An Experimental and Numerical Study to Analyse Mixed Convection Regime in a Fuselage Crown Compartment
Prepared by M.Geron, C. Butler, D. Newport; University of Limerick
Presented by M. Geron

AIRTEC 2010
Frankfurt, 2-4/11/2010

© 2010 MAAXIMUS Consortium Members. All rights reserved
Overview

- MAAAXIMUS project
- Test Case Description
- Model description
 - Numerical
 - Experimental
- Numerical Results
- Numerical and experimental comparison
- Way forward
Overall Project Objectives:

Weight Reduction – replacing the number of parts with ‘one-shot’ technology

Final Assembly Reduction – adapt production lines for composites

Simulation-based Design – reduce dependence on physical testing

Understanding Composite behaviour – reliability and safety
MAAXIMUS-Thermal Activity

Improve thermo analysis

- Global Thermo Analysis at barrel scale
- Different Thermal behaviour of Composite Material
- Predict tools improvement
- More detailed thermal analysis
MAAXIMUS-Thermal Activity

• Global Thermo Analysis at barrel scale
• Different Thermal behaviour of Composite Material
• Predict tools improvement
• More detailed thermal analysis
MAAXIMUS-Thermal Activity

- Different Thermal behaviour of Composite Material
- Predict tools improvement
- More detailed thermal analysis
MAAXIMUS-Thermal Activity

- Different Thermal behaviour of Composite Material
- Predict tools improvement
- More detailed thermal analysis
MAAXIMUS-Thermal Activity

- Predict tools improvement
- More detailed thermal analysis
MAAXIMUS-Thermal Activity

- More detailed thermal analysis
• More detailed thermal analysis
MAAXIMUS-Thermal Activity

- More detailed thermal analysis
MAAXIMUS-Thermal Activity

• Analysis and modelling
• of the thermal behaviour
• of fuselage
• confined compartments
• **Crown Compartment**

- Analysis and modelling
- of the thermal behaviour
- of fuselage
- confined compartments
- Complex compartment to model
- Solar Load
- Air Flow
 - Air condition
- Obstruction elements
 - Pipes

- Dissipating Elements
 - Lights
 - Electrical wires
 - Power supply
Drafting of 3D models and 2D working drawings:

- Width and height are kept same as an actual crown (2.45m x .4m)
- Depth reduced to 2 frames (1.17m)
- Air inlet = 40mm
- 2 x Air outlets = 20mm
- Material Used
 - Polycarbonate
 - Rockwool
 - Glass
- 1 layer insulation (50 mm)
Crown Compartment Rig Design

- Fuselage
- Ventilation Outlets
- Crown Floor
- Ventilation Inlet
Crown Compartment Rig Design

- Thermocouples
- Fuselage
- Ventilation Outlets
- Crown Floor
- Ventilation Inlet
Physical Model
Physical Model Detail
Boundary Conditions

- Experimental Rig
 - Fuselage Temperature
 - Temperature maintained constant by PID controller and 12 heater mats
 - Air flow
 - Mass flow supplied by 10 fans series 400F
- Numerical Set-up
 - Fuselage Temperature
 - Velocity inlet
 - Crown floor Temperature
• Convection Regime
 • Grashof Number $Gr = 6.5E+8$
 - Transition Flow
 • Reynolds Number $Re = 359.4$
 - Laminar Flow
 • Richardson Number
 - Forced convection negligible

\[Ri = \frac{Gr}{Re^2} \approx 4680 \]

• Modelling
 • Laminar Navier-Stokes equations
 • Boussinesq Approx.

\[g' = g \frac{\rho_2 - \rho_1}{\rho} \]
Numerical Method and Solution Strategy

- Spatial Discretization
 - Pressure based coupled algorithm
 - Second order upwind scheme
- Time Discretization
 - First Order Scheme
- Green Gauss cell based scheme

\[
\Delta t \approx \frac{\tau}{4} \approx \frac{L}{\sqrt{g\beta \Delta T L}} = 0.01s
\]

- Steady
 - 5000 time steps
 - Unsteady
 - Steady State
Domain and Mesh

- **Domain**
 - 2D
 - Symmetrical
 - Solid Zone
 - Insulation
 - Fluid Zone
 - Air

- **Mesh**
 - Multi-block
 - Structured
 - Unstructured
 - Wall mesh refinement
Grid Independence Analysis

<table>
<thead>
<tr>
<th>Grid Type</th>
<th>AVG Temp</th>
<th>Plume Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Grid</td>
<td>368.8340</td>
<td>1.74858</td>
</tr>
<tr>
<td></td>
<td>338.1415</td>
<td></td>
</tr>
<tr>
<td></td>
<td>306.2025</td>
<td></td>
</tr>
<tr>
<td>Coarse grid</td>
<td>368.5463</td>
<td>1.76623</td>
</tr>
<tr>
<td></td>
<td>337.6625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>306.0645</td>
<td></td>
</tr>
<tr>
<td>GCI%</td>
<td>0.266858</td>
<td>3.4532</td>
</tr>
<tr>
<td></td>
<td>0.484628</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.154185</td>
<td></td>
</tr>
</tbody>
</table>
Results: Temperature Iso-Lines

- ΔT (Ins.) = 50 K
- ΔT (Crown) = 30 K
- Temperature contours connected to flow features.
• Flow entering from inlet remains confined at the bottom of the compartment
Results: Buoyancy Driven Flow

- Three major recirculating zones are present due to buoyancy effects
- Unsteady behaviour of eddies
- Convergence problem
Unsteady Laminar Simulation

- Steady Solution utilised as initial solution
- Unsteady solution run
- Convergence reached
- but
- wrong solution
- Flow Visualization of inlet region and crown floor
- Numerical simulation
- (steady flow)
Insulation Temperature

- $T_{\text{End}} = 378 \text{ K}$
- $T_{\text{Floor}} = 298 \text{ K} - \text{Numerical}$
- Ambient Temperature $\approx 300 \text{ K}$
Vertical Temperature Profiles

• a) Mid-section (x=0)
• b) Section 2 (x=0.4)
• c) Section 3 (x=0.8)
Conclusion

• Crown Compartment has been studied both numerically and experimentally
• Only one configuration analysed
 • Necessity to expand the comparison
• Numerical results
 • Steady results needs to be achieved
 • Solution strategy seems to fail for this configuration
 • Turbulent flow should be investigated
• Experiments
 • Necessity to acknowledge flow structures
 – PIV measurements are necessary
THANK YOU FOR YOUR ATTENTION

• The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement n°213371 (www.maaximus.eu).