Towards Efficient MUS Extraction

Anton Belova, Inês Lynceb and Joao Marques-Silvaa,b,*
aCSI/CASL
University College Dublin, Ireland
E-mail: \{anton.belov,jpms\}@ucd.ie
bIST/INESC-ID
Technical University of Lisbon
E-mail: ines@sat.inesc-id.pt

Minimally Unsatisfiable Subformulas (MUS) find a wide range of practical applications, including product configuration, knowledge-based validation, and hardware and software design and verification. MUSes also find application in recent Maximum Satisfiability algorithms and in CNF formula redundancy removal. Besides direct applications in Propositional Logic, algorithms for MUS extraction have been applied to more expressive logics. This paper proposes two algorithms for MUS extraction. The first algorithm is optimal in its class, meaning that it requires the smallest number of calls to a SAT solver. The second algorithm extends earlier work, but implements a number of new techniques. Among these, this paper analyzes in detail the technique of recursive model rotation, which provides significant performance gains in practice. Experimental results, obtained on representative practical benchmarks, indicate that the new algorithms achieve significant performance gains with respect to state of the art MUS extraction algorithms.

Keywords: Boolean Satisfiability, Minimally Unsatisfiable Subformula

1. Introduction

There has been a remarkable amount of recent work on algorithms for computing minimal explanations of unsatisfiability over the last decade (e.g. [52,30,8,27,26,19,20,21,51,22,16,23,39,44,48,40,4,5,38]). Most of this work is inspired by earlier work on computing explanations for inconsistencies (e.g. [14,10,3]). Algorithms for MUS extraction have often been characterized as constructive [22] (also referred to as insertion-based [16,39]), as destructive [22] (also referred to as removal-based [16], or deletion-based [39]), or as dichotomic [30,26]. All MUS extraction algorithms involve a number of calls to a SAT solver (or some other NP oracle). For destructive approaches, the best performing algorithms require $O(m)$ calls to a SAT solver, where m is the number of clauses in the original formula. Existing constructive approaches require $O(m \times k)$ calls to a SAT solver, where k is the size of the largest MUS in the original CNF formula [22]. Finally, the dichotomic approach requires $O(k \log m)$ calls to a SAT solver. Recent work proposed an approach based on a weighted Maximum Satisfiability (MaxSAT) solver [16], but the function problem associated with computing a weighted MaxSAT solution is in Δ_2^P, and so unlikely to be in NP. There is also a large body of work on computing good approximations of MUSes (e.g. [39,38]). Despite the large body of work, MUS extraction algorithms are not industrial-strength, meaning that, with a few recent exceptions (e.g. [44]), MUS extraction algorithms are seldom evaluated on large problem instances or used in practical settings. This is demonstrated in the results section of this paper, where previous MUS extraction algorithms are shown to be in general inefficient for large complex problem instances from practical applications.

This paper extends recent work on developing industrial-strength MUS extraction algorithms [40,4], and its main contributions can be summarized as follows. First, the paper develops a constructive algorithm for MUS extraction that requires $O(m)$ calls to a SAT solver. This result implies (i) that destructive and constructive approaches have the same worst-case complexity in terms of the number of calls to a SAT solver; and (ii) that when $k = \Theta(m)$, the new algorithm represents the optimal case (as does the destructive algorithm). More importantly, this new algorithm blurs the distinction between destructive and constructive algorithms. Motivated by this observation, the paper proposes a hybrid algorithm that formally operates as a constructive algorithm, but that essentially exploits all steps of the algorithm to reduce the number of required iterations. This causes the algorithm to operate in a mostly hybrid mode, iteratively constructing the MUS, but also exploiting available information to reduce the number of iterations. Another contribution of the paper is the integration of a number of techniques that serve to simplify each SAT solver call, and

*Corresponding author: J. Marques-Silva, UCD CASL, Ireland.
to reduce the set of clauses that need to be analyzed through a call to a SAT solver. Moreover, the paper also shows that some existing techniques need not be considered for MUS extraction. Among the new techniques, the novel technique of model rotation, first proposed in [40] and further extended in [4], is shown to enable significant savings in terms of the SAT solver calls necessary for computing an MUS. Finally, the paper conducts a comprehensive evaluation of existing publicly available MUS extractors on representative industrial problem instances, obtained from well-known practical applications of SAT, where MUS extraction finds application. Compared to earlier work [40,4], this paper extends the analysis of model rotation, and identifies some of its limitations. In addition, this paper provides a more extensive experimental evaluation.

The rest of this paper is structured as follows ...

2. Preliminaries

A set of variables \(X = \{x_1, \ldots, x_N\} \) is assumed. A formula \(F \) in Conjunctive Normal Form (CNF) is defined as a set of sets of literals defined on \(X \). A literal is either a variable or its complement. Each set of literals is referred to as a clause. Moreover, it is assumed that each clause is non-tautological. Given a formula \(F \), every literal is either a variable or its complement. Each set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

A formula \(F \) is satisfiable if and only if there exists an assignment of values to the variables such that the formula is true. A subset \(M \subseteq F \) is satisfiable if there exists an assignment of values to the variables such that the subset \(M \) is satisfiable. A set of variables \(X \) is assumed.

2. Preliminaries

A set of variables \(X = \{x_1, \ldots, x_N\} \) is assumed. A formula \(F \) in Conjunctive Normal Form (CNF) is defined as a set of sets of literals defined on \(X \). A literal is either a variable or its complement. Each set of literals is referred to as a clause. Moreover, it is assumed that each clause is non-tautological. Given a clause \(c_i \), \(\{\neg c_i\} \) denotes the set of unit clauses obtained from negating \(c_i \). Additional standard definitions can be found elsewhere (e.g. [18,41]). The focus of this paper is unsatisfiable formulas, and the characterization of the sources of unsatisfiability. Throughout the paper, \(F, F', F^R, F^I \) and \(U \) denote CNF formulas, \(S \) and \(S' \) denote MUSes of \(F \), and \(M \) denotes a subset of an MUS \(S \).

Definition 1 (MUS) \(M \subseteq F \) is a Minimal Unsatisfiable Subset (MUS) iff \(M \) is unsatisfiable and \(\forall_{c \in M}, M \setminus \{c\} \) is satisfiable.

Definition 2 (MCS) \(C \subseteq F \) is a Minimal Correction Subset (MCS) iff \(F \setminus C \) is satisfiable and \(\forall_{c \in C}, F \setminus \{C \setminus \{c\}\} \) is unsatisfiable.

Throughout the paper, \(m \) denotes the number of clauses in the original CNF formula \(F \), \(m = |F| \), and \(k \) denotes the number of clauses in the largest MUS \(M \), \(k = |M| \). The MUS decision problem, i.e. the problem of deciding whether a CNF formula \(F \) is an MUS is \(\text{D}^P \)-complete. In contrast, the problem of computing an MUS from an unsatisfiable CNF formula requires a number of calls to a SAT oracle. Over the years, three main approaches have been proposed for computing an MUS: constructive [14], destructive [10,3] and dichotomic [30,26]. Constructive approaches require \(O(m \times k) \) calls to an NP-oracle, destructive approaches require \(O(m) \) calls, and dichotomic approaches require \(O(k \times \log m) \) calls. Despite the theoretical interest of the dichotomic algorithm, the most recent implementation of MUS extraction algorithms are either destructive [6,44] or constructive [51].

Most practical MUS computation algorithms iteratively identify transition clauses [22]. The following definition is used throughout this paper.

Definition 3 (Transition Clause) Let \(F \) be an unsatisfiable set of clauses and let \(c \in F \) be a clause. If \(F \setminus \{c\} \) is satisfiable then \(c \) is a transition clause with respect to \(F \).

Lemma 1 Let \(c \) be a transition clause of CNF formula \(F \). Then \(c \) is included in any MUS of \(F \).

Proof. \(F \setminus \{c\} \) is satisfiable. Any unsatisfiable subset of \(F \) must include \(c \).
Algorithm 1: Destructive MUS Extraction

Input : Unsatisfiable CNF Formula \mathcal{F}
Output: MUS \mathcal{M}

1. begin
2. $\mathcal{M} \leftarrow \mathcal{F}$ // MUS over-approximation
3. foreach $c_i \in \mathcal{M}$ do
4. if not SAT($\mathcal{M} \setminus \{c_i\}$) then
5. $\mathcal{M} \leftarrow \mathcal{M} \setminus \{c_i\}$ // c_i is not transition clause
6. return \mathcal{M} // Final \mathcal{M} is an MUS
7. end

3. Applications of MUSes

Minimally unsatisfiable subsets of CNF formulas are used in a wide variety of contexts of theoretical and applied computer science. Some of the practical applications from the early 2000’s that motivated the interest in algorithms for computing MUSes include type debugging in programming languages [50], circuit error diagnosis [25], and error localization in automotive product configuration data [49]. However, by the late 2000’s it became clear that some of the technologies that traditionally relied on the computation of non-minimal unsatisfiable subsets of propositional formulas (e.g. [17,42,24,29]) – the unsatisfiable cores – can benefit significantly, and are willing to pay the price, for the computation of MUSes.

In this section we describe on a high level two, and go into details of another one of the recent applications of MUSes. These applications come from the domain of Computer Aided Design (CAD): formal equivalence checking, hardware model checking and logic synthesis.

In this section we have no choice but to assume that the reader is familiar with the basic terminology and some of the technologies used in CAD. If this is not the case, the section can be safely skipped.

3.1. Formal Equivalence Checking

Formal Equivalence Checking (FEC) [28] is a technique for formally proving equivalence of two design models. FEC is used in various stages of the VLSI design flow, for example in functional equivalence comparison of the golden Register Transfer Level (RTL) model against the implementation which might be created manually or by an automatic synthesis tool.

Due to the limited capacity of the formal verification engines, FEC has to be performed compositionally: the compared models are separated into small parts, the slices, and the equivalence between the slices is checked with BDD, or, more recently, SAT-based FEC engine. Note that any slice in isolation can have more behaviours than when it is part of the complete model – for example, some combinations of the input signals of the slice may be unrealizable in the complete model. As such, the FEC is performed with respect with the environmental assumptions which mimic the essential behaviour of the complete model with respect to the slice.

SAT-based FEC is performed by constructing a propositional formula that captures the logic of the two slices and the environmental assumptions. The constructed formula is unsatisfiable if and only if the slices, under the given assumptions, are functionally equivalent. If the equivalence of two slices is established, the assumptions need to be confirmed – that is the designer must prove that the assumptions are guaranteed by the model (this is an example of so-called assume-guarantee reasoning for compositional verification [1]). As such it is critical to reduce the number of assumptions required to prove the equivalence of the slices.

One of the approaches to the reduction of the number of the environmental assumption is to consider the unsatisfiable core of the unsatisfiable formula that establishes the equivalence between slices – any assumption that is not part of the core can be ignored. However, in practice the unsatisfiable cores produced by SAT solvers still contain a large number of assumptions [12]. Ideally, a smallest possible core is needed. However, the computation of a smallest core is extremely costly, and so MUSes provide an effective and practically feasible alternative. In [12] it was shown that MUS-based reduction of environmental assumptions in FEC a critical impact on the efficiency of the design flow.
3.2. Proof-based Abstraction Refinement

Proof-based abstraction refinement (PBA) [42] is a popular approach to model checking of large industrial hardware designs. The goal of model checking [11,47] is to establish correctness properties of finite state transition systems, which in the case of hardware, capture the Finite State Machine (FSM) of a hardware design.

The basic idea of PBA is to start with a Bounded Model Checking (BMC) run for some small depth \(k \). In BMC [7] a propositional formula \(BMC(k) \) is constructed in such a way that it is unsatisfiable if and only if no execution of the FSM with \(k \) or less steps violates the correctness property. If the formula \(BMC(k) \) is satisfiable, the property is violated, and we are done. Otherwise, the unsatisfiable core of the formula \(BMC(k) \) is used to construct an abstraction of the given design in the following way: for a latch \(L \) in the design, let \(LC(L,k) \) be the set of clauses in the \(BMC(k) \) that represent the input-output correspondence of the latch values on the execution steps. Then, if none of the clauses of \(LC(L,k) \) partake in the unsatisfiable core of \(BMC(k) \), the latch \(L \) is removed from the design (i.e. it is replaced with a primary input). The design abstracted in this way has more behaviours than the original one, however it still has the property that no executions of length \(k \) or less violate the correctness condition. The abstracted design is then checked with a complete (for example, BDD-based) model checker, and if the property is proved on the abstract design, it is guaranteed to hold on the concrete design. Otherwise, the length of the violating execution, which is provided by the complete model checker and is guaranteed to be larger than \(k \), is used for the next BMC run.

Notice that each latch abstracted from the concrete design reduces the state space of the design by a factor of 2. Thus, it is extremely beneficial to abstract away as many latches as possible. As with our example of FEC, the smallest core of the formula \(BMC(k) \) would be ideal for this purpose, however since it is too expensive to compute, an MUS is computed instead, and can be used effectively to eliminate additional latches. As suggested in [45] this procedure can be further optimized by computing the core terms of sets of clauses.

3.3. Boolean Function Bi-decomposition

Boolean function decomposition [2,13] is a fundamental operation in logic synthesis. Given a Boolean function \(f(X) \) the task is to represent \(f \) in the form

\[
f(X) = h(g_1(X), \ldots, g_m(X)),
\]

such that that \(h \) and \(g_i \)'s are simpler Boolean functions. Decomposition with \(m = 2 \) is referred to as bi-decomposition, and is of particular practical relevance due to the fact that logic netlists are most often expressed in terms of binary gates. To showcase the application of MUSes in this setting we now set up the necessary background.

Given a set of variables \(X \), a partition of \(X \) is a set of pair-wise disjoint sets \(X_A, X_B, X_C \) such that \(X = X_A \cup X_B \cup X_C \). A partition is non-trivial if \(X_A \neq \emptyset \) and \(X_B \neq \emptyset \). A partition is disjoint if \(X_C = \emptyset \), and is balanced if \(|X_A| = |X_B| \). Given a Boolean function \(f(X) \) the bi-decomposition of \(f \) consists of a partition of \(X \) and two Boolean functions \(f_A \) and \(f_B \) such that

\[
f(X) = f_A(X_A, X_C) \circ f_B(X_B, X_C), \quad (1)
\]

where \(\circ \) is usually one of \(\lor, \land \), or \(\oplus \).

The primary issue in bi-decomposition is to obtain a good partition of variables, i.e. a partition that is non-trivial, almost balanced, and such that the set of common variables \(X_C \) is small (or even empty) – the latter condition is the most important due to the fact that it affects directly the amount of wiring in the synthesized circuit. Once the partition is known, the functions \(f_A \) and \(f_B \) can be computed using by various methods, for example using BDDs or SAT and Craig interpolation (cf. [43,33]).

In [33,9] the authors show that the problem of the existence of a particular non-trivial partition can be reduced to checking the unsatisfiability of a certain propositional formula. Furthermore, the unsatisfiable cores of this formula correspond to other non-trivial partitions such that the size of the core is related directly to the quality of the partitions. For example, for the case of OR bi-decomposition (i.e. when \(\circ = \lor \) in (1)), the aforementioned formula is given by following proposition.

Proposition 1 (cf. Proposition 2, [9]) Let \(X_A, X_B, X_C \) be a non-trivial partition of the set of variables of a Boolean function \(f(X) \). Then, \(f \) can be decomposed into \(f_A(X_A, X_C) \lor f_B(X_B, X_C) \) for some functions \(f_A, f_B \) if and only if the following propositional formula \(\mathcal{F} \) is unsatisfiable:

\[
\mathcal{F} = f(X) \land \neg f(X') \land \neg f(X'') \land F_A \land F_B, \quad (2)
\]

where
(i) \(X', X''\) are the sets of primed versions of variables in \(X\);
(ii) \(\mathcal{F}_A = \bigwedge_{x \in X_B \cup X_C} (x \equiv x')\);
(iii) \(\mathcal{F}_B = \bigwedge_{x \in X_A \cup X_C} (x \equiv x'')\).

Example 1 Let \(X = \{p, q, r\}, X_A = \{p\}, X_B = \{q\}, X_C = \{r\}\). Then a function \(f(p, q, r)\) can be represented as \(f_A(p, r) \lor f_B(q, r)\) if and only if the propositional formula
\[
\begin{align*}
f(p, q, r) \land \neg f(p', q', r') \land \neg f(p'', q'', r'') & \land \\
(q \equiv q') & \land (r \equiv r') & \land (p \equiv p'') & \land (r \equiv r'')
\end{align*}
\]
is unsatisfiable.

Using Proposition 1 variable partitions are computed in the following way. The computation begins by identifying a non-trivial seed partition of \(X\) – such partition can for example be constructed by selecting two variables \(x_i, x_j \in X\) and setting \(X_A = \{x_i\}, X_B = \{x_j\}, X_C = X \setminus \{x_i, x_j\}\), and verifying the unsatisfiability of the formula (2). If the formula is unsatisfiable, a seed partition is found, otherwise another pair of variables is selected. The selection of variables for the seed partition can be aided by heuristics (e.g. [9]).

Note that the quality of the seed partition is rather poor – most of the variables are in the common set \(X_C\). However, the quality of the partition can now be improved by considering the unsatisfiable cores of the formula (2): if for some variable \(x \in X\) a core contains only the clauses that correspond to \((x \equiv x')\) (resp. \((x \equiv x'')\)) then the variable \(x\) can be moved to the set \(X_B\) (resp. \(X_A\)). If the core doesn’t contain either of these clauses, the variable \(x\) can be moved either to \(X_A\) or \(X_B\) (this way the partition can be made more balanced).

Clearly, small unsatisfiable cores are likely to correspond to good partitions, hence the minimization of the core size is of the key importance in this application. Since, again, the computation of the smallest unsatisfiable core is too expensive, MUSes provide an effective and efficient alternative. The results reported in [9] demonstrate that the MUS-based variable partitions are of significantly better quality that those based on non-minimal unsatisfiable cores.

4. New Constructive Algorithm for MUS Extraction

This section develops a new constructive algorithm, that takes \(O(m)\) calls to a SAT oracle. This result implies that constructive and destructive approaches for MUS extraction have the same worst-case complexity in terms of the number of calls to a SAT solver, and improves known results in this area [22,39,38].

Algorithm 2 shows the new constructive MUS extraction algorithm. This new algorithm borrows ideas from a number of earlier algorithms. Similarly to AMUSE [46], it adds relaxation variables to all clauses. In addition, and similarly to the use of weighted MaxSAT for MUS extraction [16], a SAT (resp. weighted MaxSAT) test is used to decide which clause to add to the MUS being built.

The operation of the algorithm is as follows. Assume the original formula \(F\) is unsatisfiable. The algorithm starts by creating a working formula \(F^R\) by relaxing all clauses in \(F\). An AtMost1 constraint is created and encoded into the CNF formula \(T\), requiring at most one relaxation variable \(r_i\) to be assigned value true. \(M\) is initially an empty set and in the end is an MUS.

The outcome of the SAT solver call (see line 7) given formula \(F^R \cup T \cup M\) can either be true or false. If the outcome \(s\) is true, this means that exactly one relaxation variable was set to true. This relaxation variable \(r_i\) is associated with a clause \(c_i\) that is part of the MUS \(M\) being constructed. If \(s\) is false, this means that more than one relaxation variable would have to be assigned value true for the outcome to be true. This also implies the existence of more than one MUS, and so the solution is to (arbitrarily) block one MUS. This is done by simply removing a clause \(c_i^R\) from \(F^R\) that also occurs in the unsatisfiable formula \(U\) computed by the SAT solver. The process is iterated until \(F^R\) becomes empty (denoting that \(M\) is unsatisfiable), in which case \(M\) is an MUS.

To prove that Algorithm 2 computes an MUS of \(F\), the following intermediate results will be used.

Definition 4 Throughout the execution of Algorithm 2, let \(F^I\) represent the clauses in \(F^R\) without the corresponding relaxation variables. (Observe that \(F^I \cap M = \emptyset\.)

Lemma 2 Assume \(M \subseteq S \subseteq F^I \cup M\), where \(S\) is an MUS. Let \(F^R \cup T \cup M\) be unsatisfiable. Then \(M\) can be extended to strictly more than one MUS.

Proof. Suppose that \(M\) can be extended to exactly one MUS \(S\). Select a clause \(c_i \in S \setminus M\), and relax clause \(c_i\). By definition of MUS, \(S \setminus \{c_i\}\) must be satisfiable, and since \(M\) can be extended to exactly one MUS, then \(F^R \cup T \cup M\) would have to be satisfiable; a contradiction. \(\square\)
Algorithm 2: Constructive MUS Extraction with AtMost1 Constraint

Input: Unsatisfiable CNF Formula F
Output: MUS M

1 begin
2 $M \leftarrow \emptyset$
3 $R \leftarrow \{r_i \mid r_i$ is fresh variable for $c_i \in F\}$
4 $F^R \leftarrow \{c_i \cup \{r_i\} \mid r_i \in R \land c_i \in F\}$
5 $T \leftarrow \text{CNF}(\sum_{r_i \in R} r_i \leq 1)$
6 while $F^R \neq \emptyset$ do
7 (st, ν, U) $\leftarrow \text{SAT}(F^R \cup T \cup M)$
8 if st is true then
9 $r_i \leftarrow \text{TrueVariable}(\nu, R)$
10 $c^R_{i} \leftarrow \text{Clause}(F^R, r_i)$
11 $F^R \leftarrow F^R \setminus \{c^R_{i}\}$
12 $M \leftarrow M \cup \{c^R_{i} \setminus \{r_i\}\}$
13 else
14 if $U \cap F^R = \emptyset$ then
15 $F^R \leftarrow \emptyset$
16 else
17 $c^R_{i} \leftarrow \text{SelectClause}(F^R \cap U)$
18 $F^R \leftarrow F^R \setminus \{c^R_{i}\}$
19 return M
20 end

Corollary 1 Assume $M \subseteq S \subseteq F^I \cup M$, where S is an MUS. Let $F^R \cup T \cup M$ be unsatisfiable (i.e. line 13 of the algorithm), let U be an unsatisfiable subformula computed by the SAT solver, and let $(c_i \cup \{r_i\}) \in F^R \cap U$. Then there exists an MUS S' with $S' \subseteq M \cup (F^I \setminus \{c_i\})$.

Proof. $M \cup (F^R \setminus \{c_i \cup \{r_i\}\}) \cup T$ is either satisfiable, requiring exactly one clause in F^R to be relaxed, or remains unsatisfiable. In either case, it still contains an MUS. \hfill \Box

Lemma 3 Assume $M \subseteq S \subseteq F^I \cup M$, where S is a MUS. Let $F^R \cup T \cup M$ be satisfiable, and let c_i be a clause with an associated true relaxation variable r_i. Then, any MUS with clauses in $F^I \cup M$ will include c_i.

Proof. By hypothesis, $F^I \cup M$ is unsatisfiable. If $F^R \cup T \cup M$ is satisfiable, then $F^R \cup M$ is an MCS of size 1, which is identified by the relaxed clause c_i. Hence, by definition of MCS, c_i must be part of any MUS in $F^I \cup M$. \hfill \Box

Theorem 1 Algorithm 2 returns an MUS of unsatisfiable CNF formula F.

Proof. To prove that Algorithm 2 computes on MUS of F, the following invariants hold after each iteration of the algorithm: (i) $F^I \cup M$ is unsatisfiable; and (ii) there exists an MUS S, with $M \subseteq S \subseteq F^I \cup M$. The invariants can be proved by induction on the number of iterations of the algorithm. Clearly, the invariants hold for the base case, with $M = \emptyset$ and F^I unsatisfiable. Suppose that the invariants hold after iteration $j - 1$. Then, the objective is to analyze the invariants after iteration j. Suppose the SAT call in line 7 returns false. Hence, one clause is removed from F^I. From Lemma 2 and Corollary 1, it is guaranteed that the resulting formula $F^I \cup M$ is still unsatisfiable and contains an MUS. Alternatively, suppose the SAT call in line 7 returns true. Hence, the relaxation variable is removed from the identified relaxed clause and the clause is added to M. From Lemma 3, the identified clause is included in any MUS, and so can be added to M. Moreover, the two invariants still hold: M continues to be part of an MUS and $F^I \cup M$ is unsatisfiable. \hfill \Box
Lemma 4 The number of calls to a SAT solver by Algorithm 2 is in \(\Theta(m) \).

Proof. To prove that the number of calls is \(\mathcal{O}(m) \), observe that the algorithm removes one clause from \(\mathcal{F}^R \) at each iteration of the loop. Hence, there can be at most \(m \) calls to a SAT solver. To prove that the number of calls is \(\Omega(m) \), consider the following CNF formula \(\mathcal{F} = \{ \neg x_1 \} \cup \bigcup_{i=1}^{N-1} \{ x_i, \neg x_{i+1} \} \cup \{ x_N \} \), with \(|\mathcal{F}| = N + 1 = m \). \(\mathcal{F} \) has a single MUS, containing all clauses. Each iteration of the algorithm will add exactly one clause to \(\mathcal{M} \). Hence, the number of calls to the SAT solver is \(N + 1 = m \). Thus, the number of calls to a SAT solver is in \(\Omega(m) \). □

Lemma 4 shows that deletion-based and insertion-based MUS extraction algorithms can have the same asymptotic complexity in terms of the number of calls to a SAT solver. Moreover, Algorithm 2 provides one concrete example of such algorithm. It should be noted that Algorithm 2 runs the SAT solver on a modified problem instance. However, as will be shown later, despite working on a modified problem instance, Algorithm 2 provides a few practical advantages.

5. Hybrid MUS Extraction

One of the interesting aspects of Algorithm 2 is that it blurs the distinction between constructive and destructive algorithms. On the one hand, the algorithm iteratively expands a subset of an MUS. On the other hand, the algorithm requires \(\mathcal{O}(m) \) calls to a SAT solver. Similarly, one can develop a variant of Algorithm 1 that is essentially a constructive algorithm. Algorithm 3 shows this variant. As with Algorithm 2, \(\mathcal{M} \) denotes a subset of an MUS, and the number of calls to a SAT solver is \(\mathcal{O}(m) \). Nevertheless, Algorithm 3 also shares similarities with Algorithm 1, namely that each clause is analyzed exactly once, thus guaranteeing \(\Theta(m) \) calls to a SAT solver. Besides the minor changes needed to make a constructive variant of Algorithm 1, Algorithm 3 also includes a number of key optimizations detailed below. Observe that for these techniques to be easily integrated, the algorithm needs to operate in constructive mode.

To describe the techniques used to improve the performance of MUS extraction, it is convenient to isolate the clauses known to be part of an MUS (i.e. \(\mathcal{M} \)) from the clauses yet to be analyzed (i.e. \(\mathcal{F'} \)). Hence, the algorithm can be viewed as constructive. The new techniques are included in lines 7, 10, and 12. Although the techniques described in this section are integrated in Algorithm 3, they can be applied with minor modifications to any destructive, constructive or dichotomic MUS algorithm.

5.1. Clause-Set Trimming

A standard preprocessing technique for computing MUSes of large CNF formulas is clause set trimming. Trimming consists of iterating a SAT solver on computed unsatisfiable subformulas until no changes are detected in between calls to the SAT solver [52]. Nevertheless, for large practical problem instances, iterating the computation of unsatisfiable subformulas a constant number of times, or until the size change in the computed unsatisfiable subformulas is below a given threshold. Observe that clause set trimming can be viewed as the preprocessing step equivalent to clause set refinement described next.

5.2. Clause-Set Refinement

Next, we analyze the technique summarized in line 12 of Algorithm 3.

Let the outcome of the SAT solver be false. In this case, one can refine the working set of clauses with the unsatisfiable subformula computed by the SAT solver.

Lemma 5 (Clause Set Refinement) Let \(\mathcal{F}, \mathcal{F}', \mathcal{M} \) and \(\mathcal{U} \) be as defined in Section 2. Consider the outcome of the SAT solver on formula \(\mathcal{F}' \cup \mathcal{M} \). If the result is unsatisfiable, with unsatisfiable subformula \(\mathcal{U} \), then any MUS in \(\mathcal{U} \) contains \(\mathcal{M} \). Thus, the working formula \(\mathcal{F}' \) can be set to \(\mathcal{U} \setminus \mathcal{M} \).

Proof. By construction, \(\mathcal{M} \) is composed of transition clauses, each of which is part of an MUS (see Lemma 1). Hence, any MUS in \(\mathcal{U} \) must contain the clauses in \(\mathcal{M} \). Since the clauses in \(\mathcal{M} \) are known to be transition clauses, the working formula \(\mathcal{F}' \) can be updated to \(\mathcal{U} \setminus \mathcal{M} \). □

A more complicated version of clause set refinement, that involves considering the resolution proof after each unsatisfiable outcome, has been described elsewhere [15,44]. Our approach considers solely the computed unsatisfiable core, and so allows using the SAT solver as a black box (provided the solver returns an unsatisfiable core).
Algorithm 3: Hybrid MUS Extraction

Input: (Trimmed) Unsatisfiable CNF Formula F
Output: MUS M

1. begin
2. $F' \leftarrow F$ // Working CNF formula
3. $M \leftarrow \emptyset$ // MUS under-approximation
4. while $F' \neq \emptyset$ do
5. $c_i \leftarrow \text{GetClause}(F')$
6. $F' \leftarrow F' \setminus \{c_i\}$
7. $(\text{st}, \nu, U) = \text{SAT}(M \cup F' \cup \{\neg c_i\})$ // Add redundancy checking
8. if st = true then
9. $M \leftarrow M \cup \{c_i\}$ // If SAT, c_i is transition clause
10. $\text{RMR}(F' \cup M, M, \nu)$ // Recursive model rotation
11. else if $U \subseteq M \cup F'$ then
12. $F' \leftarrow U \setminus M$ // Equivalently, if $U \cap \{\neg c_i\} = \emptyset$
13. // Clause-set refinement
14. return M // Final M is an MUS
end

5.3. Redundancy Removal

The redundancy removal technique consists of constraining the SAT solver call, as shown in line 7 of Algorithm 3. The additional constraints consists of adding to the CNF formula the negation of the removed clause. It is well-known that c_i is redundant if $F \setminus \{c_i\} \cup \{\neg c_i\}$ is unsatisifiable [34]. Although this technique was first used in [51], in the context of a constructive MUS extraction algorithm involving $O(m \times k)$ calls to a SAT solver, it has not been used in destructive (or hybrid) MUS extraction algorithms. In addition, its use affects the integration of other techniques, as discussed below.

The integration of the redundancy removal technique (line 7) and clause set refinement is not immediate, since the clauses from the redundancy removal technique can be part of the computed unsatisfiable core. The solution is to include a test (line 11 of Algorithm 3) to decide when the unsatisfiable core can be used as the next working CNF formula.

Proposition 2 Let U be the unsatisfiable core returned by the SAT solver in line 7 of Algorithm 3. If $U \cap \{\neg c_i\} = \emptyset$, then U contains an MUS S of F.

5.4. Recursive Model Rotation

Finally, we describe the technique summarized in line 10 of Algorithm 3. Let the outcome of the SAT solver be true and let ν be the computed model. This assignment must unsatisfy the clause removed from F'. Similarly, any assignment that unsatisfies a single clause c from F' and satisfies all clauses in M proves that c must be part of an MUS.

Lemma 6 Let F, $F' \subseteq F$ and M be as defined in Section 2. Let ν be a model of $M \cup F' \cup \{\neg c_i\}$ (that must unsatisfy clause c_i). Then c_i is included in any MUS of F that contains M.

Proof. c_i is a transition clause. Hence, by Lemma 1, c_i is included in any MUS of F'. Since $F' \subseteq F$, any MUS of F' is an MUS of F. □

Therefore, given the model ν, we can compute additional clauses to add to the MUS by selective flipping of the variable assignments in ν. The question is then how to decide which variable assignments to flip. The technique described in this paper is referred to as model rotation. This technique consists of analyzing changes to the computed model ν that will satisfy the single clause unsatisfied by ν. This is illustrated with the following example.

For clarity of the presentation we introduce the following notation: given a CNF formula F and an assignment ν, $\text{Unsat}(F, \nu)$ denotes the set of clauses in F falsified by ν. The expressions $\text{Var}(c)$ (resp. $\text{Var}(S)$) denote the set of variables that occur in the clause c (resp. set of clauses S). Finally, given an assignment ν, $\nu|_{\neg x}$ denotes the assignment that agrees with ν on all variables except x.
Example 2 (Model Rotation) Let $\mathcal{F} = \{c_1, \ldots, c_5\}$ be an unsatisfiable formula with
\[
c_1 = \{\neg x_1, \neg x_2\} \quad c_2 = \{x_1, \neg x_2\} \quad c_3 = \{x_1, x_2\} \quad c_4 = \{x_2, x_3\} \quad c_5 = \{x_1, x_2\}.
\]

Suppose that c_1 is removed from \mathcal{F}. Then $\mathcal{F} \setminus \{c_1\}$ is satisfiable, and let $\nu_1 = \{x_1, x_2, x_3\}$ be the model of $\mathcal{F} \setminus \{c_1\}$ returned by the SAT solver. We have $\text{Unsat}(\mathcal{F}, \nu_1) = \{c_1\}$. Let $\nu_2 = \nu_1\{\neg x_2\}$, that is $\nu_2 = \{\neg x_1, x_2, x_3\}$. We now have $\text{Unsat}(\mathcal{F}, \nu_2) = \{c_2\}$, and therefore, c_2 is another transition clause of \mathcal{F}.

The process can be continued until for some clause c known to be a transition clause, and all possible rotations of \mathcal{F} have been performed.

Lemma 7 Let \mathcal{F} be an unsatisfiable formula, let $c \in \mathcal{F}$ be a transition clause, and let ν be a model of $\mathcal{F} \setminus \{c\}$. Then, the sets $\text{Unsat}(\mathcal{F}, \nu\{\neg x\})$ for $x \in \text{Var}(c)$ are pairwise disjoint.

Proof. Take $x \in \text{Var}(c)$, and let c' be some clause in $\text{Unsat}(\mathcal{F}, \nu\{\neg x\})$. Since $c' \notin \text{Unsat}(\mathcal{F}, \nu)$, the literal of variable x was critical in c' under ν (that is, the only literal in c' that evaluates to 1 under ν). Since every clause has at most one critical literal, the lemma follows.

Hence, by performing model rotation on different variables of c we are guaranteed to obtain disjoint sets of clauses, thus increasing the likelihood of detecting additional transition clauses.

Example 2 (continued) We backtrack to the assignment ν_1 and flip variable x_2 to obtain the assignment $\nu_3 = \{x_1, \neg x_2, x_3\}$, and since $\text{Unsat}(\mathcal{F}, \nu_3) = \{c_3\}$ we have a new transition clause c_3. Rotation of ν_3 on variable x_3 results in the assignment $\nu_4 = \{x_1, \neg x_2, x_3\}$, which gives another transition clause c_4. Rotating ν_4 on x_2 results in the assignment $\nu_5 = \{x_1, x_2, \neg x_3\}$ at which point the rotation terminates, because $\text{Unsat}(\mathcal{F}, \nu_5) = \{c_1\}$ and c_1 is already known to be a transition clause, and all possible rotations have been made.

In this example, such recursive model rotation (RMR) allows to detect all of the transition clauses of \mathcal{F}. Remarkably, as demonstrated in Section 7, the cases when RMR finds all, or close to all, of the transition clauses do occur often on practical instances.

The sketch of the algorithm for the recursive model rotation is presented in Algorithm 4. The algorithm is invoked whenever an MUS extractor detects a new transition clause as a result of a call to a SAT solver. We note that the total number of model rotations during the execution of an MUS computation algorithm on any formula \mathcal{F} is at most $k \cdot c_{\text{max}}$, where k is the size of the largest MUS M of \mathcal{F}, and c_{max} is the maximum among the lengths of clauses in M. On the other hand, each successful model rotation (i.e. the one that detects a new transition clause) saves a potentially expensive call to a SAT solver. Given that in practical instances the size of MUSes rarely exceeds a few tens of thousands of clauses, it is not surprising that model rotation often provides for significant performance gains. In Section 7 we demonstrate these gains empirically, and also investigate whether RMR can be improved to allow to detect more transition clauses.

Clearly, model rotation could use more elaborate approaches for finding assignments that falsify a single clause. For example, local search or even a complete SAT solver could be considered. Nevertheless, the objective of model rotation is to eliminate calls to the SAT solver, and so a simple (linear time) procedure is used instead.

The analysis of computed models was first used in [51]. However, model rotation is a fundamentally different technique. Whereas the approach in [51] associates a model with each clause and requires worst-case quadratic space, model rotation simply considers single variable value changes to each computed model, so as to identify clauses that are in an MUS of the original formula.

5.5. Analysis of Other Techniques

Algorithm 3 integrates, adapts and extends several techniques proposed in earlier work. One additional technique could be considered, namely autarkies [31]. For example, autarkies have been successfully used in recent MUS enumeration algorithms [36]. In contrast, the use of autarkies in Algorithm 3 is less clear. First, by definition a clause is part of an autarky if and only if it is not included in any resolution refutation. Hence, since the proposed algorithms start by trimming the initial CNF formula, the autarkies of \mathcal{F}
Hence, the assumption variable used to activate \(c\) needs not continue to be handled in incremental mode. Any clause gains \([51,44]\). Our implementation uses an incremental mode provides significant performance (e.g. \([6]\)). Recent experimental results suggest that identification of autarkies is unnecessary if clause set trimming and refinement are used, there are cases where autarkies can still find application in Algorithm 3. Observe that, due to the redundancy removal technique, clause set refinement may not be applicable after every unsatisfiable outcome. When this happens, then autarkies may exist, and can be identified. However, our experimental results indicate that the size of new autarkies does not justify their computation during the execution of the MUS extraction algorithm.

5.6. Interfacing SAT Solvers

In MUS extraction algorithms, SAT solvers can either be used in incremental or non-incremental mode (e.g. \([6]\)). Recent experimental results suggest that incremental mode provides significant performance gains \([51,44]\). Our implementation uses an incremental interface to the SAT solver, with one key change. Any clause \(c_i\) declared as being part of the MUS \(M\) needs not continue to be handled in incremental mode. Hence, the assumption variable used to activate \(c_i\) can be eliminated. This technique is beneficial for problem instances with large MUSES, since the overhead of the incremental interface is reduced as more clauses are added to the MUS \(M\).

6. Experimental Results

The algorithms described in the previous sections were implemented in the MUS extraction tool MUSer (MUS ExtratoR), built on top of the Picosat \([6]\) SAT solver. Supported by existing experimental evidence \([39,38]\), the incremental interface of Picosat was used. (Observe that other work \([44]\) also proposes the use of the incremental interface of modern SAT solvers.) The experimental evaluation focused on the following MUS extractors: the new constructive MUS extraction algorithm based on relaxation variables (CRV) described in section 4; the hybrid MUS extraction algorithm (HYB) described in section 5; a reference constructive algorithm (DREF); a reference constructive algorithm \([14]\) (CREF); the recent constructive algorithm from \([51]\) (MUNSAT); a recent local-search-guided destructive MUS extraction algorithm from \([21]\) (AOMUS); a well-known MUS extractor from \([52]\) (ZMIN); SAT4J \([32]\) MUS extractor in linear constructive mode (S4J), in QuickXPlain \([30]\) mode (S4J,Q), and in destructive mode (S4J,D). Finally, a destructive MUS extraction algorithm available in the Picosat distribution \([6]\) (PMUS).

As shown by the results below, fairly recent MUS extractors \([21,51,16]\) perform considerably worse than the most recent generation of MUS extractors, including the ones described in this paper.

The experimental evaluation focused on 500 problem instances submitted to the MUS track of the 2011 SAT Competition \(^2\). All problem instances were obtained from practical applications of SAT, including hardware bounded model checking, FPGA routing, hardware & software verification, equivalence checking, abstraction refinement, design debugging, function decomposition, and bioinformatics. Clause set trimming (based on invoking the SAT solver a fixed (3) number of times) was applied to all problem instances before running any of the MUS extraction algorithms. Otherwise, algorithms that do not implement clause set trimming would perform poorly. All results were obtained on an HPC cluster, where each node is an 8-core CPU Xeon E5450 3GHz, with 32GByte RAM and running Linux. For each problem instance, the specified resources were a time limit of 1200 seconds and a memory limit of 4 GByte. For SAT4J, the Java virtual machine used was the Java HotSpot(TM) 64-Bit Server VM (build 19.1-b02). Figure 1 shows a cactus plot with all MUS extractors, showing the instances solved.

\(^2\)http://www.satcompetition.org/2011/.
by increasing run times. The following conclusions can be drawn. First, the new constructive algorithm based on relaxation variables (CRV) clearly outperforms all other constructive algorithms, namely MUNSAT, S4J_C and CREF. Second, and more importantly, the new hybrid algorithm HYB outperforms all other MUS extraction algorithms. It solves more instances, but the plot also shows a clear performance edge with respect to all other algorithms. Third, fairly recent MUS extractors algorithms, namely MUNSAT [51] and AOMUS [21], perform significantly worse than the more recent generation of MUS extractors. Fourth, and finally, constructive algorithms perform significantly worse than destructive algorithms, the exceptions being the new algorithms CRV and HYB. However, the results confirm that constructive algorithms requiring $O(m \times k)$ calls to a SAT solver simply do not scale in practice.

The cactus plot is completed with Table 1, that shows the number of solved instances. The main conclusions here are that: (i) the new algorithm HYB solves the largest number of instances; and (ii) recently published MUS extraction algorithms [21,51] are unable to solve many instances, many of which are easily solved by other approaches.

Finally, Figure 2 shows scatter plots comparing the run times of HYB with the next best MUS extraction algorithms, namely DREF, S4J_D, PMUS, and AOMUS. Again the results are clear. HYB clearly outperforms DREF, i.e. the reference implementation of destructive MUS extraction. Moreover, HYB clearly outperforms PMUS, in many cases by one order of magnitude or more. Also, HYB extensively outperforms AOMUS, in most cases by more than one order of magnitude. Finally, HYB also outperforms S4J_D, although in this case there are a number of outliers. These outliers represent problem instances with small MUSes, for which S4J_D performs well.

To conclude the experimental evaluation, the best performing MUS extraction tools are compared against the MUS extractor from [44], on selected problem instances. The best run times from [44] are used, since the tool is not publicly available. Moreover, the hardware where the MUS extractors were run is similar. The run times (in seconds) are shown in Table 2. As can be concluded, HYB performs significantly better. For the barrel instances, the speedup is around one order of magnitude. For the longmult instances, the speedup is almost two orders of magnitude. For the pipe instances, HYB performs better in one instance, and worse in another.

7. More on Model Rotation

The goal of this section is to provide additional insights into the power and capabilities of recursive model rotation (RMR), as described in Section 5. This additional attention to the technique is justified by the analysis of the effect of RMR summarized in Fig. 3. The plot in Fig. 3, left demonstrates the impact of RMR on the runtime of HYB by comparing the run-
Table 1
Number of solved instances

<table>
<thead>
<tr>
<th>Solver</th>
<th>CREF</th>
<th>MUSAT</th>
<th>S4J</th>
<th>CRV</th>
<th>ZMIN</th>
<th>AOMUS</th>
<th>S4J</th>
<th>PMUS</th>
<th>S4J</th>
<th>DREF</th>
<th>HYB</th>
</tr>
</thead>
<tbody>
<tr>
<td># Solved</td>
<td>112</td>
<td>154</td>
<td>158</td>
<td>228</td>
<td>235</td>
<td>374</td>
<td>429</td>
<td>444</td>
<td>453</td>
<td>454</td>
<td>488</td>
</tr>
</tbody>
</table>

Fig. 2. Scatter plot comparing HYB with other MUS extractors: CPU time.

Table 2
Comparison with [44]

<table>
<thead>
<tr>
<th>Instance</th>
<th>3pipe</th>
<th>4pipe</th>
<th>barrel6</th>
<th>barrel7</th>
<th>barrel8</th>
<th>longmult6</th>
<th>longmult7</th>
<th>longmult8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best in [44]</td>
<td>167</td>
<td>1528</td>
<td>348</td>
<td>700</td>
<td>4110</td>
<td>968</td>
<td>5099</td>
<td>—</td>
</tr>
<tr>
<td>HYB</td>
<td>194</td>
<td>1143</td>
<td>35</td>
<td>72</td>
<td>400</td>
<td>11</td>
<td>99</td>
<td>811</td>
</tr>
<tr>
<td>DREF</td>
<td>365</td>
<td>—</td>
<td>94</td>
<td>332</td>
<td>30</td>
<td>398</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>PMUS</td>
<td>—</td>
<td>—</td>
<td>68</td>
<td>102</td>
<td>701</td>
<td>51</td>
<td>283</td>
<td>—</td>
</tr>
<tr>
<td>S4J_S</td>
<td>223</td>
<td>—</td>
<td>395</td>
<td>829</td>
<td>—</td>
<td>152</td>
<td>883</td>
<td>—</td>
</tr>
</tbody>
</table>

times of HYB and a version of HYB without RMR. We observe that RMR allows for significant, often multiple orders of magnitude, speed-ups in MUS extraction. Such speed-ups are explained by the significant reduction in the number of invocations of SAT solver during MUS extraction (Fig. 3, center) — in fact, we observe that in many cases MUS computation requires a single SAT solver invocation, which is the theoretical minimum\(^3\). Finally, we note that even in the cases when RMR cannot detect all of the transition clauses, the technique is still extremely effective — on vast majority of the benchmark instances RMR detects over 60\% of all transition clauses (Fig. 3, right).

Given the apparent power of RMR, it is natural to ask whether the technique can be extended in a man-

\(^3\)Recall that we assume that the input instance is unsatisfiable, hence we do not perform the first (UNSAT) call.
A rather straightforward observation is that for every transition clause \(c \in F \) there is a vertex \(\nu \) in \(R_F \) that would allow to detect more, if not all, necessary clauses. It is also of interest to investigate whether some of the additional information can be extracted during the execution of the algorithm. In this section we put forward a number of proposals, and evaluate their effectiveness empirically.

We note that since an instance may not have any transition clauses (this happens when it has more than one disjoint MUS), RMR, or any of its possible extensions, can be only used as an optimization of MUS extraction algorithms, rather than a standalone technique for computation of MUSes. As such, any extension to RMR should maintain the low computational overhead of the technique.

To gain insight into the operation of RMR it is helpful to consider the following structure, which we call the rotation graph of an unsatisfiable CNF formula, defined as follows.

Definition 5 (Rotation graph) Let \(F \) be an unsatisfiable CNF formula. The rotation graph of \(F \), in symbols \(R_F \), is a labelled directed graph \((V, E, L)\), where

(i) the set of vertices, \(V \), is the set of all possible assignments to \(Var(F) \);

(ii) each vertex \(\nu \in V \) is labelled with the set \(Unsat(F, \nu) \) of clauses in \(F \) falsified by \(\nu \);

(iii) there is a directed edge \(e = \langle \nu, \nu' \rangle \in E \), if \(\nu' = \nu_{\neg x} \) for some \(x \in Unsat(F, \nu) \).

Thus, the rotation graph \(R_F \) for a formula \(F \) has \(2^{|Var(F)|} \) vertices that correspond to all possible assignments to variables of \(F \). Each vertex \(\nu \) is labelled with the set \(Unsat(F, \nu) \). Each pair of assignments \(h \) and \(\nu' = \nu_{\neg x} \) on Hamming distance 1 from each other is connected by a directed edge \(\langle \nu, \nu' \rangle \) if \(x \) is a variable that appears in a some clause falsified by \(\nu \).

Example 3 Consider the formula \(F \) from Example 2 which we reproduce here for convenience. \(F = \{c_1, \ldots, c_5\} \), where

\[
\begin{align*}
c_1 &= \{\neg x_1, \neg x_2\} \\
c_2 &= \{x_1, \neg x_2\} \\
c_3 &= \{x_2, \neg x_3\} \\
c_4 &= \{x_1, x_2\} \\
c_5 &= \{x_1, x_2, x_3\}
\end{align*}
\]

The rotation graph \(R_F \) is shown in Figure 4. Note that a pair of directed edges in opposite directions is depicted as double-headed arrow. The vertex (assignment) \(\nu_1 = \{x_1, x_2, x_3\} \) is labelled with \(\{c_1\} \), because \(c_1 \) is the only clause in \(F \) falsified by \(\nu_1 \). There is a directed edge from \(\nu_1 \) to \(\nu_2 = \{\neg x_1, x_2, x_3\} \) because \(x_1 \in Var(c_1) \). However, since \(x_3 \notin Var(c_1) \), there is no edge from \(\nu_1 \) to \(\{x_1, x_2, \neg x_3\} \).

![Fig. 3. Left: HYB vs HYB without RMR in terms of CPU time (sec). Center: HYB vs HYB without RMR in terms of the number of invocations of the SAT solver (solved instances only). Right: histogram of the percentage of clauses in the MUS computed by HYB detected using RMR.](image-url)

![Fig. 4. Rotation graph for a formula \(F \) from Example 3. Double-headed arrows represent a pair of edges in the opposite directions. The label of a vertex is shown on the right side of it.](image-url)
labelled solely by c, i.e. $\text{Unsat}(\mathcal{F}, \nu) = \{c\}$. We will say that ν is a distinguishing assignment (or vertex) for c in this case.

Definition 6 (Distinguishing assignment) Let \mathcal{F} be an unsatisfiable CNF formula. An assignment ν is a distinguishing assignment (for some clause c) if $\text{Unsat}(\mathcal{F}, \nu) = \{c\}$.

Thus, given the unsatisfiable formula \mathcal{F}, the set $\mathcal{M} \subseteq \mathcal{F}$ that contains some of the necessary clauses of \mathcal{F} and a distinguishing assignment ν for some $c \in \mathcal{M}$, the execution of $\text{RMR}(\mathcal{F}, \mathcal{M}, \nu)$ (see Algorithm 4) can be seen as a depth-first traversal of the rotation graph $R_\mathcal{F}$ that starts at vertex ν and that does not visit any vertex ν' that satisfies one of the following termination conditions:

1. ν' is a distinguishing assignment for a clause c' that is already in \mathcal{M}, or
2. ν' is not a distinguishing assignment, that is $|\text{Unsat}(\mathcal{F}, \nu')| > 1$.

We will refer to a vertex ν of $R_\mathcal{F}$ as visited by RMR, if the algorithm was invoked with ν as a parameter, either directly or recursively. For example, the vertices visited during the execution of $\text{RMR}(\mathcal{F}, \mathcal{M}, \nu_1)$ on the formula \mathcal{F} from Examples 2 and 3 are: $\nu_1 = \{x_1, x_2, x_3\}$, $\nu_2 = \{\neg x_1, x_2, x_3\}$, $\nu_3 = \{x_1, \neg x_2, x_3\}$, and $\nu_4 = \{x_1, \neg x_2, \neg x_3\}$.

The conditions (1) and (2) guarantee that any execution of recursive model rotation visit at most $O(|\mathcal{F}|)$ vertices. At the same time, as demonstrated in the following example, the conditions inhibit the ability of the procedure to detect necessary clauses.

Example 4 Let $\mathcal{F} = \{c_1, \ldots, c_6\}$, where

$c_1 = \{x_1, x_2\}$
$c_2 = \{x_3, x_4\}$
$c_3 = \{\neg x_1, \neg x_3\}$
$c_4 = \{\neg x_1, \neg x_4\}$
$c_5 = \{\neg x_2, \neg x_3\}$
$c_6 = \{\neg x_2, \neg x_4\}$

Note that \mathcal{F} is minimally unsatisfiable. Assume that the set \mathcal{M} of known transition clauses is empty.

First, consider the execution of $\text{RMR}(\mathcal{F}, \mathcal{M}, \nu_1)$ where $\nu_1 = \{\neg x_1, \neg x_2, x_3, x_4\}$. We have $\text{Unsat}(\mathcal{F}, \nu_1) = \{c_1\}$. Since x_1 and x_2 are in $\text{Var}(c_1)$, RMR can attempt to flip the two variables, however $\text{Unsat}(\mathcal{F}, \nu_1[-x_1]) = \{c_3, c_4\}$ and $\text{Unsat}(\mathcal{F}, \nu_1[-x_2]) = \{c_5, c_6\}$. Thus, neither of the two assignments (note that they are neighbours of ν_1 in $R_\mathcal{F}$) are distinguishing, and RMR terminates without detecting any additional clauses due to the condition (12).

Second, consider the execution of $\text{RMR}(\mathcal{F}, \mathcal{M}, \nu_2)$ where $\nu_2 = \{\neg x_1, \neg x_2, x_3, \neg x_4\}$. We also have $\text{Unsat}(\mathcal{F}, \nu_2) = \{c_1\}$. We invite the reader to check that the assignment $\nu_1 = \{\neg x_1, x_3, \neg x_3, x_4\}$, which is the only distinguishing assignment for the clause c_6, will not be visited by RMR due to the condition (11), and so RMR will not detect the clause c_6.

In fact, in this example, at least one clause will be missed by RMR regardless of the initial distinguishing assignment.

Thus, a possible approach to enhancing the ability of RMR to detect additional transition clauses is to relax the termination conditions (11) and (12). In order to relax the condition (11) we allow the algorithm to visit a vertex ν even if it is a distinguishing vertex for a clause c that is known to be a transition clause. In order to guarantee the termination of the algorithm, we must ensure that the algorithm never re-visits any vertex — note that the condition (11) provides such guarantee implicitly. In order to relax the condition (12) we allow the algorithm to visit a vertex ν even if $|\text{Unsat}(\mathcal{F}, \nu)| > 1$. When this is the case, the foreach loop of RMR (Algorithm 4, lines 3-7) iterates over all variables in the clauses of $\text{Unsat}(\mathcal{F}, \nu)$.

While Example 4 demonstrates that the unrestricted version of RMR (i.e. with the conditions (11) and (12) relaxed as described above) has the potential to detect more transition clauses, a quick look at Example 3 and Fig. 4 reveals that in the worst case the algorithm may traverse all of the $2^{\text{Vars}(\mathcal{F})}$ vertices of the rotation graph. To control the worst-case computational complexity of the unrestricted algorithm we introduce two parameters – the rotation depth rd, $rd \geq 1$, and the rotation width rw, $rw \geq 1$ – and define the relaxed versions of the termination conditions (11) and (12) in the following way:

1. ν' is a distinguishing assignment for a clause c' and the number of visited distinct distinguishing assignments for c' is greater than rd;
2. $|\text{Unsat}(\mathcal{F}, \nu')| > rw$.

In other words, rotation depth is the maximum number of distinct distinguishing assignments allowed to be visited for any clause, while the rotation width controls the maximum number of unsatisfied clauses allowed in any visited assignment. Setting $rd = rw = 1$ gives the original termination conditions of RMR\(^4\).

\(^4\)Note that we tacitly assume that if $c \in \mathcal{M}$, then it has been visited by RMR at least once — in the context of Algorithm 3 this indeed is the case, since RMR is invoked for every newly discovered transition clause.
while setting \(rd = rw = \infty \) results in the unrestricted version of RMR.

The resulting algorithm parametrized by \(rd \) and \(rw \), extended model rotation, or \(EMR_{rd,rw} \), is presented in Algorithm 5. The algorithm maintains a global (i.e. saved between the invocations) datastructure \(visited \) which, for each set \(S \subseteq F \) with \(rw \) or less clauses, keeps the set of assignments \(\nu \) such that \(Unsat(F, \nu) = S \). For example, \(visited\{c\} \) contains up to \(rd \) distinguishing assignments for the clause \(c \). EMR is invoked by the hybrid MUS extraction algorithm instead of RMR whenever a new transition clause is detected via a call to SAT solver (Algorithm 3, line 10).

Proposition 3 The number of assignments visited by Algorithm 3 with RMR replaced by \(EMR_{rd,rw} \) for a fixed finite \(rd \) and \(rw \), is \(O(rd \cdot m^{rw}) \), where \(m \) is the number of clauses in the input formula.

Proof. Let \(F \) be the unsatisfiable input formula. In the worst case the algorithm will visit \(rd \) distinct assignments for each of the subsets of \(F \) of size \(rw \) or less. The number of such subsets is bounded by \(|F|^{rw} \). \(\square \)

Proposition 3 implies that using extended model rotation with large depth, and particularly with large width, on application benchmarks is not practical – for example, even for \(rw = 2 \) the algorithm might incur run-time and memory overhead of the order of \(|F|^2 \). We evaluated the performance of the algorithm with various settings for the values of \(rd \) and \(rw \), and present the results of the evaluation for \((rd = 5, rw = 1) \) and \((rd = 1, rw = 2) \) in Fig. 5. The plots compare the percentage of transition clauses detected by EMR vs that of RMR, and the impact of EMR on the run-time of the hybrid MUS extraction algorithm. We observe that, as expected, the increase in the rotation depth, and more so in the rotation width \(^5\), allows EMR to detect more transition clauses (Fig. 5, top-left and bottom-left). However, even for \((rd = 5, rw = 1) \) this increase does not pay off in terms of run-time, and in fact appears to inhibit performance on some of the instances (Fig. 5, top-right). The situation is worse for the case \((rd = 1, rw = 2) \) (Fig. 5, bottom-right), where in fact the algorithm runs out of memory on 78 benchmark instances solved by HYB (with RMR).

On the theoretical note, it is unclear whether an unrestricted version of EMR is capable of detecting all transition clauses of a given unsatisfiable formula \(F \). This question boils down to answering whether for any formula \(F \) there is a traversal of the rotation graph \(R_F \) that visits at least one distinguishing assignment for each transition clause \(c \in F \). Based on our computational experiments we put forward the following conjecture.

Conjecture 1 Let \(F \) be a minimally unsatisfiable CNF formula, and let \(R_F \) be the rotation graph of \(F \). Then, there exists a distinguishing assignment \(\nu \) such that the traversal of \(R_F \) starting from \(\nu \) visits at least one distinguishing assignment for each clause \(c \in F \).

\(^5\)Recall that RMR is equivalent to EMR with \((rd = 1, rw = 1) \).
In other words, given a minimally unsatisfiable formula F and a "right" initial assignment, the unrestricted version of model rotation will discover all clauses of F. We leave it as an open question to prove or refute the conjecture.

We now go back to the original version of RMR, and describe an additional technique that allows to use some of the information derived during the execution of the algorithm. This technique, called clause reordering is based on the following observation.

Proposition 4 Let F be an unsatisfiable formula. Then, for any assignment ν the set $\text{Unsat}(F, \nu)$ contains at least one clause from each of the MUSes of F.

Proof. If not, then the set $F \setminus \text{Unsat}(F, \nu)$ includes an MUS of F, and so must be unsatisfiable. \square

Proposition 4 justifies the following heuristic for selection of clauses in the hybrid MUS extraction algorithm: whenever RMR visits an assignment ν with $|\text{Unsat}(F, \nu)| > 1$ (i.e. the test on line 5 of Algorithm 4 fails because ν' is not a distinguishing assignment), try to remove the clauses in $\text{Unsat}(F, \nu)$ next (i.e. the clause c_i selected on line 5 of Algorithm 3 is selected from this set). The idea is that for instances with many MUSes chances are that the clauses from this set belong to different MUSes, and so among the next few calls to the SAT solver, the solver will return UNSAT and the clause set refinement will remove the clauses outside of the unsatisfiable core. We evaluated clause reordering empirically and present the results of the evaluation in Fig. 6. We observe that while clause reordering allows to solve 2 instances previously unsolved by HYB, in general the results are mixed. We conclude that there is no clear advantage in using the technique in the current form.
8. Related Work

To the best of our knowledge, Algorithm 2 was first presented in an earlier version of this paper [40]. Nevertheless, the use of relaxation variables for MUS extraction has been proposed in earlier work. For example, AMUSE [46] also uses relaxation variables. However, AMUSE does not compute an MUS, and identifies instead a reduced unsatisfiable subset. The use of relaxation variables has also been considered extensively in the enumeration of MUSes [35,37], and in the use of MaxSAT for MUS extraction [16]. Although the use of relaxation variables resembles the use of selector variables [44], it is fundamentally different. Selector variables serve solely to specify clause (de)activation in incremental SAT. Relaxation variables serve to specify constraints on how many clauses can be relaxed.

Algorithm 3 was also first presented in an earlier version of this paper [40], even though its organization can be viewed as a (constructive) variant of Algorithm 1. Moreover, some of the techniques implemented by Algorithm 3 are novel, and their integration is also novel. Also, the implementation of these techniques requires a constructive MUS extraction algorithm. Clause set refinement was first studied in [15,44]. However, the solution proposed there is more complicated, being based on analyzing resolution proofs. In contrast, our approach simply uses the returned unsatisfiable core. The analysis of computed models for finding more than one transition clause per iteration of the algorithm was first used in [51], in the context of a constructive algorithm requiring $\Theta(m \times k)$ calls to a SAT solver. In [51], each clause is characterized by an associated assignment, that aims to satisfy all clauses in a working set of clauses but itself; clearly this can entail non-negligible memory requirements for large-scale problems instances. Model rotation was proposed in earlier versions of this paper [40,4]. Plain model rotation was proposed in [40] and recursive model rotation was proposed in [4]. This paper complements the study of model rotation by providing a detailed analysis of its impact in efficient MUS extraction, of possible extensions, and some of its limitations. Finally, the technique of including $\lnot c_i$ in the CNF formula given to the SAT solver is standard in CNF redundancy checking [34], and was first used for MUS extraction in [51]. Our implementation follows this approach. Nevertheless, this paper proposes a new solution for integrating the redundancy removal technique and clause set refinement.

Recent work on MUS extraction also addressed non-clausal formulas [5] and group-oriented (or high-level) MUS extraction [44,48].

9. Conclusions

This paper details new algorithms for the efficient extraction of MUSes from unsatisfiable CNF formulas, first proposed in [40,4], and has a number of contributions. The first contribution is a new constructive MUS extraction algorithm. Whereas existing algorithms require $O(m \times k)$ calls to a SAT oracle, the new algorithm requires $O(m)$ calls. In practice, the new algorithm is shown to outperform all existing constructive algorithms. More importantly, this new algorithm shows that constructive and destructive MUS extraction algorithms share a number of important similarities. The second contribution exploits this observation, and develops a hybrid algorithm, that is organized as a constructive algorithm, but that exploits features of destructive algorithms. In addition, this algorithm integrates a number of key MUS extraction techniques, including redundancy removal, clause set refinement and, more importantly, model rotation. These techniques essentially exploit all of the main steps of the MUS extraction algorithm, i.e. calls to the SAT solver, and both unsatisfiable and satisfiable outcomes. Moreover, the paper also develops conditions for the integration of these techniques. Moreover, although the proposed techniques are integrated in the new hybrid algorithm, they can be used with any MUS extraction algorithm. Among the techniques studied in this paper, model rotation is shown to be crucial for the practical efficiency of MUS extraction algorithms, and therefore is analyzed in greater detail. The techniques proposed in this paper (and related earlier work [40,4]) represent what seems to be the most effective organization of model rotation, and this paper provides insights on why this is the case. The resulting algorithm (HYB) outperforms publicly available MUS extraction tools. The performance gains often exceed one order of magnitude when compared with state of the art MUS extraction tools. In addition, algorithm HYB is shown to also outperform recent non-publicly available MUS extraction algorithms [44]. Finally, it is worth mentioning that the HYB algorithm as well as the implementation of several other MUS extraction algorithms is publicly available in the MUSer (MUS Extractor) software tool.
The experimental results are promising and indicate that HYB represents the new state of the art in the area of MUS extraction algorithms. Nevertheless, practical applications of MUS extraction algorithms can gain from more efficient solutions. A number of research directions can be envisioned. MUSes find a wide range of practical applications in a number of domains (e.g., see [38]). One line of work is to adapt the HYB algorithm to other domains. A line of work recently investigated by other researchers is a tighter integration of the MUS extraction algorithm with the SAT solver. Some techniques developed in this paper could be further explored with this tighter integration. Finally, another line of research is to integrate in MUS extraction algorithms SAT solvers implementing the most recent SAT techniques, and evaluate their effectiveness for MUS extraction.

Acknowledgement.

This work is partially supported by SFI PI grant BEACON (09/ IN.1/I2618), FCT through grants ATTEST (CMU/PT/ELE/0009/2009), POLARIS (PTDC/EIA-CCO/123051/2010), ASPEN (PTDC/EIA-CCO/110921/2009), and by INESC-ID multiannual funding from the PIDDAC program funds.

References

