
 Tool Support for Automating Architectural Knowledge Extraction

Aman-ul-haq, Muhammad Ali Babar
Lero, University of Limerick Ireland

Aman.ul.haq@lero.ie, malibaba@lero.ie

Abstract

Development of large projects is a knowledge

intensive task. Applying knowledge management
techniques to project activities can enhance
productivity and reduce risks of failures. However, it
has been observed that knowledge management
activities suffer from problems such as unavailability
of structured information and lack of incentives to put
extra efforts for these activities. In this paper, we
present a tool that captures architectural knowledge
from documents and emails and stores it in more
structured manner in knowledge repositories with
minimum user intervention, thus minimizing the
required amount of effort.

1. Introduction

 The development of large and complex system is
likely to suffer from communication problems among
the stakeholders involved in making key technical as
well as non-technical decisions. A project may fail as a
result of poor communication and unavailability of
information surrounding key decisions. For example,
in the case of NASA’s Mars Climate Orbiter [1], it was
reported that a good communication between
navigation and development teams could have avoided
the disaster despite the root cause of the failure was a
mistake in the navigation software. It was revealed that
the navigation team failed to communicate their
concerns to the development team even though they
were aware of errors in the trajectory estimation of the
spacecraft [1]. Recent efforts to address these kinds of
problems in the area of software architecture are
focused on managing Architectural Knowledge (AK).

The knowledge surrounding software architecture
design decisions is called AK [16]. Architectural
decisions and design options form the most important
parts of AK. On one hand, they represent the decisions
taken; on the other hand, they capture the rationale for
these decisions and help us to reason about different
quality attributes at the architecture level. Realizing the

importance of AK, many organizations have started
paying more attention towards codification of tacit
knowledge underpinning their architectural processes
and artefacts [2]. Architectural information is usually
documented in lengthy documents which pose
problems such as: 1) locating relevant information
inside a long document is time consuming and difficult
task; and 2) traceability among different architectural
elements is lost. To overcome these problems, research
community has developed several Architectural
Knowledge Management (AKM) tools such as
PAKME [7], ADDSS [18], Archium [4] and AREL
[5]. Nevertheless the applicability of these tools to real
industrial settings appears to be quite challenging
because of the following reasons:

1- While these tools provide systematic ways of
capturing and managing AK, industry is likely to prefer
their conventional approaches to sharing and managing
AK (i.e. via documents and emails).

2- Manually transferring AK from documents to
knowledge repositories is laborious and painstaking.

This tension between lack of available time and
pressure to keep knowledge repository current usually
results in inconsistent and incomplete AK captured in
an organizational knowledge repository. Hence, our
research goal is to find an effective and efficient way
of capturing AK, which not only relieves an architect
from unnecessary effort for capturing and sharing AK
but can also be easily incorporated into existing
processes and productivity tools commonly used. Our
assertion is that if there is a tool that automatically
extracts the required AK from documents and emails
and semi-automatically enters that AK in an
organizational knowledge repository, it can improve
the likelihood of repository-driven AKM tools being
widely used. In this context, we have developed a tool
called Automatic Architecture Knowledge Extraction
Tool (AAKET), which is expected to perform most of
the time-consuming tasks semi-automatically with
minimum human intervention. The tool is also
expected to help organizations to maintain their
knowledge repositories current and consistent with
relatively less effort.

SHARK’09, May 16, 2009, Vancouver, Canada
978-1-4244-3726-9/09/$25.00 © 2009 IEEE ICSE’09 Workshop49

Figure 1. High level architectural view of AAKET

The remainder of this paper is organized as

follows: Section 2 outlines and explains the
architecture of the tool, Section 3 focuses on
implementation aspects and different technological
choices, Section 4 presents preliminary evaluation of
our tool, Section 5 discusses the related work and
Section 6 outlines the possible future enhancements.

2. Architectural Details

The high level architectural view of AAKET has
been shown in Figure 1. AAKET’s architecture has
been designed as layers of components responsible
for performing various functions provided by the
tool. Each component plays its role independently.
The components communicate with each other
through well-defined interfaces. That is why
AAKET’s architecture is capable of accommodating
future enhancements in any part of the tool without
affecting other parts. Following are the main
components of AAKET:

Authentication: This component has been
introduced to assure the security of the information
stored in a repository. Since several repositories can
be populated using AAKET’s services, it is important
to ensure that users can only add new knowledge to a
repository for which they have been authenticated.
That is why AAKET handles the authentication
information by storing all the authentication related
information in a remote server. Every organization
may have separate policy of authentication (group-

based, individual or global) which can be controlled
from a central server.

Data acquisition and filtering: This module
provides the key functionality of AAKET. It extracts
the data stored in emails and other documents based
on a set of filtering protocols and rules, and hands it
over to the next layer component for persistence of
this knowledge. This component has been developed
using Microsoft office automation techniques. At this
stage, we have developed the automation facilities for
Microsoft Outlook and Microsoft Word. However,
this component can be easily extended to provide the
same features for other productivity software like
PowerPoint and Excel Spreadsheet. Such an
extension is already underway.

Knowledge persistence: Once the information
making up AK has been extracted from e-mails
and/or documents, next step is to store this
knowledge in a knowledge repository. AAKET can
store the extracted knowledge to any repository using
an appropriate API. In our case, we have been using
PKAME (Process-based architecture knowledge
management environment) [7] that we have
developed for managing architectural knowledge for
supporting the architecture process involving
geographically distributed stakeholders. We have
chosen PAKME to demonstrate the use of AAKET
because our industry collaborator for trialing
PAKME raised the concerns about the effort required
to populate the repository with the knowledge. They
proposed to develop a feature that can provide partial
automation of the task of capturing AK [3].

50

Moreover, this issue was also mentioned by Kruchten
during a discussion about the use of repository driven
AK management tools like PAKME [15].

3. Implementation Details

AAKET has been developed taking the
performance factors into consideration. Our choice of
the programming language for implementing the core
components of AAKET was based on the
performance requirements. We anticipate that there
may be hundreds of emails that AAKET may have to
process in a batch mode. Following were the
programming languages that we considered for
Implementation AAKET:

1. Visual Basic 6.0
2. C# .NET
3. Visual C++ 6.0

 All three languages are based on Microsoft
technologies as our research and development team
had extensive expertise and experience in these
programming languages. Both Visual Basic 6.0 and
C# .NET suffer from performance issues because of
their native code. Native code is interpreted by
language runtime which causes some performance
bottlenecks especially in CPU intensive tasks such as
information extraction. Because of the
abovementioned reasons, we decided to use Visual
C++ 6.0 for AAKET’s implementation. Secondly, we
are not using any third party library that could cause
any performance penalty. Our direct utilization of the
MSOffice automation interface further helped us to
achieve our performance goal.

Table 1. Time Complexity of popular information

searching algorithms
Algorithm Expected Running

Time
Brue Force O (nm)
Rabin-Karp O(n+m)
Boyer-Moore O (n/m)
Kanuth-Morris-Pratt O(n+m)

To measure the overhead of an algorithm we used

a method called “complexity calculation”. There are
two kinds of complexities:
1. Space Complexity: How much memory an

algorithm uses during execution?
2. Time Complexity: How much CPU time an

algorithm takes during its execution?
In real world situation there is always a

compromise between space and time complexity.
Because of the availability of cheaper memory chips,
we focused on time complexity in our algorithms.

During information extraction lots of parsing is
required which poses a major performance challenge.
Finding the best algorithm to reduce information
parsing is one of the most important requirements.
Brute force algorithms for information parsing
require O(nm) time where ‘n’ is length of whole
information and ‘m’ is the length of the chunk to be
parsed. We used Boyer-Moore algorithm whose
running time is O(n/m). Because this algorithm is
quite efficient, it is also used in many plagiarism
detection applications and text editors. Table 1 lists
the time complexity (running time) of some of the
most popular string matching/searching algorithms.

Figure 2. Use Case Model for AAKET

4. Use of the Tool

Now we explain the entire flow of using the tool

for tagging AK and filtering and extracting the tagged
knowledge from a text document. Figure 2 shows a
Use Case Model representing the interactions
between AAKET and its users. The Use Case Model
shows that an architect has access to AAKET’s
functionalities such as annotating AK, authentication,
data extraction and data persistence, but modification
of user profile and annotation protocol can only be
done by remote administrator.

First of all, an architect is required to annotate the
information considering AK contained in MS-
Outlook emails or MS-Word documents. To facilitate
the architect to mark the required knowledge entities
with tags, we have developed plug-ins for MS-Word
and MS-Outlook shown in Figure 3 (Please note we
are showing only two tags but we have been
developing other tags as well such as Rationale etc.).

51

These plug-ins have been developed using
Microsoft’s Visual Basic for Application (VBA)
technology. An Architect is only required to highlight
the text and click on the respective toolbar button to
mark it as either “Architecture Decision” or “Design
Option”.

We illustrate the working sequence of AAKET by
involving two members of an architecture
development team. For this illustration, let us assume
that these members are James and Aman.

Step 1: James annotates the architectural
information in the email he intends to send to his
colleagues on some of the key architectural design
decisions he has made. He tags the architectural
decisions and their respective design options using
the tagging button provided on his email client
toolbar shown in Figure 3. The results of his tagging
are shown in Figure 4, which shows that some text is
highlighted in Yellow, the architectural decisions,
some text is highlighted in blue, the design options.
James sends this email to Aman, who is working on
the same project but is located at a different place.

Figure 3. Plug-in for tagging architecture
knowledge

Figure 4. Annotated architectural information

Having received the email from James about the

architectural design made by James, Aman decides to
capture the tagged content of the email, i.e., AK, in

the organizational knowledge repository. To take
advantage of the knowledge extraction and storing
features provided by AAKET, Aman launches
AAKET tool that has been installed on his laptop for
this purpose and performs rest of the activities in the
following order:

Figure 5. Authentication Interface

Step 2: Aman has to get himself authenticated via
a remote server to ensure the protection of the remote
knowledge repository as shown in Figure 5. For this
purpose, he needs to provide the URL of the
knowledge repository and his username and password
for that repository.

Figure 6. Application Selection Interface

Step 3: Once Aman has successfully been
authenticated and connected with the remote
knowledge repository, an interface selection
Windows opens up with two options of scanning
either e-mails (Outlook) or documents (Word) as
shown in Figure. 6. Here, we assume that Aman
selects the option of scanning the content of his

52

emails based on the current status of information he
has on his machine.

Step 4: Once the selection of the interface has
been made, AAKET scans the document/e-mails and
presents this information to Aman as shown in Figure
7.

Step 5: Now Aman can select the pieces of
information he wants to store in the knowledge
repository (in our case PAKME). This step finishes
the process of extracting AK knowledge from emails
or Word documents and captures it in a repository.

Figure 7. Knowledge Extraction Results

5. Preliminary Evaluation

We assert that tool development goes well beyond
the boundaries of just an appropriate design and
implementation. It is important to rigorously evaluate
a tool with respect to the claims made about the
expected utility and benefits of a tool. We are
designing an empirical study to evaluate the benefits
and limitations of AAKET as complementary
mechanism for capturing and sharing AK through
repository driven tools. In order to refine our
evaluation goals and questions, and get an initial
feedback about AAKET, we have performed an
observational study. This study involved four
participants who used both the interface of a
knowledge repository (i.e., PAKME) and AAKET to
capture a few parts of AK. At this stage, we have
identified three main research questions for our
evaluation settings.

1) Can AAKET keep its use independent of the
knowledge about the specifics of different knowledge
repositories deployed in different organizations?

2) Can AAKET be easily used without requiring
significant training effort?

3) How much effort can we save with AAKET?
First question is important as a user (e.g.,

architect) should not be forced to know about the
structure of a knowledge repository and browse its
complex interfaces in order to capture relevant AK
manually. It will help to save the user from learning
about the repository structure every time he/she needs
to use a new organizational knowledge repository.
The main objective is to provide a consistent
interface to different knowledge repositories that an
organization may have. The second evaluation
question is concerned with the amount of training
required to use AAKET and ease of use in terms of
user friendliness and meaningfulness of its GUI. Our
concern is that if GUI is not user friendly and
cluttered with too many complex details, we will be
just shifting the complex flow of using different
repositories to tool instead of minimizing it. Another
objective is to save time and effort required to
capture and share AK using repository driven tools.

To gain a preliminary evaluative feedback about
AAKET with respect to the abovementioned
questions, we have carried out a small observational
study as aforementioned. For our study, we invited
four of our colleagues researching in software
architecture. Three of them were PhD students and
one of them a researcher (Not any of the authors of
this paper). They possessed a good knowledge of the
current research and practice in AKM.

For the first research question, we decided to use
the observations of the research team. For the second
research question, we decided to focus on the amount
of training provided and the participants’ feedback.
For comparing the effort required to use a repository
and AAKET for capturing AK, we decided to
calculate the number of keystrokes and mouse clicks
required for capturing one piece of AK into
repository if doing it manually versus if using
AAKET. The study involved the following steps.
Step 1: Each participant was given architecture
decisions and design options that they had to enter
during the study in PAKME’s repository.
Step 2: Each of the participants was given 10 minutes
training in using PAKME’s interface for capturing
architectural decisions and design options (Please
note that giving training using all features of PAKEM
will certainly require more time).
Step 3: The participants were asked to enter the given
design decisions and design options manually into
PAKME’s repository and answer the questions about
the number of mouse clicks and keystrokes required
to enter the given AK in PAKME.

53

Step 4: After completing the first task, each of the
participants was given 5 minutes training in using
AAKET.
Step 5: The participants were asked to use AAKET to
extract information from a given email and store it in
PAKEM. They were again required to answer the
questions about the number of mouse clicks and
keystrokes required to store the tagged information
from the given email using AAKET.
Note - All keystrokes required to enter login page
information both for PAKME and AAKET were not
considered as they may vary from one login to other.

Our initial findings and the participants’ feedback
are very encouraging. We noticed that the
participants did not need to know the structure of
PAKME’s knowledge repository in order to capture
the given set of AK using AAKET but they need to
understand the structure of the templates being used
by PAKEM for capturing AK. This will be further
evaluated when we evaluate AAKET with different
knowledge repositories. It is obvious from the study
description that the participant needed only 5 minutes
training for using AAKET without any problem.
Their initial comments are very positive. They have
identified the areas of improvement that would be
taken into account while extending AAKET. We
have also found that manually entering information
into PAKME requires lots of keyboard usage.
Whereas there are no keystrokes involved in using
AAKET once the content of AK is available and
tagged. That means we expect to minimize the usage
of keyboard for capturing AK using AAKET.
Moreover, the usage of AAKET requires almost 50%
less mouse clicks as compared with entering the same
AK manually.

6. Related Work

In response to the increasing realization of the
importance of providing suitable tooling support for
capturing and sharing Architectural Knowledge,
several researchers have developed various tools [6,
8, 11, 19] for managing architectural knowledge and
others have identified requirements with the intention
of providing such tools [10]. One of the earliest tools
for managing architectural knowledge is Archium,
which models design decisions and their relationships
with resulting components [4]. The Knowledge
architect is another recently developed toolset for
managing architectural knowledge [12]. The toolset
comprises a repository, a server, and a number of
clients. EAGLE [9] is an architectural knowledge
management portal that claims to implement best
practices from knowledge management for improving

architectural knowledge sharing. ADDSS [8] is a
web-based tool developed for managing architectural
decisions. ADDSS captures both architectures and
decisions following an iterative process and simulates
the way in which software architects build their
architectures as a set of successive refinements. In
spite of having architectural knowledge management
capabilities of these tools they lack automation
support which proves a big hurdle in their adaptation.

To develop AAKET, we have adopted tag-
based/annotation-based knowledge identification and
extraction approach. There are few other similar
attempts as reported in [20], [13] but they have been
implemented in the context of semantic web.
Yoshikiyo et al. have adopted the same concept of
tag-based design decisions extraction from emails
and other documents [14]. However, their tool
requires that the information first be stored in XML
format rather than original document or email
formats. This format restriction makes this tool less
useful in practical situations.

Lee and Kruchten have proposed three approaches
to capturing design decisions i.e. formal elicitation,
lightweight top-down capture and lightweight
bottom-up capture [17]. Their tool filters architectural
information based on tags but they explore such
information from source code of a project, which is
optimistic supposition. Another part of their tool
package supports saving emails which contain some
architectural information but here they are not
applying tag-based filtering mechanism on email
contents.

GRIFFIN project [21] has also resulted in a few
tools for managing architectural knowledge.
However, these tools do not support knowledge
extraction from emails, which we claim is a common
way of sharing architectural knowledge. Nor do those
tools focus on integrating the extracted knowledge
with third-party knowledge repositories, whereas
AAKET’s architecture easily be modified to support
different knowledge repositories such as ADDSS.
Moreover, we also claim that AAKET is easier and
simpler to use and we plan to gather more empirical
evidence to support this claim.

7. Conclusion and Future Directions

Our main research object is to improve the
process of software architecture by providing
methods and tools for capturing and sharing AK. To
achieve this objective, we have been developing
various approaches and tool support for AKM. We
also intend to reduce the time, resources and skill
level required to effectively and efficiently capture

54

and manage AK. Our effort to provide a tool like
AAKET has been motivated by our intention to help
organizations and individuals to reduce the time and
effort required for capturing AK in repository driven
solutions being developed by AKM community
including ourselves. The presented prototype is the
outcome of our initial effort towards achieving this
goal as it provides the proof that the concepts we are
following are workable.

Our colleagues in AKM community and the
participants of the described study have provided us
with several ideas that need to be incorporated in the
next version of AAKET before it is ready for an
industrial trial or a large empirical study in academic
environment. We are making progress on adding new
features to AAKET to provide customizable and
enhanced support for extracting and capturing AK
with AAKET as identified by the participants of the
described study. We anticipate being able to present
more enhanced version of AAKET at the workshop
to receive community feedback and critique. Some of
the tasks for our immediate future work are outlined
as follows:

Though the technology used for developing
AAKET provides very good performance that has
been observed during tool usage. However, we do not
have any empirical data or solid evidence. We intend
to conduct a detailed empirical evaluation of the
performance of AAKET with large data set.

We support only MS-Word and MS-Outlook. It
has also been seen that some decisions are
communicated in MS-Excel format and in more
informal way through chatting software. We intend to
broaden the scope of automatic support for capturing
and managing AK to these two areas as well.
Moreover, we are also building new plug-ins for
providing new tags (e.g., Rationale, scenario) and
providing users with the facility of building the tags
themselves. However, before adding these features to
AAKET, we intend to conduct a field study in order
to understand the current practices of using different
communication and productivity software for
codifying and sharing AK.

Wikis have become a very common source of
information sharing. We are also planning to study
the nature and amount of architectural information
being shared using Wikis. Based on the findings of
this study, we will consider the value and viability of
adding support for knowledge extraction from Wikis.

Currently our “knowledge persistence”
component only supports one remote repository i.e.
PAKME. In near future, we will provide various
APIs for supporting other repository driven AKM
tools such as ADDSS [18] and others.

Acknowledgement: This work is partially
supported by Science Foundation Ireland
under grant number 03/CE2/I303-1.

8. References

[1] MPIAT. Mars Program Independent Assessment
Team summary report, Tech Report 2000.
[2] M. Ali-Babar, R.d. Boer, T. Dingsoyr, and R.
Farenhorst, Architectural Knowledge Management
Strategies: Approaches in Research and Industry,
Proceedings of the 2nd Workshop on SHAring and
Reusing architectural knowledge - Architecture,
rationale, and Design Intent (SHARK/ADI 2007),
Collocated with ICSE 2007., 2007.
[3] M. Ali-Babar, et al., Introducing Tool Support for
Managing Architectural Knowledge: An Experience
Report, Proceedings of the 15th IEEE International
Conference on Engineering Computer-Based
Systems, 2008.
[4] J. Anton and B. Jan, Software Architecture as a
Set of Architectural Design Decisions, in Proceedings
of the 5th Working IEEE/IFIP Conference on
Software Architecture. 2005, IEEE Computer
Society.
[5] T. Antony, J. Yan, and H. Jun, A rationale-based
architecture model for design traceability and
reasoning, J. Syst. Softw., 2007. 80(6): pp. 918-934.
[6] M.A. Babar and I. Gorton, A Tool for Managing
Software Architecture Knowledge, in Proceedings of
the Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and
Design Intent. 2007, IEEE Computer Society.
[7] M.A. Babar, X. Wang, and I. Gorton, PAKME: A
Tool for Capturing and Using Architecture Design
Knowledge, 9th International Multitopic Conference,
IEEE INMIC 2005, 2005.
[8] R. Capilla, F. Nava, S. Pérez, and J.C. Dueñas, A
web-based tool for managing architectural design
decisions, SIGSOFT Softw. Eng. Notes, 2006. 31(5):
pp. 4.
[9] R. Farenhorst, R. Izaks, P. Lago, and H.v. Vliet,
A Just-In-Time Architectural Knowledge Sharing
Portal, in Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2008) - Volume 00. 2008, IEEE Computer
Society.
[10] R. Farenhorst, P. Lago, and H. van Vliet,
Effective Tool Support for Architectural Knowledge
Sharing, in Proceedings of the First European
Conference on Software Architecture. 2007.

55

[11] A. Jansen, J.v.d. Ven, P. Avgeriou, and D.K.
Hammer, Tool Support for Architectural Decisions,
in Proceedings of the Sixth Working IEEE/IFIP
Conference on Software Architecture. 2007, IEEE
Computer Society.
[12] A. Jansen, T.d. Vries, P. Avgeriou, and M.v.
Veelen, Sharing the Architectural Knowledge of
Quantitative Analysis, in Proceedings of the Quality
of Software-Architectures (QoSA 2008). 2008.
[13] J. Kahan and M.-R. Koivunen, Annotea: an open
RDF infrastructure for shared Web annotations, in
Proceedings of the 10th international conference on
World Wide Web. 2001, ACM: Hong Kong, Hong
Kong.
[14] Y. Kato, K. Hori, and K. Taketa, Capturing
Design Rationale by Annotating E-mails, in In
Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics. 2002, Int.
Inst. Inf. & Syst: Orlando. pp. 278-82.
[15] P. Kruchten, Capturing architectural knowledge
with PAKME, (Personal communicatoin), 2008.
[16] P. Kruchten, P. Lago, and H. van Vliet, Building
Up and Reasoning About Architectural Knowledge,
in Quality of Software Architectures. 2006. pp. 43-
58.
[17] L. Lee and P. Kruchten, Customizing the capture
of software architectural design decisions, Electrical
and Computer Engineering, 2008. CCECE 2008.
Canadian Conference on, 2008.
[18] F. Nava, R. Capilla, and J. Dueñas, Processes for
Creating and Exploiting Architectural Design
Decisions with Tool Support, in Software
Architecture. 2007. pp. 321-324.
[19] A. Tang, Y. Jin, and J. Han, A rationale-based
architecture model for design traceability and
reasoning, J. Syst. Softw., 2007. 80(6): pp. 918-934.
[20] M. Vargas-vera, et al., MnM: Ontology Driven
Semi-automatic and Automatic Support for Semantic
Markup, in Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web.
2002, Springer. pp. 213-221.
[21] H.v. Vliet and P. Lago. The GRIFFIN project.
Last accessed on Available from:
http://griffin.cs.vu.nl/.

56

