ (17)

This implies that the lower bound p_- for the percolation threshold in the individuals graph is equal to the percolation threshold in the randomly-wired super-graph. In other words, the individuals graph can only possess a GCC if the super-graph also has a GCC. Now consider Trapman’s example of a SFN where all f_k are equal to one, with degree distribution (11) and in the limit $k_{\text{max}} \to \infty$. The super-graph degree distribution is then $\tilde{P}_k \propto P_k/k \propto k^{-1}$. This degree distribution has finite variance for $\gamma > 2$, and so it follows that the right hand side of (17) is non-zero. In fact, we can explicitly evaluate p_- to obtain the following bound on the percolation threshold:

$$p_c \geq \frac{\sum k^{-\gamma}}{\sum k(k-1)k^{-\gamma}} = \frac{1}{z-1},$$ (18)

where z is the (finite) mean degree of the individuals scale-free network, $z = \sum kP_k$.

It is worth pointing out that the mechanism described here for generating a non-zero percolation threshold in SFNs is distinctly different from those previously examined for tree-like correlated networks [35], 2D lattice-embedded networks [36], and for clustered growing networks [37]. All of these examples are disassortative networks, i.e., the average degree of neighbors of degree k is a decreasing function of k (with an asymptotic constant value as $k \to \infty$ in the case of [37]). By contrast, the individuals graph generated by Trapman’s model with $f_k \equiv F = 1$ is strongly assortative, since high-degree nodes link almost exclusively to nodes of the same degree. Indeed, we show in Appendix B that the joint pdf $P(k, j)$ of degrees of vertices at either end of a randomly chosen edge in the individuals graph is

$$P(k, j) = \frac{P_k}{z} (P_k + (j-1)\delta_{kj}).$$ (19)

Hence the average degree of neighbors of nodes with degree k is $\langle k \rangle_{\text{nn}} = k - 1 + \frac{1}{k}$ and so increases linearly for large k.

We also highlight the fact that the non-zero percolation threshold arising in the $F = 1$ Trapman model is due to the clustering, and not just a result of the degree-correlations induced by the clique structure. Indeed, consider a correlated but unclustered (tree-like) network with degree-degree correlations equal to those given by (19), and reintroduce the cutoff k_{max} for the SFN degree distribution. The percolation threshold for such unclustered networks is known [33, 35] to be given by the reciprocal of the largest eigenvalue of the matrix C with entries $C_{kj} = (j-1)zP(k, j)/(kP_k)$. In the present case this threshold scales as k_{max}^{-1} as $k_{\text{max}} \to \infty$, and so the correlated tree-like network has a vanishing percolation threshold. This is consistent with the behavior of strongly assortative tree-like networks studied in [35], and shows that the finite threshold given by (18) is directly attributable to the non-zero clustering in the Trapman model. Criteria for the existence of a finite SFN percolation threshold for non-constant f_k will be reported elsewhere.

E. Real-world networks

In Table I we show the results of applying our model of clustering to some real-world networks. Given the degree distribution P_k and the degree-dependent clustering c_k of a real-world network, we choose f_k values using equation (4) so that the model network has a k-clique structure which matches to P_k and (for all $k \geq 3$, and provided c_k is not too large) to c_k:

$$f_k = \min \left(1, \frac{k}{k-2} c_k \right) \quad \text{for } k \geq 3.$$ (20)

Using equations (12) and (9) we calculate the bounds p_- and p_+ for the percolation threshold in the clustered model network, as well as the threshold $p_{c_{\text{rand}}}^c$ for the corresponding randomly-wired graph. In most cases (the PGP network being the exception) we can immediately see from the bounding values p_- and p_+ whether the clustered percolation threshold p_c will exceed $p_{c_{\text{rand}}}^c$ or not. For the power grid network we have $p_- > p_{c_{\text{rand}}}^c$ and so

<table>
<thead>
<tr>
<th>Network</th>
<th>p_-</th>
<th>p_+</th>
<th>p_c</th>
<th>$p_{c_{\text{rand}}}^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Grid [8, 38]</td>
<td>0.3580</td>
<td>0.3739</td>
<td>0.3645</td>
<td>0.3483</td>
</tr>
<tr>
<td>AS Internet [39]</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0035</td>
</tr>
<tr>
<td>Collaborations [40, 41]</td>
<td>0.0273</td>
<td>0.0279</td>
<td>0.0279</td>
<td>0.0380</td>
</tr>
<tr>
<td>World Wide Web [42, 43]</td>
<td>0.0020</td>
<td>0.0020</td>
<td>0.0020</td>
<td>0.0036</td>
</tr>
<tr>
<td>Router-Level Internet [44]</td>
<td>0.0244</td>
<td>0.0245</td>
<td>0.0245</td>
<td>0.0271</td>
</tr>
<tr>
<td>PGP Network [45–47]</td>
<td>0.0545</td>
<td>0.0567</td>
<td>0.0561</td>
<td>0.0559</td>
</tr>
</tbody>
</table>

TABLE I: (Color online) Values of the bounds p_- and p_+ (using equation (12)), the bond percolation threshold in the clustered model network p_c (using equation (8)), and the randomly-wired percolation threshold $p_{c_{\text{rand}}}^c$ (using equation (9)), and the clustering model to note that if $f_k = 1$ for all k then a non-zero bond percolation threshold is established even in scale-free networks. To see this result, it is convenient to express the lower bound p_- for the percolation threshold given in equation (12) in terms of the degree distribution P_k of the super-graph, using equation (3):
conclude that clustering increases the percolation threshold. For PGP the bounds are inconclusive, but calculation using equation (8) confirms \(p_c > p_{c, \text{rand}} \) in this case also. For all other networks studied we find \(p_c < p_{c, \text{rand}} \), so that clustering decreases the percolation threshold.

We obtain these results on \(p_c \) under the assumption that the generalized Trapman model can describe the structure of real-world networks by matching the degree distribution and degree-dependent clustering. This is admittedly a rather strong assumption, and further verification is needed before these results can be considered more just some interesting examples of applying the model. As percolation thresholds are defined only in the infinite system size limit \(N \to \infty \), it is not possible to directly calculate percolation thresholds for (necessarily finite) real-world networks, but it appears from Figure 7 of [11] that the PGP network percolates for \(p < 0.05 \), whereas the \(p_c \) value we predict in Table I is substantially larger. We conclude that the Trapman model is not necessarily a good predictor of the percolation properties of real-world networks, despite its ability to match the degree distribution and the clustering of the network.

In summary, in this section we have derived the polynomial equation (8) for the percolation threshold \(p_c \) in the presence of clustering, and solved it numerically for some examples. Analytical bounds on the value of \(p_c \) have also been derived, and for the truncated power-law degree distribution clique fractions of the form \(f_k = F/(k-1) \) have been respectively shown to guarantee that \(p_c \) is greater than, or less than, the unclustered threshold value \(p_{c, \text{rand}} \). Application of the model to some real-world networks yields examples where \(p_c < p_{c, \text{rand}} \) in some cases, with \(p_c > p_{c, \text{rand}} \) in others. In scale-free networks clustering with \(f_k \equiv 1 \) guarantees a finite percolation threshold, in contrast to corresponding tree-like networks (even those with the same degree correlations) where the percolation threshold vanishes.

IV. CALCULATING GCC SIZES

In this section we develop an analytical approach to calculating the size of the giant connected component in the damaged individuals graph with bond occupation probability \(p \). In an epidemiological context, the GCC size corresponds to the expected size of epidemic outbreaks in the population. Of particular interest is the effect of clustering on the epidemic size.

Our method is based on a general formulation for cascade sizes on random networks, described in detail in [22]. We note that a generating function approach could also be used here, similar to [13], and such a method could yield the full distribution of connected component sizes. However our method has the advantage of being readily generalizable to the study of other cascade-type problems on networks, as we show in section V by using it to calculate the size of \(k \)-cores in the clustered networks. The method is a generalization of the approach of Dhar et al. for the zero-temperature random-field Ising model on a network [48] and has been successfully applied to cascade dynamics in various models [49, 50], including the calculation of \(k \)-core sizes in correlated (but unclustered) networks [22].

![FIG. 4: (Color online) Schematic showing parts of a tree approximation for a super-individuals graph which is expanded to an individuals graph. Level \(n \) is occupied by a bachelor (left) and by a top node of the expanded household (right). Other members of the same household are located at an intermediate level.](image)

Following the approach of [22], we approximate the randomly wired super-graph as a tree structure. This tree ansatz is commonly used for the configuration model; it assumes the absence of finite loops in the super-graph in the \(N \to \infty \) limit and allows only the infinite loops whose presence permits the use of mean-field theory [2]. Figure 4 shows part of such a structure, with the super-individuals now expanded to show the individual nodes which constitute households. We label the levels of the tree as shown, with each super-individual at level \(n \) having a single parent at level \(n+1 \). Degree-\(k \) bachelors at level \(n \) therefore have \(k-1 \) children at level \(n-1 \); degree-\(k \) households at level \(n \) are considered to consist of a top individual (shown at level \(n \)), with the \(k-1 \) other individuals of the household drawn at an intermediate level. Each of these \(k-1 \) individuals has one child super-individual at level \(n-1 \).

The cascade-based approach to calculating the expected size of the giant connected component is as follows. Having chosen a value for the bond occupation probability \(p \) we damage the individuals graph by deleting each link between individuals with probability \(1-p \). We label nodes which are part of a connected component of the graph as active, with the remaining nodes termed inactive. A random individual is selected as the top (i.e. root) of a tree, with his first neighbors on the next lower level, their neighbors at the following lower level, and so on. To determine the steady-state fraction of active nodes in the network, we must determine the probability that the individual at the top of the tree is active. Note all nodes in the tree are initially inactive, and that once a node is activated it cannot later become inactive. Starting at level 0 (the bottom of the tree), we examine the propagation of activity from level \(n \) to level \(n+1 \), proceeding one level at a time and using the fact that nodes at level \(n+1 \) are inactive until their children cause them to become active.
Define \(q_n \) as the probability that a super-individual at level \(n \) is active [52]. Similar probabilities may be defined separately for households and for bachelors; moreover we distinguish between super-individuals of different degree \(k \). Denote by \(b_n^{(k)} \) the probability that a bachelor node of degree \(k \) at level \(n \) is active, and by \(h_n^{(k)} \) the probability that the top individual node in a household of degree \(k \) is active. Since a randomly-chosen super-individual connects to a super-individual of degree \(k \) with probability \(kP_k/\bar{z} \), we have the relation

\[
q_{n+1} = \sum_{k=1}^{\infty} \frac{k}{\bar{z}} P_k \left(1 - g_k b_{n+1}^{(k)} + g_k h_{n+1}^{(k)} \right). \tag{21}
\]

To determine \(b_{n+1}^{(k)} \) and \(h_{n+1}^{(k)} \) in terms of \(q_n \) we consider how the property of being active (i.e. being a member of a connected component) propagates from level to level. As we move focus from level to level, we need only consider the active fraction at level \(n \) to determine how many nodes at level \(n+1 \) change from their inactive initial state. For bachelor nodes of degree \(k \), we need consider only their \(k-1 \) children at level \(n \). Each of the children is part of a connected component with probability \(q_n \) and the link to this child is undamaged with probability \(p \). The bachelor node becomes active if any one of the \(k-1 \) links to level \(n \) yield an undamaged connection to an active child, thus we have the update rule [22]

\[
b_{n+1}^{(k)} = 1 - (1 - p q_n)^{k-1}. \tag{22}
\]

For households at level \(n+1 \) we consider the situation of the top individual. Within the \(k \) individual nodes of the household, the top individual is part of a connected cluster of \(m \) individuals with probability \(P(m|k) \) (see Appendix A). Each of the \(m-1 \) other individuals within the household has one edge linking to level \(n \), and so the probability that at least one of these will become active is \(1 - (1 - p q_n)^{m-1} \). Summing over the possible values of \(m \), we obtain the probability of the top node of the household becoming active:

\[
h_{n+1}^{(k)} = \sum_{m=1}^{k} P(m|k) (1 - (1 - p q_n)^{m-1}). \tag{23}
\]

Combining (21), (22) and (23) enables us to write a single update equation for \(q_n \) of the form \(q_{n+1} = G(q_n) \) with

\[
G(q) = \sum_{k=1}^{\infty} \frac{k}{\bar{z}} \sum_{k=1}^{\infty} \frac{k}{\bar{z}} P_k \left(1 - g_k b_{n+1}^{(k)} + g_k h_{n+1}^{(k)} \right).
\]

Starting from an infinitesimally small positive value (e.g., \(q_0 = 1/N \) as \(N \to \infty \)), this equation is iterated to yield the steady-state solution \(q_\infty \) corresponding to an infinite network. Finally, we consider the individual at the top (or root) of this infinite tree. Suppose the individual has degree \(k \) (this happens with probability \(P_k \)) and so has \(k \) children. With probability \(1 - f_k \) it is an individual who was a bachelor in the super-graph, and so is activated by its children with probability \(1 - (1 - p q_\infty)^k \). Otherwise it is a member of a household of size \(k \), and so is part of a connected cluster of \(m \) individuals within this household with probability \(P(m|k) \). The whole cluster becomes active is any member of it has an undamaged link to an active child; this happens with probability \(1 - (1 - p q_\infty)^m \). Putting together all the possibilities, we obtain an expression for \(S \), the expected size of the giant connected component:

\[
S = \sum_{k=0}^{\infty} P_k \left(f_k (1 - (1 - p q_\infty)^k) + f_k \sum_{m=1}^{k} P(m|k) (1 - (1 - p q_\infty)^m) \right), \tag{25}
\]

where \(q_\infty \) is the steady-state of the iteration \(q_{n+1} = G(q_n) \) defined by equation (24). Indeed, the iteration process with infinitesimal \(q_0 \) can be seen as a solution method for the self-consistent equation \(q_\infty = G(q_\infty) \).

Classical results on uncorrelated, unclustered networks are recovered by setting \(f_k = g_k = 0 \) for all \(k \) in equations (24) and (25); this reduction (via the notation mapping \(1 - p q \mapsto x \)) recovers, for example, equations (9) and (14) of [2].

Note that a general cascade condition [22] for this system requires

\[
\frac{dG}{dq} > 1 \quad \text{at} \quad q = 0, \tag{26}
\]

in order that the initial iterations of the relation \(q_{n+1} = G(q_n) \) allow \(q_n \) to grow finitely large. The lowest value of \(p \) for which this condition holds defines the bond percolation threshold \(p_c \), and it is easy to check that this condition reduces to equation (7), which was derived using more traditional arguments in section III.

Figures 5(a) and 5(b) show a comparison between the analytical solution (curves) and numerical computation of GCC sizes in networks generated using the algorithm of section II with \(N = 10^5 \) individuals (symbols) [53]. The degree distributions of the networks of Figure 5(a) are Poisson (as in Figure 2) with mean degree \(z = 3 \), while the networks for Figure 5(b) have a truncated power-law degree distribution (11) with \(k_{\max} = 30 \) (cf. Figure 3). Note that the values of the percolation threshold \(p_c \) predicted in Figures 2 and 3 correspond to the \(p \) values where the GCC size becomes non-zero. For the Poisson case both cases with clustering have \(p_c \) larger than the unclustered value \(p_{c}^{\text{rand}} \), while the power-law case of Figure 5(b) shows that \(p_c \) may be larger or smaller than the unclustered value, depending on the form of the \(k \)-clique fraction \(f_k \). The agreement between theory and numerical results is excellent.
FIG. 5: (Color online) Size of giant connected component S as a function of bond occupation probability in (a) clustered Poisson random graphs with mean degree $z = 3$, and in (b) clustered graphs with truncated power-law degree distribution $P_k \propto k^{-2.5}$ for $3 \leq k \leq k_{\text{max}}$, with $k_{\text{max}} = 30$ here. Symbols are the results of numerical simulations on a single network with $N = 10^5$ individuals (averaged over 10 realizations of the percolation process), and curves show the analytical result from equations (21) and (25). The fraction f_k of individuals of degree k which are members of households (k-cliques) is $f_k = (2/(k-1))^\beta$ with β taking values indicated in the legend. The unclustered case ($f_k \equiv 0$) is also shown for comparison.

V. CALCULATING K-CORE SIZES

The k-core of a network is the largest subgraph whose nodes have degree at least k. As discussed in [22, 24, 26], the size of the k-core may be calculated as the steady state of a cascade process. We consider the nodes of the individuals network to have two possible states, labelled pruned and unpruned, and begin with all nodes in the unpruned state. In the first step of the cascade process, precisely those nodes in the K-core remain unpruned.

The cascade-based approach of section IV can be applied to calculate k-core sizes in the clustered networks generated by the generalized Trapman model of section II. Similar to the discussion preceding equation (21), we begin with the creation of a tree whose top (or root) is a randomly selected node of the network. All nodes in the tree are initially in the unpruned state, and we examine the propagation of the pruned fraction from level n to level $n+1$ in the tree, proceeding one level at a time. Our goal is the determination of the probability that the top (or root) of the tree is pruned; this gives the final fraction of pruned nodes in the original network. We define q_n as the probability that a super-individual at level n is pruned. Similarly, denote by $b_n(k)$ the probability that a bachelor node of degree k at level n is pruned, and by $h_n(k)$ the probability that the top individual node in a household of degree k is pruned. Equation (21) of section IV then applies directly, and it remains only to define the updating rules for $b_n(k)$ and $h_n(k)$.

To this end it is convenient to introduce response functions $F_b(m, k)$ and $F_h(m, k)$ which respectively denote the probabilities that a k-degree bachelor or a k-degree household become pruned when they have m pruned neighbors. A bachelor becomes pruned when it has less than K unpruned neighbors, i.e. when $k - m < K$; otherwise it remains unpruned. Therefore the bachelor response function is given by (see equation (10) of [22])

$$F_b(m, k) = \begin{cases} 1 & , k - m < K \\ 0 & , k - m \geq K \end{cases}.$$ \hspace{1cm} (27)

For households we must take account of the k-clique structure. First, if $k < K$ then every node in the k-clique has less than K (unpruned) neighbors, and so the entire household is immediately pruned. Also, for the case $k = K$, the whole household becomes pruned if any one of its neighbors is pruned, i.e. if $m > 0$, and remains unpruned otherwise. Finally, no node in a k-clique can become pruned if $k > K$, because in this case an individual of degree k needs at least two pruned neighbors in order to become pruned itself, but each node in the k-clique has only one external neighbor (and all nodes in the k-clique are initially unpruned). Thus it is straightforward to see that

$$F_h(m, k) = \begin{cases} F_h(m, k) & , k \leq K \\ 0 & , k > K \end{cases}.$$ \hspace{1cm} (28)

Next, since each child at level n is independently pruned with probability q_n, a bachelor or household of degree k has exactly m out of $k - 1$ children pruned with probability $\binom{k-1}{m} q_n^m (1 - q_n)^{k-1-m}$. Therefore, summing over every possible number of pruned children m gives the probability that a bachelor node of degree k at level
\(n \) is pruned:
\[
 b^{(k)}_{n+1} = \sum_{m=0}^{k-1} \binom{k-1}{m} q_{\infty}^m (1 - q_0)^{k-1-m} F_b(m, k),
\]
and a similar expression for a household can be written using equation (28) as
\[
 h^{(k)}_{n+1} = \begin{cases}
 b^{(k)}_{n+1}, & k \leq K \\
 0, & k > K
\end{cases}
\] (30)

Note that \(b^{(k)}_{n+1} \) and \(h^{(k)}_{n+1} \) can also be written in a less general form without the use of response functions as
\[
 b^{(k)}_{n+1} = \sum_{m=k-K+1}^{k-1} \binom{k-1}{m} q_{\infty}^m (1 - q_0)^{k-1-m}, \quad k \geq K
\]
and
\[
 h^{(k)}_{n+1} = \begin{cases}
 1, & k < K \\
 1 - (1 - q_0)^{k-1}, & k = K \\
 0, & k > K
\end{cases}
\] (32)

Using the update rules (29) and (30) (or alternatively (31) and (32)) in conjunction with (21) enables us to iterate from an infinitesimally small positive \(q_0 \) to the steady state \(q_{\infty} \) corresponding to an infinite network.

Finally, consider the individual at the top (or root) of the infinite tree, assuming it has degree \(K \), i.e., \(k \) children. With probability \(1 - f_k \) it was a bachelor in the super-graph, and by analogy with (29) is pruned with probability
\[
 \rho_b^{(k)} = \sum_{m=0}^{k} \binom{k}{m} q_{\infty}^{m}(1 - q_{\infty})^{k-m} F_b(m, k). \] (33)

Similarly, if the individual is in a household (with probability \(f_k \)), it is pruned with probability
\[
 \rho_h^{(k)} = \begin{cases}
 \rho_b^{(k)}, & k \leq K \\
 0, & k > K
\end{cases}
\] (34)

Then the final density of pruned nodes in the individuals network is given by (cf. equation (25))
\[
 \rho = \sum_{k=0}^{\infty} P_k \left((1 - f_k)\rho_b^{(k)} + f_k\rho_h^{(k)} \right), \] (35)
and the fractional size of the \(k \)-core for \(k = K \) is given by \(1 - \rho \).

We can combine equations (21), (29) and (30) to give an explicit self-consistent equation for \(q_{\infty} \):
\[
 q_{\infty} = H(q_{\infty}) = \sum_{k=1}^{\infty} \frac{k}{2} \tilde{P}_k \sum_{m=0}^{k-1} \binom{k-1}{m} q_{\infty}^{m}(1 - q_{\infty})^{k-1-m} W_k F_k(m, k), \] (36)
where
\[
 W_k = \begin{cases}
 1, & k \leq K \\
 1 - q_k, & k > K
\end{cases}
\] (37)

The iteration process for \(q_0 \) starting from infinitesimal \(q_0 \) converges to the lowest solution of the self-consistent equation (36).

The analysis of section IV of [24] may be applied here to provide an interpretation for \(q_{\infty} \) in terms of measurable quantities on the network. Let \(L_K \) be the number of edges in the super-graph which connect two individuals belonging to the \(K \)-core, and let \(L \) be the total number of edges in the super-graph. Then, as shown in Appendix C,
\[
 (1 - q_{\infty})^2 = \frac{L_K}{L}, \] (38)
i.e., the quantity \(q_{\infty} \) is related to the fraction of super-graph edges which link individuals in the \(K \)-core.

In the limit of zero clustering (\(f_k = q_k = 0 \) for all \(k \)), equations (35) and (36) reduce to existing results for \(k \)-cores on (undamaged) configuration model networks, as in equations (1) and (2) of [26] via the mapping of notation \(q \rightarrow R, \rho \rightarrow 1 - M \), see Appendix D.

Figures 6(a) and 6(b) show comparisons between the theory and numerical calculations of \(k \)-core sizes on clustered networks generated by the algorithm of section II. Figure 6(a) is for a network with Poisson degree distribution with \(z = 3 \) (cf. Figure 5(a)). The unclustered (\(f_k = 0 \)) case has no \(k \)-cores for \(k > 2 \), but the presence of cliques leads to non-zero \(k \)-core sizes for all \(k \) with \(f_k > 0 \). Since we use finite-size graphs we cannot numerically resolve \(k \)-cores of fractional size smaller than \(1/N \) (\(N = 10^8 \) here) but the agreement between theory and simulation is excellent for \(K \) up to approximately 10. A network with truncated power-law degree distribution (11) with \(k_{\text{max}} = 30 \) (cf. Figure 5(b)) has \(k \)-core sizes as shown in Figure 6(b). Again, non-zero clustering leads to non-zero \(k \)-core sizes for all \(K \) up to \(k_{\text{max}} \), and agreement between theory and numerics is excellent except for finite size effects upon very small \(k \)-cores.

VI. CONCLUSIONS

We have shown that a generalization of the Trapman model [18, 19] of clustered clique-tree networks has several analytically tractable features. These include the ability to calculate the bond percolation threshold, size of the giant connected component, and sizes of \(k \)-cores. The algorithm for generating realizations of model networks is described in section II. The degree distribution \(P_k \) of the network is specified, along with the fraction \(f_k \) of \(k \)-degree nodes residing in \(k \)-cliques. The parameters \(f_k \) are related to the degree-dependent clustering coefficients \(c_k \) by equation (4), and so allow us to tune the level of clustering in the network.
FIG. 6: (Color online) K-core sizes in (a) clustered Poisson random graph with mean degree $z = 3$, and in (b) clustered graphs with truncated power-law degree distribution $P_k \propto k^{-2.5}$ for $3 \leq k \leq k_{\text{max}}$, with $k_{\text{max}} = 30$ here. Symbols are the results of numerical simulations on a single network with $N = 10^5$ individuals, and curves show the analytical result from Eq. (35). The fraction f_k of individuals of degree k which are members of households (k-cliques) is $f_k = (2/(k-1))^\beta$ with β taking values indicated in the legend. The unclustered case ($f_k \equiv 0$) is also shown for comparison.

The main analytical results are equation (8) for the bond percolation threshold, and the iteration schemes of sections IV and V (see equations (25) and (35)) for the sizes of the giant connected component and k-cores, respectively. The percolation threshold p_c is determined by solving the polynomial equation (8), see Figures 2 and 3 for examples. We have also examined explicit upper and lower bounds for p_c (see section III C). Of particular interest is the relationship between p_c and the percolation threshold p_c^{rand} in a randomly-wired (unclustered) network with the same degree distribution (although we also give some results for the degree correlations, see section III D and Appendix B). Our results indicate that for a given level of clustering within this class of structured random networks, p_c may be greater than, or less than, p_c^{rand}, depending on the degree distribution of the network. This contrasts with the results of [11], where weakly clustered networks (with $c_k < 1/(k-1)$) have $p_c > p_c^{\text{rand}}$, while in the strongly clustered case with $c_k > 1/(k-1)$, the clustering decreases the threshold, so $p_c < p_c^{\text{rand}}$. Indeed, we show in section III C 1 that the Trapman model with $f_k = F$, a constant for all k, leads to clustering increasing the percolation threshold: $p_c > p_c^{\text{rand}}$, whereas the classification of this case as strongly clustered according to [11] (since $c_k = F(1-2/k)$ here) would predict the opposite conclusion.

Similarly, Figure 3 gives clear examples of cases (e.g. $\beta = 2$) where $c_k < 1/(k-1)$, but the result of $p_c < p_c^{\text{rand}}$ is the opposite of that predicted by [11] for the weakly clustered case. These contradictions to the results of [11] are not surprising when we consider that the approach of [11] is focussed on clustering due to loops of length three (i.e. triangles) in the graph. Indeed, the authors of [11] carefully point out that they do not consider effects of longer loops. By contrast, the clustering within the Trapman model is more heavily localized, since a node of degree k which is a member of a triangle must also be part of a loop of length n for all n from 3 to k. Therefore we should not expect the theory of [11] to apply to the Trapman model; nevertheless it is instructive to find that model networks with the same degree distributions P_k and clustering coefficients c_k can give opposite results for this important question. Higher order information, e.g. some measure of the density of loops of length greater than three [51], is required to distinguish the two types of networks from each other.

The model of clustering described here has the important advantage of analytical tractability, permitting us to calculate the bond percolation threshold and sizes of k-cores and giant connected components. However, the model is limited in its applicability to real-world networks by the rather artificial structure of clustering using k-cliques, which is not expected to be the dominant form of triangle-formation within most real-world networks. Bearing in mind this caveat, we use the P_k and c_k parameters of some real-world networks (see Table I) to find the values of p_c predicted by equation (8). In some cases (power grid, PGP) we find $p_c > p_c^{\text{rand}}$, while in others (e.g. Internet, WWW) the opposite conclusion is reached. The applicability of this and related models to real-world networks will be the topic of further study.

Acknowledgments

This work was funded by Science Foundation Ireland under programmes 06/IN.1/I366, MACSI, and 05/RFP/MAT0016.

APPENDIX A: CLIQUE CALCULATIONS

Newman [13] gives results relevant to the bond percolation problem on a k-clique, i.e. a complete graph of k nodes. Here we briefly review these results and show
they can be applied to calculate connectivity properties of the individuals graph.

For bond occupation probability p, the damaged k-clique may consist of a number of disconnected clusters of nodes. Letting $P(m|k)$ be the probability that a randomly chosen node in the damaged k-clique belongs to a connected cluster of m nodes (including itself), equation (7) in [13] gives

$$P(m|k) = \left(\frac{k-1}{m-1}\right) (1-p)^{m(k-m)} P(m|m). \quad (39)$$

The probabilities $P(m|m)$ may be determined iteratively from the relation

$$P(k|k) = 1 - \sum_{m=1}^{k-1} P(m|k), \quad (40)$$

with $P(1|1) = 1$. Consider an individual A in a damaged household of k individuals. We seek the number of external super-individuals which are connected to A via undamaged paths through his household—note we do not count A’s own direct external link. The individual A is connected to $m-1$ other individuals in the household with probability $P(m|k)$, and each of these other individuals has a single link external to the household, which is undamaged with probability p. Thus the average number of undamaged external links from the connected cluster (and hence from A) to other super-individuals is

$$D_k(p) = p \sum_{m=1}^{k} (m-1) P(m|k). \quad (41)$$

The polynomials $D_k(p)$ for some low values of k are given below:

$$
\begin{align*}
D_3(p) &= 2p^2(1 + p - p^2) \\
D_4(p) &= 3p^2(1 + 2p - 7p^3 + 7p^4 - 2p^5) \\
D_5(p) &= 4p^2(1 + 3p + 3p^2 - 15p^3 - 27p^4 + 127p^5 - 175p^6 + 120p^7 - 42p^8 + 6p^9).
\end{align*}
\quad (42)
$$

APPENDIX B: DEGREE-DEGREE CORRELATIONS

We consider the calculation of $P(k,j)$, the joint pdf of degrees of vertices at either end of a randomly chosen edge in the individuals graph, for the special case of $f_k = F = 1$ for all k, and with $P_k = 0$ for $k < 3$. We begin by noting that the number of edges in the super-graph is $Nz/2$, and each of these also exists in the individuals graph as an external edge joining two individuals in different households. Since $F = 1$, every super-individual of degree k is a household, and so is expanded in the individuals graph to a k-clique—this adds a total of $N\sum_k \hat{P}_k k(k-1)/2$ further edges to the individuals graph. Therefore, a randomly chosen edge in the individuals graph is an external edge with probability

$$\frac{z}{z + \sum_k \hat{P}_k k(k-1)} = \frac{z}{z + \sum_k \hat{P}_k k^2}, \quad (43)$$

and using equation (3) with $f_k \equiv 1$ (and $P_k = 0$ for $k \leq 3$) reduces this to $1/z$.

An external edge has end-vertex degrees k and j with probability

$$\frac{k \hat{P}_k j \hat{P}_j}{z} = \hat{P}_k \hat{P}_j, \quad (44)$$

since the super-graph is an uncorrelated random graph. An internal edge is in a j-clique with relative probability

$$\frac{\hat{P}_j j(j-1)/2}{\sum_{k'} \hat{P}_k k'(k'-1)/2} = \frac{j-1}{z-1} \hat{P}_j, \quad (45)$$

and its end-vertex degrees are both equal to j. Combining all the possibilities, we obtain equation (19):

$$P(k, j) = \frac{1}{z} \hat{P}_k \hat{P}_j + \left(1 - \frac{1}{z}\right) \frac{(j-1)\hat{P}_j}{z-1} \delta_{k,j}. \quad (46)$$

The average degree of neighbors of nodes with degree k is then

$$\langle k \rangle_{nn} = \frac{\sum_j P(k,j)j}{\sum_j P(k,j)} = k - 1 + \frac{z}{k}. \quad (47)$$

APPENDIX C: RELATION BETWEEN ORDER PARAMETER AND EDGE STATISTICS

Following [24], we derive here equation (38) for the fraction of edges in the super-graph which link two unpruned super-individuals, i.e. super-individuals belonging to the K-core. Note from the discussion preceding equation (28) that all individuals of a household are in the same state and so we may speak of super-individuals as pruned or unpruned.

Consider the super-graph where the cascade has ended and all the nodes in the graph have been updated. Let us first calculate L_K, the number of edges in the super-graph which connect unpruned super-individuals. Taking all super-individuals one by one and counting links to any of their unpruned neighbors (if the chosen super-individuals is itself unpruned) will give $2L_K$.

In order to calculate the expected value of this quantity we consider a randomly-chosen super-individual of the super-graph. Taking this as the root of the tree approximation of the super-graph, we suppose it has degree k and $m \leq k$ pruned children. The probability that m of its k children are pruned (meaning that $k - m$ children
are unpruned) is \((k) q_m^n (1 - q_\infty)^{k - m}\), where \(q_\infty\) is the order parameter given by the solution of the self-consistent equation (36).

The state of the root depends on the state of its children as follows. The root can be either a bachelor (which happens with probability \(1 - g_k\)) or a household (which happens with probability \(g_k\)). In each of these cases it is respectively pruned with probability \(F_b(m, k)\) and \(F_h(m, k)\), which are given by equations (27) and (28). Therefore, the probability that the root chosen at random is pruned when it has \(m\) pruned children is given by a weighted sum of probabilities

\[
\tilde{F}(m, k) = (1 - g_k) F_b(m, k) + g_k F_h(m, k)
\]

where \(W_k\) is defined by equation (37).

Combining the probabilities together, the expected number of edges linking an unpruned root of degree \(k\) to its unpruned children is

\[
\frac{2L_K}{L} = \tilde{N} \sum_{k=0}^{\infty} \frac{\tilde{P}_k}{z} \sum_{m=0}^{k} (k - m) \binom{k}{m} q_m^n (1 - q_\infty)^{k - m} \left(1 - \tilde{F}(m, k)\right),
\]

where the \((k - m)\) factor counts the unpruned children, given that \(m\) of the \(k\) children are pruned, while the \((1 - \tilde{F}(m, k))\) term accounts for the root node being unpruned. Averaging this over the distribution of the super-graph and multiplying by the number of nodes gives

\[
2L_K = \frac{2L}{\tilde{N} z} \tilde{N} \sum_{k=0}^{\infty} \frac{\tilde{P}_k}{z} \sum_{m=0}^{k} (k - m) \binom{k}{m} q_m^n (1 - q_\infty)^{k - m} \left(1 - \tilde{F}(m, k)\right).
\]

The fraction of edges in the super-graph linking unpruned super-individuals is found by dividing the right-hand side of (50) by the total number of edges in the super-graph \(L = \tilde{N} z / 2\), to obtain

\[
L_K = \frac{2L}{L} = \frac{\tilde{N} \sum_{k=0}^{\infty} \frac{\tilde{P}_k}{z} \sum_{m=0}^{k} (k - m) \binom{k}{m} q_m^n (1 - q_\infty)^{k - m} \left(1 - \tilde{F}(m, k)\right)}{L}.
\]

Using the identity \((k - m) \binom{k}{m} = k \binom{k - 1}{m - 1}\) and factoring out \((1 - q_\infty)\), this can be written as

\[
(1 - q_\infty) \times \sum_{k=0}^{\infty} \frac{\tilde{P}_k}{z} \sum_{m=0}^{k-1} \binom{k - 1}{m} q_m^n (1 - q_\infty)^{k - 1 - m} \left(1 - \tilde{F}(m, k)\right).
\]

Finally, rewriting the last expression as

\[
\left(1 - q_\infty\right) \times \left(1 - \sum_{k=0}^{\infty} \frac{k \tilde{P}_k}{z} \sum_{m=0}^{k-1} \binom{k - 1}{m} q_m^n (1 - q_\infty)^{k - 1 - m} \tilde{F}(m, k)\right),
\]

and using (36) gives \((1 - q_\infty)^2\). Equation (38) of the main text follows immediately.

APPENDIX D: ZERO-CLUSTERING LIMIT OF K-CORE SIZE

In the unclustered case the self-consistent equation (36) reduces to \(q_\infty = H(q_\infty)\), with \(H(q_\infty)\) given by

\[
\sum_{k=1}^{\infty} \frac{z}{k} \sum_{m=0}^{k-1} \binom{k - 1}{m} q_m^n (1 - q_\infty)^{k - 1 - m} F_b(m, k),
\]

where \(F_b(m, k) = 1\) if \(m > k - K\) and zero otherwise. We show that the right-hand side of this equation is the same as in equation (2) of [26] in the undamaged networks case.

The sum over \(k\) is first expressed as a sum over \(i\), with \(i = k - 1\):

\[
\sum_{i=0}^{\infty} \frac{(i + 1)}{z} P_{i+1} \sum_{m=0}^{i} \binom{i}{m} q_m^n (1 - q_\infty)^{i - m} F_b(m, i + 1).
\]

Next, the sum over \(m\) is re-ordered to a sum over \(n\), with \(n = i - m\), and using the fact that \(\binom{i}{m} = \binom{i}{n}\):

\[
\sum_{i=0}^{\infty} \sum_{n=0}^{i} \frac{(i + 1)}{z} P_{i+1} \binom{i}{n} q^n (1 - q_\infty)^{n} F_b(i - n, i + 1).
\]

The double sum \(\sum_{i=0}^{\infty} \sum_{n=0}^{i}\) can be rewritten as \(\sum_{i=0}^{\infty} \sum_{n=0}^{\infty}\) only for \(n < K - 1\) we obtain

\[
\sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{(i + 1)}{z} P_{i+1} \binom{i}{n} q^n (1 - q_\infty)^{n}.
\]

This, with the notation mapping \(q_\infty \mapsto R\), gives equation (2) of [26] (with \(p = 1\). Similar manipulations reduce the zero-clustering version of equation (35) to equation (1) of [26], with the notation mapping \(\rho \mapsto 1 - M\).
in the individuals graph.