
Comparison of Scenario-Based Software Architecture Evaluation Methods

Muhammad Ali Babar, Ian Gorton

National ICT Australia Ltd. and University of New South Wales, Australia
{malibaba, ian.gorton}@nicta.com.au

Abstract

Software engineering community has proposed

several methods to evaluate software architectures with

respect to desired quality attributes such as

maintainability, performance, and so on. There is,

however, little effort on systematically comparing such

methods to discover similarities and differences

between existing approaches. In this paper, we

compare four well known scenario-based SA

evaluation methods using an evaluation framework.

The framework considers each method from the point

of view of method context, stakeholders, structure, and

reliability. The comparison reveals that most of the

studied methods are structurally similar but there are a

number of differences among their activities and

techniques. Therefore, some methods overlap, which

guides us to identify five common activities that can

form a generic process model.

1. Introduction

It has been shown that software architecture (SA)

constrains the achievement of various quality attributes

(such as performance and maintainability) in a system

[1]. Several approaches have been proposed to address

quality related issues at the SA level. Scenario-based

approaches, a category of evaluation methods, are

considered quite mature [2, 3]. There are also some

attribute model-based methods and quantitative models

for SA evaluation (for example, [4-6]), but, these

methods are still being validated and are considered

complementary techniques to scenario-based methods.

 As existing methods are maturing or disappearing

and new ones emerging, terminology, concepts,

application domains, and activities are diverging.

Therefore, it is becoming difficult to find out the

differences and similarities among different methods.

There is little work on systematically evaluating or

comparing the existing methods and identifying a set of

desirable features. We believe that a systematic

comparison of SA evaluation methods can enhance the

understanding of the methods’ users and help

researchers identify potential research directions.

The methods considered for this study include the

Scenario-Based Architecture Analysis (SAAM) [7], the

Architecture Level Modifiability Analysis (ALMA)

[8], the Performance Assessment of Software

Architecture (PASA) [9], and the Architecture Trade-

off Analysis Method (ATAM) [10]. We mention the

criteria used to include these methods and exclude

others in section 2.

The purpose of this investigation is twofold: to

extend our work on developing a method classification

and comparison framework reported in [2] and describe

the state-of-the-art in current scenario-based SA

evaluation methods and future trends. We believe this

work can help practitioners and researchers to

understand and contrast alternative approaches that are

available to them to evaluate a SA. We do not attempt

to provide an exhaustive survey of SA approaches. Nor

do we present this work as a method selection tool.

However, we believe this work can provide some

guidance on the choice of the most appropriate method

for an evaluation exercise and opens up a basis for

creation of a method selection instrument.

2. Background Work

Any attempt to present a comparison based on an

overview of the state-or-the-art in a particular domain

of research and practice usually starts from the findings

of other researchers and practitioners. We have made

every effort to find and examine all the survey work

done on scenario-based SA evaluation methods during

the last decade. Work reported in [11] provides detailed

guidance on performing SA assessment but it addresses

a different problem than the one tackled in this paper.

To the best of our knowledge there are few attempts [2,

3] to provide a comprehensive treatment of topic. None

of the other published survey or comparison of SA

evaluation methods provides an explicit framework for

comparing the methods. Rather, these surveys have

been published to support the need for developing a

new evaluation method, e.g. Bahsoon and Emmerich

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

included an overview of the available SA assessment

methods in their seminal work on ArchOptions [12].

Clements et al. wrote a chapter on method

comparison in [13], however, they only compared three

evaluation methods (SAAM, ATAM, and ARID [14]),

all developed by the Software Engineering Institute

(SEI). Moreover, their comparison framework does not

include a number of important attributes that an

evaluation method should have, for example, SA

definition, tool support, and so forth.

We regard [2, 3] as two of the first rigorous

attempts to provide a taxonomy of this growing area of

research and practice. However, both are limited in

their scope. For example, the authors of [3] do not

provide any detailed explanation for the components of

their comparison framework, nor do they explicitly

describe the reasons for including those particular

components in their framework. Moreover, there have

been significant advances in SA evaluation research

since their work was completed four years ago. For

example, assessment methods for non-traditional

quality attributes (usability, stability etc.) are being

developed. Other evaluation methods (e.g. ATAM)

have been published in books [1, 13].

[2] purports to present seminal work on developing

and assessing a reliable framework to classify and

compare SA evaluation methods. We have improved

the comparison framework reported in [2] by making

some adjustments to the framework based on its

comparison with similar attempts reported in [15, 16].

However, this paper does not elaborate on the

comparison framework.

We have also excluded a number of methods that

appeared in our previous work as we believe those

methods are not being activity used or developed.

Moreover, we have included a recently developed

method to evaluate SA performance [9]. We selected

the studied methods based on their continuous

development, which is evident from frequently

appearing case studies reporting the results of using the

methods included in this study.

3. A Comparison Framework

We compare SA evaluation methods using a

comparison framework shown in table 1 as an

analytical tool. This framework draws upon a number

of sources to justify the selection and formation of its

components and elements. The first is our earlier work

on classifying SA evaluation methods [2].

This work advances our continuous efforts to design

and assess a reliable tool that can provide some

guidance in selecting an appropriate method. This

extended version of our framework includes all the

elements presented in previous work. We have

introduced three more elements and arranged each

element within four components of the framework.

Table 1. The components and attributes of the framework and the evaluation questions

Component Elements Brief explanation

SA definition Does the method explicitly consider a particular definition of SA?

Specific goal What is the particular goal of the methods?

Quality attributes How many and which quality attributes are covered by the method?

Applicable stage Which is the most appropriate development phase to apply the method?

Input & output What are the inputs required and outputs produced?

Context

Application domain What is/are the application domain(s) the method is mostly applied?

Benefits What are the benefits of the method to the stakeholders?

Involved Stakeholders Which groups of stakeholders are required to participate in the evaluation?

Process support How much support is provided by the method to perform various activities?

Socio-technical issues How does method handle non-technical (e.g. social, organisational issues)?

Stakeholders

Required resources How many man-days are required? What is the size of evaluation team?

Method’s activities What are the activities to be performed and in which order to achieve the goals?

SA description What form of SA description is recommended (e.g., formal, informal, particular ADL,

views etc.)?

Evaluation approaches What types of evaluation approaches are used by the method?

Contents

Tool support Are there tools or experience repository to support the method and its artefacts?

Maturity of method What is the level of maturity (inception, development, refinement or dormant)? Reliability

Method’s validation Has the method been validated? How has it been validated?

The second source for our modified framework is

the NIMSAD (Normative Information Model-based

System Analysis and Design) evaluation framework

[15]. According to NIMSAD, there are four essential

components for method evaluation: method context,

method users, method content, and validation of

method and its deliverables. We have modified two of

the components’ names and elements according to our

domain. We believe that SA evaluation method not

only considers the method users, it also takes into

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

account the benefits and needs of other classes of

stakeholders, including sponsors of the evaluation

exercise. Also, elements of the last component

generally enhance the confidence of the method user in

a method’s capability; hence we call it reliability

instead of validity.

We have also observed that most of the elements of

our framework can also be mapped onto the elements

of an evaluation framework suggested by NIMSAD

and [17], which increases our confidence in the

capability of our framework as a comparison tool.

Other sources of the framework include [16, 18], which

are applications of evaluation frameworks based on the

work that forms the foundation of our work as well.

Our framework does not include an exhaustive list of

questions that needs to be asked for method

comparison. Rather, this framework can quite easily be

enhanced, as is necessary in a nascent area.[19].

4. Overview of SA Evaluation Methods
4.1 Scenario-Based Architecture Analysis

Method

The Software Architecture Analysis Method

(SAAM) first time appeared in 1993 [7]. The goals of

SAAM are mainly geared to evaluate SA against the

desired quality attributes. SAAM can also compare

different SAs with respect to given properties. SAAM

was developed for modifiability [20] but it is being

used for various quality attributes.

The most appropriate time to apply SAAM is after

the high-level SA design and before implementation.

Business drivers, SA description, and quality

requirements are the main inputs to this method. The

outputs of the method include quality sensitive

scenarios, mappings between those scenarios and SA

components, and the anticipated amount of effort

associated with each change scenario. SAAM and its

variants have been applied to in different domains,

including CASE tools and combat systems [13].

The main benefits of SAAM are: early detection of

problems, improved SA documentation and enhanced

understanding of the SA issues. SAAM involves

different stakeholders, e.g. architect, developer,

maintainer and product manager. SAAM provides a

number of techniques to perform various activities of

the process, e.g. characterising quality attributes,

eliciting scenarios, and classifying scenarios.

SAAM has six activities: scenario development, SA

description, scenario classification and prioritization,

individual scenario evaluation, scenario interaction,

and overall evaluation. In the case of comparing

multiple SAs, scenarios are assigned weightings to

determine the overall ranking of different SAs. The

first two activities are usually performed in parallel. SA

description is captured using views proposed in [1].

Figure 2. The process model of SAAM

SAAM evaluates each scenario by mapping it onto

SA description and investigating whether the SA

supports it (direct scenario) or not (indirect scenario).

The cost of accommodating each indirect scenario is

estimated by counting the number of required changes.

Scenario interaction analysis reveals if many indirect

scenarios affect the same component, a sign of poor

separation of concern. SAAM is a mature approach,

which has been validated with different case studies.

Recently, SAAM has been superseded by ATAM [13].

Figure 2. Goal-oriented evaluation concept of ALMA

4.2 Architecture Level Modifiability Analysis

The work of Bengtsson and Lassing on

modifiability of SA resulted in Architecture Level

Modifiability Analysis (ALMA) [21, 22].

ALMA has been developed around a conceptual

framework that we call goal-oriented evaluation. Goal

setting is the most important activity of this method as

the rest of activities are performed in the light of the

evaluation goals. Figure 2 shows the goal-based

philosophy of the ALMA. The specific goal of this

method is to address modifiability related issues at the

SA level. The goals of modifiability can be:

Maintenance cost prediction – estimating the effort

required to satisfy software change scenarios

Risk assessment – identifying the types of changes

for which a SA is inflexible

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

SA selection – comparing two or more candidate

SAs to choose the better candidate.

ALMA is usually utilized before implementing the

SA but there is no reason to assume that it is not

suitable for legacy system reengineering projects. The

inputs include SA specifications and quality

requirements [23]. ALMA has successfully been

applied in telecommunications, information systems,

embedded systems and medical domains [24]. The

main benefits of using ALMA are identification of SA

risks, estimation of the efforts required to

accommodate change, or selection of an optimal SA.

Figure 3. The process model of ALMA

ALMA usually involves only a small set of

stakeholders, namely the development team and

software architect. The method can be applied both

top-down, starting from a predefined scenario

classification, and bottom-up, starting from concrete

scenarios and building up categories of scenarios.

ALMA provides techniques to select relevant scenarios

and to reduce the number of scenarios [24]. It also

provides guidance on when to stop generating

scenarios. ALMA consists of setting goals, describing

the SA, eliciting scenarios, evaluating scenarios, and

interpreting results and drawing conclusions (Fig 3

shows method’s activities). The method uses UML

along with various SA views to describe a SA [25].

ALMA uses impact analysis to evaluate the SA against

change scenarios. Impact analysis is performed by

identifying the components affected by the scenarios,

figuring out the required modifications, and

determining ripple effects. The results are interpreted

depending on the goal of evaluation. ALMA provides a

framework to describe results quantitatively. As

ALMA has been validated with several applications,

the method is considered quite mature.

4.3 Performance Assessment of Software

Architecture

Williams and Smith presented a method to assess

performance related issues at SA level in [9], called

Performance Assessment of Software Architecture

(PASA). This method has been proposed based on their

work on techniques and tools for performance

evaluation of SA reported in [26, 27]. PASA includes

performance sensitive SA styles and anti-patterns as

analysis tools and formalizes the SA analysis activity

of the performance engineering process reported in

[28]. Another major difference between Williams and

Smith’s earlier work on performance assessment of SA

and this work is additional focus on client interaction

and information gathering strategies. [29].

 The specific goal of PASA is to assess the

capability of candidate SA(s) with respect to

performance objectives of a system. PASA guides the

SA analysis activity using performance related

scenarios as source of reasoning. Additionally, the

analysis also considers other quality attributes (e.g.

maintainability) as well and trade-offs that need to be

made [9]. PASA has also been used to compare

different SAs [26].

PASA can be applied early in the development

cycle, post-deployment, or during an upgrade of a

legacy system. The method has been applied to Web-

based systems, embedded systems, real-time systems,

and in the financial domain [29]. PASA needs SA

descriptions documented using various views [30]. If

the SA is not well-documented, a common problem

[13], architectural information is extracted from

developers, software code, and other artefacts. Only the

development team is usually involved.

Figure 4. The process model of PASA

PASA has ten steps shown in Fig. 4. The evaluation

starts with a process presentation session aimed at

setting the goals, identifying the information required,

finding stakeholders’ expectations, and describing the

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

various aspects of the method. During the next step,

the evaluators get a high level overview of the SA

without any details. If a SA is not well-documented, it

is also documented.

The next step tries to identify critical use cases. From a

performance evaluation perspective, critical use cases

are those for which there is significant performance

risk. The evaluation team work with the developers to

select key performance scenarios within each use case.

Following the general practices of SPE, PASA requires

the selected scenarios to be documented using

augmented UML sequence diagrams [31]. Each key

scenario usually has one or more goals associated with

it. Performance objectives can be described in terms of

response time, throughput, or constraints on resource

usage. The SA discussion provides another opportunity

to gain further information on the SA. The evaluation

team may also collect performance measurement data

and metrics [9].

The next step is aimed at identifying architectural

styles or patterns used in the SA. If there is any

deviation from the archetype of the style or pattern, the

evaluators try to determine if there is any negative

effect caused by that deviation. If there are any

antipatterns [32] found, the evaluators perform

refactoring. PASA also uses different quantitative

techniques for performance modelling including

software and system execution models. The process

finishes with a presentation of the results to the clients

and economic analysis of the assessment exercise. The

later activity is important to justify the cost and

highlight the benefits [29].

This method incorporates both qualitative and

quantitative techniques to illustrate the potential risks

that may be inherent in a SA. This method also

demonstrates how scenarios can be useful in

characterising run-time quality attributes like

performance. PASA itself or its various techniques

have been validated with different case studies [28].

4.4 Architecture Trade-off Analysis Method

The Architecture Trade-off Analysis Method

(ATAM) was initially positioned as a SA design

method [10] to support design trade-offs. Later, it was

presented as a model for SA analysis.

The specific goal of ATAM is to promote

disciplined reasoning for analysing a SA’s capability

with respect to multiple quality attributes. It also helps

make trade-offs between competing attributes. ATAM

claims to be applicable during any stage of the

software development, however, it is most effective

when applied to the final version of a SA. The inputs

for ATAM include business goals, software

specifications, and SA description. The outputs of

ATAM are list of scenarios, sensitivity points, trade-

off points, risks, SA approaches, and so on.

The application domains include combat systems,

web-based systems and embedded systems. ATAM

claims to provide several technical as well as social

benefits. ATAM involves various stakeholders.

Figure 5. The process model of ATAM

ATAM is a heavy weight process that consists of

four phases. There are nine activities in those phases

(Fig 5). There are a number of activities, which are

repeated in phase I and II. First these activities only

involve selected stakeholders, usually technical staff of

the project. During the second phase a wide range of

stakeholders are invited. ATAM requires a SA

documented with different views [1].

ATAM does not prescribe any specific evaluation

techniques. Rather, it uses various theoretical models

of the quality attribute communities for quantitative

analysis and applies qualitative reasoning heuristics

documented in terms of attribute-based SA styles

(ABAS) [5], architectural patterns, tactics or quality

sensitive scenarios [1]. ATAM is considered a mature

approach as it has been validated in different domains.

A tool support, ArchE, is underdevelopment [33].

5. Method Comparison
5.1 Context

A precise and well-documented definition of a SA

is very important for a successful SA evaluation [34].

It is difficult to define metrics to assess the capability

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

of a SA with respect to quality attributes without

precisely describing the SA according to a particular

evaluation method [35]. All of the methods leave a SA

undefined under the assumption that everyone knows

what SA means.

There is at least one common goal found in all the

methods, which is prediction-based assessment of the

quality of a system at the SA level. However, each has

a specific view and different approach to achieve the

goal: SAAM is mainly geared to identify the potential

SA risks; ALMA specializes in predicting one quality

attribute i.e., modifiability and there are three possible

objectives to be pursued: risk assessment, maintenance

cost prediction, and SA comparison; PASA studies a

SA to identify and mitigate performance related risks.

ATAM identifies and analyses sensitivity and trade-off

points as these can prevent the achievement of a

desired quality attribute.

One of the most significant features of method

comparison is the number of quality attributes a

method deals with. Most of the scenario-based

methods focus mainly on a single quality attribute.

ALMA is aimed at modifiability analysis, PASA

focuses on SA performance analysis, while SAAM

was developed to assess modifiability. Amongst the

studied methods, ATAM is the only method that

considers multiple quality attributes. ATAM focuses

on those decisions that affect (positively or negatively)

one or more quality attributes, which are called either

sensitivity or trade-off points depending upon the

number of attributes affected by a decision.

SA evaluation is traditionally performed after the

specification of the SA and before the beginning of the

implementation. This common practice is evident from

the comparison of the methods as well. From this

perspective, all of the compared methods are applied to

the final version of the SA. ATAM is also used as a

SA design and analysis method in architecture-based

development. However, most of these methods claim

to be equally applicable to any other stage of the

development lifecycle.

SAAM, ALMA and ATAM share a number of

inputs and outputs, including requirements

specifications, business drivers and SA descriptions.

PASA needs similar inputs but in different form, there

are a number of common outputs among the studied

methods, such as scenarios, SA approaches, risk-spots

and so on. However, ATAM produces a number of

other artefacts, namely sensitivity points, trade-off

points and utility trees.

There are several different domains in which these

methods are being applied. Embedded systems,

telecommunications, and information systems seem

common domains among the surveyed method.

However, SAAM and ATAM differentiate themselves

based on their use for combat and avionics systems.

5.2 Stakeholders

A stakeholder is any person or organisational

representative who has a vested interest in a system

[36]. The studied methods also vary in terms of

number and categories of stakeholders involved in

evaluation. For example, SAAM and ATAM involve

all major stakeholders, including architects, designers,

and end users, while ALMA usually depends on the

architecture designer and rarely involves other

stakeholders. PASA focuses on the developers. It may

involve maintainers as well.

All of the studied methods provide at least a coarse-

grained description of the evaluation process.

However, detailed guidance is sparse. Only ATAM

provides sufficient process instructions. Other methods

describe the required activities, however, do not

elaborate on the suitable techniques for each activity.

SA evaluations are greatly influenced by non-

technical issues like organisational structure,

communication channels, stakeholders’ vested

interests, political factors, and managerial concerns.

Only ATAM stands out from its counterparts in terms

of its detailed guidelines and techniques to deal with

social issues. Some methods briefly mention social

issues without suitably dealing with them.

Most of the surveyed methods do not provide any

explicit information on the cost of an evaluation or the

resources required. Two methods (SAAM, and

ATAM) mention the desirable shape of the evaluation

team and various stakeholders, however, there is

hardly any information about other resources or the

cost of using these methods.

5.3 Contents

In scenario-based methods, there are a number of

activities that appear to be the same at the coarse-

grained level; however, a fine-grained analysis of those

activities reveals a number of differences. For

example, scenario development and scenario

evaluation activities are common in scenario-based

methods, but the techniques of performing these

activities are quite different. For example, ALMA uses

scenario profiles to categorise the generated scenarios;

ATAM provides a six element framework to

characterise quality attributes, and uses a utility tree for

generating and classifying scenarios; PASA uses both

use cases and scenarios to identify performance goals.

Communicating a SA to its stakeholders is one of

the critical factors of a successful SA evaluation

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

exercise. Different Architectural Description

Languages (ADLs) have been developed [19], and a

SA is also documented using various views [1, 37, 38].

None of the studied methods prescribes any particular

ADL; all of them use SA views, however, the number

and type of views vary from method to method. For

example, logical and module views may suffice for

SAAM, but process, data-flow, user, physical, module

and many more may be required by the ATAM.

The studied methods can be compared based on

their fine-grained techniques. SAAM is purely

scenario-based, ALMA uses a variety of approaches

depending on evaluation goals, PASA combines

scenarios with performance modelling, and ATAM

applies attribute model-based analysis. ALMA also

provides analytical models for modifiability, while

others use those provided in [39, 40].

There is a need for automating as many tasks of SA

design and evaluation as possible [2]. A tool can also

capture the design artefacts along with the decision

rationale, evaluation outcomes, measurement and

administrative information that are invaluable assets.

All the studied methods recognise the importance of

appropriate tool support, however, only SAAM

provides a tool (SAAMTOOL) [41] to partially

support the evaluation process. There will be a tool

available for ATAM soon [33]. Another aspect of

automation is knowledge management for reusability,

which is recognised as one of the most important

means of increasing productivity, quality and cost-

effectiveness [42]. Only ATAM provides guidance on

generating and utilizing the reusable artifacts, i.e.,

identified risks, scenarios, quality attributes etc. It also

recommends a repository of the artifacts [13].

5.4 Reliability

SA evaluation methods can also be compared from

the point of its maturity as it may foster confidence in

method users. We believe that existing evaluation

methods can be classified in any of the four maturity

phases of SA evaluation methods lifecycle, namely

inception, development refinement and dormant [2].

ATAM and ALMA can be considered in the

refinement stage. SAAM and PASA can be considered

in development stage.

The process of method development and the

techniques used to validate it may encourage or

discourage the evaluators to select one particular

method over the other[43]. All of the methods have

been validated in several domains.

4. Conclusions

The main contribution of this paper is

systematically studying four scenario-based SA

evaluation methods using an extended version of a

comparison framework [2]. We have also

demonstrated that the framework is modifiable by

extending it based on a simple comparison with similar

work in other domains [15, 16].

The comparison reveals several features supported

by most of the methods. An example is suitable

guidance on required SA description and views. Most

of them also provide appropriate techniques for quality

attribute characterisation and scenario generation and

evaluation. The survey also highlighted a number of

issues which existing methods do not sufficiently

address. Only one method, ATAM, provides

comprehensive process support. Social aspects of the

evaluation are given sparse attention. No working

definition of the SA is explicitly provided. Finally, tool

support for the evaluation process is almost non-

existent. Furthermore, the comparison also revealed

that some methods overlap, which guides us to identify

five common activities that can form a generic process

for SA evaluation. The common activities are:

1. Evaluation planning and preparation.

2. Explain SA approaches.

3. Elicit quality sensitive scenarios.

4. Analyze SA approaches.

5. Interpret and present results.

5. References

[1] Bass, L., et al., "Software Architecture in Practice", 2 ed.

2003: Addison-Wesley.

[2] Ali-Babar, M., et al., "A Framework for Classifying and

Comparing Software Architecture Evaluation Methods,"

Proc. of the Australian Software Engineering Conference,

Melbourne, Australia. 2004.

[3] Dobrica, L. and E. Niemela, "A Survey on Software

Architecture Analysis Methods," IEEE Transactions on

Software Engineering, 2002. 28(7).

[4] Svahnberg, M., et al., "A Method for Understanding

Quality Attributes in Software Architecture Structures,"

Proc. of the 14th Int.l Conf. on Software Eng. and

Knowledge Eng. 2002. Ischia, Italy.

[5] Klein, M. and R. Kazman, "Attribute-Based Architectural

Styles," Tech. Report CMU/SEI-99-TR-022, Soft

Engineering Institute, Carnegie Mellon University, 1999

[6] Duenas, J.C., et al., "A Software Architecture Evaluation

Model," 2nd Int.l Workshop On Development and Evolution

of Software Architectures for Product Families. 1998.

[7] Kazman, R., et al., "SAAM: A Method for Analyzing the

Properties of Software Architectures," Proc. of the 16th

ICSE. 1994.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

[8] Bengtsson, P., et al., "Architecture-level modifiability

analysis (ALMA)," Journal of Systems and Software, 2004.

69(1-2).

[9] Williams, L.G. and C.U. Smith, "PASA: A Method for

the Performance Assessment of Software Architecture,"

Proc. of the 3rd Workshop on Software Performance. 2002.

Rome, Italy.

[10] Kazman, R., et al., "The Architecture Tradeoff Analysis

Method," Proceedings of IEEE, ICECCS. 1998.

[11] Kruchten, P., "Software Architecture Review and

Assessment (SARA) Report," Proc. of the Software

Architecture Review and Assessment Workshop. 2002.

Orlando, Florida.

[12] Bahsoon, R. and W. Emmerich, "Evaluating Software

Architectures: Development, Stability, and Evolution,"

Proceedings of ACS/IEEE Int. Conf. on Computer Systems

and Applications. July, 2003. Tunis, Tunisia.

[13] Clements, P., et al., "Evaluating Software Architectures:

Methods and Case Studies". 2002: Addison-Wesley.

[14] Clements, P.C., "Active Reviews for Intermediate

Designs," Tech. Report CMU/SEI-2000-TN-009, SEI,

Carnegie Mellon University, 2000

[15] jayaratna, N., "Understanding and evaluating

methodologies: NIMSAD: a systematic framework". 1994,

London: McGraw-Hill.

[16] Forsell, M., et al., "Evaluation of Component-Based

Software Development Methodologies," Proc. of FUSST.

1999. Tallinn.

[17] Kronlof, k., "Method Integration: Concepts and Case

Studies". 1993: John Wiley & Sons.

[18] Matinlassi, M., "Comparison of Software Product Line

Architecture Design Methods: COPA, FAST, FORM, KobrA

and QADA," Proc, of the 26th Int'l Conf. Software Eng.

2004. Edinburgh, Scotland.

[19] Medvidovic, N. and R.N. Taylor, "A Classification and

Comparison Framework for Software Architecture

Description Languages," IEEE Transactions on Software

Engineering, Jan, 2000. 26(1): p. 70-93.

[20] Kazman, R., et al., "Analyzing the Properties of User

Interface Software," Tech. Report CMU-CS-93-201, School

of Computer Science, Carnegie Mellon University, 1993

[21] Lassing, N., et al., "Towards a Broader View on

Software Architecture Analysis of Flexibility," Proceedings

of 6th Asian-Pacific Software Engineering Conference. 1999.

[22] Bengtsson, P. and J. Bosch, "Architectural Level

Prediction of Software Maintenance," Proceedings of 3rd

European Conference on Software Engineering Maintenance

and Reengineering. 1999.

[23] Lassing, N., et al., "How Well can we Predict Changes

at Architecture Design Time?," Journal of Systems and

Software, 2003. 65(2).

[24] Bengtsson, P., "Architecture-Level Modifiability

Analysis," Ph.D. Thesis, Blekinge Institute of Technology,

Sweden, 2002

[25] Lassing, N., et al., "Using UML in Architecture-Level

Modifiability Analysis," Proceedings of the Workshop on

Describing Software Architecture with UML, ICSE. 2001.

[26] Williams, L.G. and C.U. Smith, "Performance

Evaluation of Software Architectures," proc. of the

Workshop on Software and Performance. 1998. Santa Fe,

USA.

[27] Smith, C.U., "Performance Engineering for Software

Architectures," Proc. of the 21th Computer and Software

Applications. 1997. Washington, DC, USA.

[28] Smith, C.U. and L.G. Williams, "Performance

Solutions: A Practical Guide to Creating Responsive,

Saclable Software". 2002: Addison-Wesley.

[29] Williams, L.G. and C.U. Smith, "PASA: An

Architectural Approach to Fixing Software Performance

Problems," Proc. of Int. Conference of the Computer

Measurement Group. 2002. Reno, USA.

[30] Kruchten, P.B., "The 4+1 View Model of architecture,"

Software, IEEE, 1995. 12(6): p. 42-50.

[31] Booch, G., et al., "The Unified Modeling Language

User Guide". 1999: Addison-Wesley.

[32] Brown, W.J., et al., "AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis". 1998: John

Wiley.

[33] Bachmann, F., et al., "Preliminary Design of ArchE: A

Software Architecture Design Assistant," Tech. Report

CMU/SEI-2003-TR-021, SEI, Carnegie Mellon University,

2003

[34] Bot, S., et al., "A Stakeholder-Centric Software

Architecture Analysis Approach," Proceedings of 2nd

International Software Architecture Workshop. 1996.

[35] Avritzer, A. and E.J. Weyuker, "Investigating Metrics

for Architectural Assessment," Proc. of the 5th Int'l Software

Metrics Symposium. 1998. Bethesda, Maryland.

[36] Kruchten, P., "Rational Unified Process: An

Introduction". 2000: Addison-Wesley.

[37] Hofmeister, C., et al., "Applied Software Architecture".

2000, Reading, MA: Adison-Wesley Longman.

[38] Kruchten, P., "The 4+1 View Model of Architecture,"

IEEE Software, Nov. 1995. 12(6).

[39] Lyu, M.R., ed. Handbook of Software Reliability

Engineering. 1996, McGraw-Hill and IEEE Computer

Society: New York.

[40] Smith, C.U. and L.G. Williams, "Software Performance

Engineering: A Case Study Including Performance

Comparison with Design Alternatives," IEEE Transactions

on Software Engineering, 1993. 19(7).

[41] Kazman, R., "Tool Support for Architecture Analysis

and Design," Proc. of the 2nd Int'l Software Architecture

Workshop. 1996. Carlifornia, USA.

[42] Aurum, A., et al., eds. Managing Software Engineering

Knowledge. 2003, Springer- Verlag: Berlin Heidelberg.

[43] Shaw, M., "The Coming-of_Age of Software

Architecture Research," IEEE - Computer, 2001: p. 657-664.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

