In vivo assessment of potential probiotic \textit{Lactobacillus salivarius} strains: evaluation of their establishment, persistence, and localisation in the murine gastrointestinal tract

Lisa Murphy1,2, Culum Dunne1,2, Barry Kiely2, Fergus Shanahan3, Gerald C. O'Sullivan4 and J. Kevin Collins1,3

1Department of Microbiology, 2National Food Biotechnology Centre, 3Department of Medicine, University College, Cork, 4Department of Surgery, Mercy Hospital, Cork, Ireland

Correspondence to: Professor J. Kevin Collins, Department of Microbiology, University College Cork, Cork, Ireland. Tel: + 353 (0)21 902392; Fax: + 353 (0)21 903101; E-mail: nfbc@ucc.ie

The enteric flora comprise approximately 95\% of the total number of cells in the human body. Numerous studies have investigated potentially beneficial members of this microbial community due to their ability to elicit immune responses while also protecting against microbial pathogens. We have previously reported on the isolation and identification, from surgically-resected segments of the human gastrointestinal tract (GIT), of potential probiotic lactic acid bacteria (LAB). These bacterial strains exhibit potentially beneficial probiotic traits \textit{in vitro} such as bile tolerance in the absence of deconjugation; gastric acid resistance; and adherence to epithelial cell lines. The objective of this study was to administer two strains of the previously-isolated LAB to mice over a period of 7 or 14 days in order to assess their ability to establish themselves within specific regions of the GIT. Throughout this feeding period, and for 4 days following cessation of feeding, the numbers of total culturable lactobacilli and of the administered LAB present in faeces were monitored. Spontaneous rifampicin resistant derivatives (50 µg/ml) of \textit{Lactobacillus salivarius} subsp. \textit{salivarius} UCC1(LM5) and \textit{Lb. salicarius} subsp. \textit{salicarius} UCC118(LM2) were generated to facilitate enumeration of the strains in GIT and faecal samples. Each potential probiotic strain was individually administered to Balb/c mice at a daily concentration of approximately 4.0×10^9 CFU. After 1 day of feeding, strains UCC1(LM5) and UCC118(LM2) were recovered from murine faeces at Log$_{10}$ 6.95 (1.18) CFU/g and Log$_{10}$ 6.33 (0.37) CFU/g respectively. Interestingly, UCC118(LM2), which was originally isolated from the ileal-caecal region of the human GIT, was found to have become established in the corresponding region of the murine GIT regardless of the length of the feeding period. UCC118(LM2) was also found to persist in faeces for a period of up to 3 days following cessation of feeding. Administration of UCC1(LM5) and UCC118(LM2) did not result in any significant changes in the levels of indigenous lactobacilli and of the administered LAB present in faeces were monitored. In conclusion, human isolate \textit{Lb. salicarius} subsp. \textit{salicarius} UCC118(LM2) was found to effectively colonise, and survive transit through, the murine gastrointestinal tract. \textit{Lactobacillus salicarius} subsp. \textit{salicarius} UCC118 has been deposited at The National Collections of Industrial and Marine Bacteria (NCIMB) and accorded the accession number NCIMB40829. Key words: Probiotics, \textit{Lb. salicarius}, \textit{in vivo}, feeding trials, mouse, gastrointestinal tract, colonisation, transit.

INTRODUCTION

The gastrointestinal tract (GIT) is a complex ecosystem host to a diverse and highly evolved microbial community. The GIT provides a varied physiological environment for the micro-organisms which inhabit it, varying from acid conditions in the stomach to an alkaline pH in the small bowel. Micro-organisms are further subjected to the influences of bile juices and pancreatic secretions. In addition, the GIT is host to an active mucosal system with gut-associated lymphatic tissue (GALT) accounting for 80\% of all immunoglobulin producing cells in the human body (1). The enteric flora, including greater than 500 bacterial species, comprise approximately 95\% of the total number of cells in the human body and contribute significantly to the host’s resistance to infectious disease. Furthermore, changes in the composition of the intestinal flora are often associated with disease and may, in some cases, be their cause (2). While relatively early studies demonstrated the presence of bifidobacteria and lactobacilli in the faeces of breast-fed infants (3), a more recent study in which rectal and oral mucosa was sampled from 42 healthy volunteers demonstrated the presence of 17 defined lactobacilli clusters, most of which were found on mucosa from both sites (4). The largest taxa were \textit{Lb. plantarum}, \textit{Lb. rhamnosus} and \textit{Lb. paracasei} isolated from 52\%, 26\% and 17\% of the individuals, respectively. These results suggest that lactobacilli may be major colonisers of the human gastrointestinal mucosa (4).
Cocktails of various micro-organisms, particularly species of Lactobacillus and Streptococcus, have traditionally been used in fermented dairy products to promote human health. However, it was Metchnikoff in 1907 who first implied that ingested bacteria, in the form of yoghurt and other fermented foods, could beneficially affect the normal gut flora (5, 6). Currently, probiotics (defined as “live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance” (7), or more broadly, as “living micro-organisms, which upon ingestion in certain numbers, exert health affects beyond inherent basic nutrition” (8)) are being employed successfully to improve the quality of animal feed provided to domestic animals (9–11). In the development of probiotic foods intended for human consumption, strains of LAB such as Lactobacillus, Bifidobacterium, and Streptococcus have been most commonly used, due primarily to the perception that they are desirable members of the intestinal microflora (10, 12). However, while a number of probiotic bacteria of human origin are now being exploited commercially (e.g., Lactobacillus rhamnosus GG (13), L. casei Shirota (14), and L. acidophilus LA-1 (15)), many consumers, consumer organisations, and members of the scientific community are sceptical of such products and their publicised probiotic claims. The dairy-food industry is therefore under considerable pressure to scientifically validate these and new probiotic food products (16). Evidence is now being provided to support the proposed benefits of fermented products which demonstrates that LAB have both therapeutic and prophylactic properties. Indeed, several prospective studies have demonstrated the efficacy of LAB administration for both prophylactic and therapeutic use against diarrhoea in premature infants (17); new-borns (18); children (19); and the elderly (20); and in the therapy of antibiotic-related and traveller’s diarrhoea (21, 22). One of the most studied probiotic strains, Lactobacillus rhamnosus GG, has been shown to exert many beneficial effects including the prevention of antibiotic associated diarrhoea, flatulence, stomach and abdominal pain (21). Lb. rhamnosus GG has also been applied in the area of oral bacterial therapy in children presenting with both rotavirus gastro-enteritis and gastro-enteritis of unknown cause (23). Results from such studies indicate that Lb. rhamnosus GG may reduce duration of symptoms of mild diarrhoea and, in addition, may reduce viral excretion.

Due to the fact that the human GIT is a complex and hostile environment, it appears unlikely that a single probiotic bacterial strain will be capable of significantly influencing the microbial ecology of the host. However, for any micro-organism to effectively fulfil a prophylactic role, it must be capable of surviving and colonising this environment at least transiently. For instance, while Lb. rhamnosus GG is easily enumerated, it shows limited persistence in faeces after termination of feeding and was found to cause no significant changes in lactobacilli, enterics, anaerobes or facultative bacteria over a five week study (24). Recently, however, Alander et al. (25) have shown that Lb. rhamnosus GG is recoverable from colonic biopsies obtained from humans administered the probiotic strain, indicating that faecal enumeration is not truly reflective of what occurs in the human gut.

In previous reports we have described the strategies used for the isolation of LAB strains from healthy human adults (26–28). For the purpose of this study, we selected two strains of Lb. salivarius subsp. salivarius, UCC1(LM5) and UCC118(LM2), which as was suggested by the participants involved in the lactic acid bacteria industrial platform (LABIP) workshop on probiotics (8), are of human origin and exhibit non-pathogenic behaviour; resistance to gastric acidity and bile toxicity; and production of potent anti-bacterial compounds effective against a wide variety of pathogens including Bacillus, Listeria, and Staphylococcus species. In addition, both Lactobacillus strains demonstrated the ability in vitro to adhere to the human intestinal cell-lines HT-29 and Caco-2, which have been extensively utilised in attempts to elucidate the mechanisms mediating the adherence of lactic acid bacteria to epithelial cells. In particular, the observed adherence of Lactobacillus salivarius UCC118 compared well with that of the well-characterised adherent strain Lactobacillus rhamnosus GG.

The LABIP workshop participants, amongst others, have further stated that in vitro assays or animal studies are useful in the preselection of (probiotic) bacterial strains (8, 10, 28). Therefore, the objectives of this study completed in mice focused upon (i) effective delivery of the probiotic micro-organisms to the GIT; (ii) evaluation of the ability of the strains to survive transit through, and possibly colonise, the murine GIT; (iii) accepting the complexity of the hostile GIT and faecal environments, development of a method of enumerating the introduced bacterial strains using conventional microbiological techniques; and (iv) assessment of their effect on the numbers of indigenous bacteria in the murine GIT and faeces.

MATERIALS AND METHODS

Bacterial strains

Lactobacillus salivarius subsp. salivarius strains UCC1(LM5) and UCC118(LM2) were previously isolated from the ileal-caecal region of a healthy adult human. The strains both exhibit beneficial probiotic traits such as bile tolerance in the absence of deconjugation, acid resistance, and in vitro adherence to epithelial cell lines (27). The bacterial strains also demonstrate in vitro antagonism of certain micro-organisms, including the indicator strain Bacillus coagulans 1761 (27). In subsequent studies, spontaneous rifampicin resistant derivatives of strains UCC1(LM5) and UCC118(LM2) were generated by plating cells, previously grown overnight in MRS (de Mann
Roosa & Sharpe; Oxoid, Hampshire, England) broth and washed in quarter-strength Ringer’s solution, on MRS agar (pH 5.5) containing 50 µg/ml rifampicin (Sigma-Aldrich Co. Ltd., Dublin, Ireland) and incubated anaerobically for 2 days at 37°C. The resulting antibiotic resistant derivatives were determined to be otherwise phenotypically identical to the parent strain. This selectable trait enabled the strain to be readily enumerated from GIT tissue specimens and following gut transit on MRS agar (pH 5.5) supplemented with rifampicin (50 µg/ml). Animals and maintenance

Twelve week old, female mice (Balb/c), weighing between 21–28g were obtained from the biological services unit in University College Cork, Ireland. The pathogen-free animals were housed individually in plastic cages under positive air pressure with filtered air at room temperature and fed 4 × 10^9 cfu of lactobacilli daily for the duration of the feeding period. The bacterial strains, which were grown overnight in MRS broth and washed in quarter-strength Ringer’s solution, were resuspended in skim milk (10%) and administered at a final concentration of 20% in the otherwise sterile drinking water as described by Perdigon et al. (29). Control mice received sterile milk diluted in sterile water and were maintained under identical conditions as the test group.

Enumeration of administered probiotic bacterial strains following transit through the murine GIT

Three independent trials were completed investigating the effects of transit through the murine GIT on numbers of faeces-borne UCC1(LM5) and UCC118(LM2). Each experimental group consisted of 10 mice (5 test, 5 control). On days 0, 1, 5, and 7, faecal samples were collected from each mouse. Samples were weighed and resuspended in 10 ml phosphate buffered saline (PBS). The weighed samples were then serially diluted in sterile PBS and spread-plated on MRS agar (pH 5.5) to enumerate total lactobacilli and MRS agar (pH 5.5) supplemented with rifampicin. Plates were incubated aerobically for 24 h and 48 h at 37°C, otherwise stated. VRBA and Slanetz and Bartley plates were incubated anaerobically for 24 h and 48 h at 37°C, respectively. All other plates were incubated anaerobically for 48 h at 37°C.

Evaluation of the effects of administered probiotic bacterial strains on the numbers of specific indigenous bacteria cultivable from mouse faeces

The influence exerted by administered Lb. salivarius strains UCC1(LM5) or UCC118(LM2) on the microflora of the murine gut was investigated. Each experimental group consisted of 12 mice (6 test, 6 control). On days 0, 7, and 14, faecal samples were collected from each mouse. Faecal samples were weighed, resuspended in 10 ml PBS, serially diluted in sterile PBS, and either pour-plated or spread-plated in appropriate dilutions on appropriate media in duplicate. The following bacterial groups were enumerated: lactobacilli; bifidobacteria; enterococci; bacteroides; and coliforms. The selective media used were: MRS agar (pH 5.5); MRS agar supplemented with 0.2% lithium chloride (BDH Laboratory Supplies, Poole, England), 0.3% sodium propionate (Sigma), 0.05% cysteine hydrochloride (Sigma), and 5% sheeps blood; Slanetz and Bartley agar; Wilkins and Chalgren agar supplemented with anaerobic supplement SR108 and 5% horse blood; and Violet Red Bile Agar (VRBA) (All Oxoid unless otherwise stated). VRBA and Slanetz and Bartley plates were incubated aerobically for 24 h and 48 h at 37°C, respectively. All other plates were incubated anaerobically for 48 h at 37°C.

Enumeration of administered probiotic bacterial strains from specific segments of the murine GIT

The ability of Lb. salivarius strain UCC118(LM2) to establish itself within localised regions of the mouse GIT was investigated in two individual experiments. In both studies, two mice previously fed skim milk containing UCC118(LM2) for a period of 7 days were placed on a diet where they consumed a sterile skim milk and water cocktail identical to that administered to the control group. The trials were continued as described previously for a further 7 days after which time the mice were sacrificed and dissected. Segments of the ileal-caecal region and the colon were removed aseptically. The contents were removed and the tissue was washed in sterile PBS. The weight of the tissue was recorded. Tissue samples (in duplicate) were homogenised in PBS, serially diluted in PBS, and plated on MRS agar (pH 5.5) and MRS agar (pH 5.5) supplemented with rifampicin. Plates were incubated as described previously. Resulting rifampicin-resistant colonies were phenotypically assessed as described previously.
Statistical analysis

Following completion of each feeding trial, the numbers of bacteria recovered from mouse faeces and murine GIT segments were averaged and the standard deviations calculated. All values were analysed by ANOVA. Where appropriate, differences were studied using Fisher’s LSD test. All analyses were performed at \(P = 0.05 \) level.

RESULTS

Enumeration of administered Lactobacillus salivarius subsp. salivarius strains UCC1(LM5) and UCC118(LM2) following transit through the murine GIT

Both *Lb. salivarius* strains UCC1(LM5) and UCC118(LM2) were administered (4 × 10⁹ CFU/day) to Balb/c mice in skim milk diluted with sterile drinking water and enumerated from collected faeces due to their previously-generated resistance to rifampicin. Prior to initiation of the probiotic feeding period (Day 0), there were no rifampicin resistant bacteria detected from mouse faeces. However, immediately following cessation of feeding, all of the LAB-fed mice were found to have excreted rifampicin-resistant lactobacilli, unlike the control mice which remained devoid of such strains. Following just one day of feeding, the probiotic-fed mice were found to excrete UCC1(LM5) or UCC118(LM2) at levels of approximately \(\log_{10} 6.95 \) (1.18) and \(\log_{10} 6.33 \) (0.37) CFU/g faeces, respectively (Figs. 1a and 1b). Indeed, throughout the 7-day feeding period the levels of faeces-borne UCC1(LM5) did not decrease below \(\log_{10} 6.25 \) (1.65) CFU/g (Fig. 1a). The numbers of UCC118(LM2) detected in faeces collected during this feeding period did not differ significantly from those of UCC1(LM5) (Fig. 1b).

In addition to determining the numbers of administered LAB present in the collected faeces, both prior to and throughout the 7-day feeding period it was observed that the number of total lactobacilli recoverable from control and test mice remained statistically similar (Figs. 1a and 1b). Recovered lactobacilli from the faeces of mice administered strain UCC1(LM5) varied between \(\log_{10} 8.65 \) (0.12) CFU/g and \(\log_{10} 8.82 \) (0.68) CFU/g compared with levels of between \(\log_{10} 8.85 \) (0.37) CFU/g and \(\log_{10} 8.51 \) (0.07) CFU/g in control mice (Fig. 1a). Similarly, during feeding of UCC118(LM2), lactobacilli were recovered at between \(\log_{10} 8.52 \) (0.56) CFU/g and \(\log_{10} 8.51 \) (0.07) CFU/g (Fig. 1b). Overall, it is evident that there is a steady

![Fig. 1a. Enumeration of total lactobacilli and *Lb. salivarius* subsp. salivarius strain UCC1(LM5) in mice during feeding trials. Results are expressed as \(\log_{10} \) CFU/g faeces and represent the average of three independent experiments performed in duplicate.](image)

![Fig. 1b. Enumeration of total lactobacilli and *Lb. salivarius* subsp. salivarius strain UCC118(LM2) in mice during feeding trials. Results are expressed as \(\log_{10} \) CFU/g faeces and represent the average of three independent experiments performed in duplicate.](image)
reduction in the numbers of UCC1(LM5) which account for approximately 11% of total culturable lactobacilli on day 1, 7% on day 5, and only 3% on day 7 (Fig. 1a). In similar fashion, UCC118(LM2) accounted for less than 1% of total culturable lactobacilli on days 1, 5 and 7 (Fig. 1b).

In summary, while neither of the assayed Lb. salivarius subsp. salivarius strains on the numbers of specific culturable populations in mouse faeces

<table>
<thead>
<tr>
<th>Bacterial Strains</th>
<th>Log_{10} bacterial numbers at time intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
</tr>
<tr>
<td>Enterococci (C)²</td>
<td>7.82 (0.56)</td>
</tr>
<tr>
<td>Enterococci (T)³</td>
<td>7.45 (0.69)</td>
</tr>
<tr>
<td>Bifidobacteria (C)</td>
<td>8.50 (0.84)</td>
</tr>
<tr>
<td>Bifidobacteria (T)</td>
<td>8.39 (0.42)</td>
</tr>
<tr>
<td>Coliforms (C)</td>
<td>5.57 (0.51)</td>
</tr>
<tr>
<td>Coliforms (T)</td>
<td>5.79 (0.43)</td>
</tr>
<tr>
<td>Bacteroides (C)</td>
<td>7.83 (0.52)</td>
</tr>
<tr>
<td>Bacteroides (T)</td>
<td>7.86 (0.42)</td>
</tr>
</tbody>
</table>

¹UCC1(LM5) was administered at a concentration of 4 x 10⁹ CFU/ml.
²C: Control.
³T: Test.
⁴Figures in parentheses represent standard deviation.
⁵There were no statistical differences observed between the numbers of faeces-borne bacteria of any one type cultured from either the control or test mice at each of the sampling times.
⁶There were no statistical differences observed between the numbers of faeces-borne bacteria of any one type cultured from within either the test or control groups throughout the sampling period.

Persistence, following cessation of feeding, of administered Lb. salivarius subsp. salivarius strain UCC118(LM2) in mouse faeces

Following cessation of feeding, faecal samples from both control and test mice were analysed for the presence of administered strain UCC118(LM2) for a further 4 days. During this period, a steady decrease (Log_{10} 5.15 (0.79) CFU/g on day 7 decreasing to Log_{10} 1.45 (2.05) CFU/g on day 10) was observed in the numbers of UCC118(LM2) (Fig. 2). UCC118(LM2) was no longer recoverable (< 10⁴ CFU/g) from collected faeces four days after termination of feeding (Fig. 2). During this period, the numbers of total faeces-borne lactobacilli varied between Log_{10} 8.05 (1.00) CFU/g on day 7 and Log_{10} 1.39 (1.96) CFU/g on day 11 from mice which had consumed UCC118(LM2) (Fig. 2).

Enumeration of administered probiotic bacterial strain Lb. salivarius subsp. salivarius strain UCC118(LM2) from specific segments of the murine GIT

To determine the ability of UCC118(LM2) to establish populations within specific segments of the mouse GIT, gut tissue was removed from mice which had consumed the strain continuously for a period of 14 days and from those mice which had been administered UCC118 for 7 days followed by the implementation of a probiotic-free diet for a further 7 days. Strain UCC118(LM2) was found to effectively colonise the ileal-caecal region of the small intestine of the murine gut (Table III). This strain was originally isolated from the corresponding region of the adult human GIT. UCC118(LM2) was also found to have established itself within the colon of mice which had been...
Table II

Examination of the effects of feeding *Lb. salicarius* subsp. *salicarius* UCC118(LM2)\(^1\) on specific culturable microbial populations in mouse faeces

<table>
<thead>
<tr>
<th>Bacterial Strains</th>
<th>Log(_{10}) of numbers of bacteria/gram of faeces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
</tr>
<tr>
<td>Enterococci (C)(^2)</td>
<td>7.90 (0.63)(^5)</td>
</tr>
<tr>
<td>Enterococci (T)(^3)</td>
<td>7.82 (0.34)</td>
</tr>
<tr>
<td>Bifidobacteria (C)</td>
<td>8.03 (0.71)</td>
</tr>
<tr>
<td>Bifidobacteria (T)</td>
<td>8.22 (0.82)</td>
</tr>
<tr>
<td>Coliforms (C)</td>
<td>5.52 (1.30)</td>
</tr>
<tr>
<td>Coliforms (T)</td>
<td>5.18 (0.49)</td>
</tr>
<tr>
<td>Bacteroides (C)</td>
<td>7.24 (0.79)</td>
</tr>
<tr>
<td>Bacteroides (T)</td>
<td>7.71 (0.41)</td>
</tr>
</tbody>
</table>

\(^1\)UCC118(LM2) was administered at a concentration of 4 × 10\(^9\) CFU/ml.
\(^2\)C: Control.
\(^3\)T: Test.
\(^4\)Figures in parentheses represent standard deviation.
\(^5\)There were no statistical differences observed between the numbers of faeces-borne bacteria of any one type cultured from either the control or test mice at each of the sampling times.

Table III

Enumeration of total lactobacilli and administered *Lb. salicarius* subsp. *salicarius* strain UCC118(LM2)\(^1\) from the colon and ileal-caecal regions of the murine GIT

<table>
<thead>
<tr>
<th></th>
<th>Colon</th>
<th>Ileal caecal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mice consuming UCC118(LM2) for 14 days</td>
<td>Mice consuming UCC118(LM2) for 7 days</td>
</tr>
<tr>
<td>Lactobacilli</td>
<td>1.55 × 10(^8)</td>
<td>2.09 × 10(^8)</td>
</tr>
<tr>
<td>UCC118(LM2)</td>
<td>3.30 × 10(^4)</td>
<td>ND</td>
</tr>
<tr>
<td>Lactobacilli</td>
<td>1.66 × 10(^9)</td>
<td>1.70 × 10(^9)</td>
</tr>
<tr>
<td>UCC118(LM2)</td>
<td>2.05 × 10(^5)</td>
<td>ND</td>
</tr>
</tbody>
</table>

\(^1\)UCC118(LM2) was administered at a concentration of 4 × 10\(^9\) CFU/ml.
fed the probiotic strain over the full period of 14 days, but was not recovered from the colons of mice administered the strain for only 7 days (Table III). At each sampling time, a selection of the recovered rifampicin-resistant lactobacilli were randomly chosen and their phenotypes observed to be similar to those of the introduced probiotic strain.

DISCUSSION

As consumers become increasingly aware of the processes which influence their environment, health, and nutrition, scientific research has focused upon the roles that diet, stress, and modern medical practices (e.g., antibiotics and radiotherapy) may play in influencing human health. As a result, the concept of health promotion through the ingestion of functional foods, including those which act as vehicles for potentially beneficial micro-organisms, has received considerable attention (5, 16, 31). This is primarily due to the increasing incidence of illnesses which may be caused by deficient or compromised microflora, such as GIT infections, constipation, inflammatory bowel disease (IBD)-Crohn’s disease and ulcerative colitis, irritable bowel syndrome (IBS), food allergies, antibiotic-induced diarrhoea, cardiovascular disease, and certain cancers (e.g., colorectal cancer) (32). The fermented dairy products containing probiotics that have been successfully manufactured and marketed incorporate strains of Lactobacillus and Bifidobacteria due to their traditional use in the dairy industry and their “generally regarded as safe” status (26). However, some of the probiotic strains currently employed in the dairy-food industry may not possess desirable traits such as being of human origin, resistance to technological processes (i.e., viability and activity in delivery vehicles), resistance to gastric acidity and bile toxicity, capacity to adhere to gut epithelial tissue, ability to colonise the host GIT, and production of antimicrobial substances (6, 11, 33).

This study describes the behaviour and effects of Lb. salivarius subsp. salivarius strains UCC1(LM5) and UCC118(LM2), which were originally isolated from the ileal-caecal region of the intestinal tract of a healthy human adult, following their administration to female mice. Previously, specific criteria were employed to determine the suitability of these strains for use as probiotics. These included the ability of the strains to survive in human gastric acid at pH 2.5 and growth at physiological concentrations of human bile (0.03% v/v) (27). Both UCC1(LM5) and UCC118(LM2), originally isolated as crypt-adhering bacteria, were previously confirmed to be strongly adhesive to the human adenocarcinoma cell lines Caco-2 and HT-29 (27).

For the purposes of this study, rifampicin-resistant derivatives of both probiotic strains were generated in order to facilitate enumeration of the strains from faeces and gut samples, and as a defined method of distinguishing the administered Lb. salivarius strains from indigenous lactobacilli. The identity of the rifampicin-resistant isolates as UCC1(LM5) or UCC118(LM2) was further confirmed by assessment of their ability to antagonise the indicator strain B. coagulans 1761 in vitro. Importantly, examination of the survival of Lb. salivarius UCC1 and UCC118 following transit through the murine GIT indicated that rifampicin resistance is a suitable non-genetic method of enumerating introduced bacterial strains, and that skim milk proved an effective delivery vehicle. Indeed, after just one day of feeding, strains UCC1(LM5) and UCC118(LM2) were recovered from collected mouse faeces at log10 6.95 (1.18) CFU/g and log10 6.33 (0.37) CFU/g, respectively (Figs. 1a and 1b). In addition, it was observed that having successfully survived passage through the murine gut, both strains maintained their ability to inhibit the growth of B. coagulans 1761 in vitro.

A further objective of this study was to investigate the length of time administered Lb. salivarius UCC118(LM2) would persist in faeces following termination of feeding. UCC118(LM2) was particularly chosen for this study due to its ability to adhere strongly to epithelial cell lines in vitro when compared with UCC1(LM5) (Data not shown). It was found that the probiotic strain could be recovered (with no oral supplementation) from faeces for up to three days after cessation of feeding (Fig. 2). UCC118(LM2) was no longer recoverable from faeces after 4 days. These results suggest that Lb. salivarius strain UCC118(LM2) is capable of persistence in the mouse gut, at least for a limited period. This observation is supported by the fact that well-documented probiotics such as Lb. rhamnosus GG have been shown to remain detectable in faeces only temporarily. In particular, a study completed by Goldin et al. (34) demonstrated that 60–80% of individuals consuming Lb. rhamnosus GG excreted this strain for 3–4 days, but only 33% of the population after 7 days. Therefore, it appears increasingly likely that daily administration of the preferred strain is necessary for maintenance of high levels of probiotics.

It is not difficult to understand how a single bacterial strain, introduced into an environment such as the human GIT containing greater than 500 bacterial species, may be unable to effectively compete and become established. Fonty et al. (35), suggested that the establishment of an introduced strain is governed, not only by the mode of administration of the strain, but also by the interaction of micro-organisms within the gut environment. Studies involving Lb. rhamnosus GG demonstrated that consumption of this strain resulted in an increase in the numbers of total lactobacilli and bifidobacteria over the feeding period (36). However, the increases observed in those specific bacterial populations did not persist beyond cessation of feeding. Throughout this study, the levels of indigenous enterococci, bifidobacteria, coliforms, and Bacteroides culturable from mouse faeces were not significantly modified by administration of Lb. salivarius UCC1(LM5) or UCC118(LM2) (Ta-
bles I and II). As UCC118 was found to significantly modify the gut microflora (enterococci, lactobacilli, bifidobacteria) of healthy volunteers in an ethically-approved human feeding trial (unpublished data), the results presented in this study suggest that the beneficial effects of probiotics on gut microflora may be species specific.

Alander et al. (25) recently reported the recovery of *Lb. rhamnosus* GG from human colonic biopsies at 7 × 10⁴ CFU/biopsy following 12 days administration of the probiotic. While *Lb. rhamnosus* GG formed a significant proportion of the *Lactobacillus* population recovered from faeces, the strain was not found to dominate the lactobacilli isolated from tissue samples in the same manner. The results of this study further highlight the fact that microbial analysis of excreted faeces alone may be insufficient to allow claims be made regarding the influences exerted by probiotic strains on gastrointestinal microbial ecology. Ethical concerns may, however, limit the extent of colonic biopsies obtained from human subjects. Studying probiotics in animal models may prove an appropriate alternative. In this study, the ability of *Lb. salivarius* strain UCC118(LM2) to colonise the murine gastrointestinal tract was determined throughout the feeding period, immediately following ingestion of the strain for 7 days, and one week after termination of feeding. *Lb. salivarius* strain UCC118(LM2) was found to effectively colonise the ileo-caecal region of mice administered the strain for the full feeding period. However, the probiotic was also recovered from samples of this region obtained from mice fed the strain for 7 days and then placed on a probiotic-free diet for a further 7 days (Table III). Importantly, this region corresponds to the site from which it was first isolated in the healthy adult human gut. UCC118(LM2) was also found in samples removed from the colon of some mice but, interestingly, only those continuously fed the strain for the full 14 day period (Table III). The results presented here suggest that enumeration of probiotics (or other microbes) from excreted faeces may not be an accurate reflection of the microbial situation within the GIT as strains which are not recoverable from faeces may nonetheless persist in tissue.

In summary, this study describes the ability of *Lb. salivarius* subsp. *salivarius* strains UCC1(LM5) and UCC118(LM2) to survive transit through the mouse GIT following delivery in skim milk. These bacteria are shed in high numbers in faeces, retain their biochemical profiles, and maintain their ability to inhibit the growth in vitro of an indicator bacterial strain. More importantly, however, *Lb. salivarius* strain UCC118(LM2) proved capable of colonising the region of the murine gastrointestinal tract from which it was originally isolated in a healthy adult human. Future studies involving disease-prone, genetically modified mice and human participants may reveal the true potential of this strain for alleviation or prevention of intestinal disease, possibly through modification of the GIT microbial populations.

ACKNOWLEDGEMENTS

This research was supported in part by grants awarded from Bio Research Ireland; the Irish Department of Agriculture and Food non-commissioned food research programme; and DGXII of the European Commission (PROBDEMO: FAIR-CT96-1028 and LABVAC: BIO4-CT96-0542).

REFERENCES