
ESCAPE Meta Modeling in Software Engineering:
When Premature Commitment is Useful in

Representations

Jim Buckley1, Chris Exton1, Aaron Quigley2 and Andrew LeGear1

1 Department of Computer Science and Information Systems, University of Limerick,
Limerick, Ireland

{jim.buckley, chris.exton, Andrew.legear} @ul.ie
2 Department of Computer Science, UCD,

Dublin, Ireland
{aaron.quigley@cs.ucd.ie}

Abstract. This paper introduces, and provides a cognitive basis for, a prototype
meta-modeling process called ESCAPE. This process involves users Explicitly
Stating their own model of an entity of interest, CAPturing an alternative or
correct model of that entity and consequently re-Evaluating their own model.
The paper shows the model’s implicit, but already well established, use in the
software engineering domain. In particular, it focuses on empirical work carried
out in Software Understanding and Architectural Recovery of large commercial
software systems using the Reflexion modeling process, which embodies
ESCAPE meta-modeling principles. Finally, it suggests several areas where
ESCAPE meta-modeling could be beneficially applied in software engineering.

1 Introduction

The process of developing software systems is information-intensive, as illustrated by
the work of Nunamaker[22] and Teichroew[34]. In any development cycle, for exam-
ple, one of the first activities is requirements analysis, where system developers must
capture information about the system’s domain and its functionality. This information
can be obtained from tender documents or, more frequently, from potential system-
users, through interviews, observation of work practices and system prototyping.

Later in the system’s development, a large amount of the knowledge that the develop-
ers require can be obtained from the study of highly structured and, in many cases,
highly complex system documents created or obtained earlier in the development
cycle. For example, in ‘White-Box’ testing, the software testers must acquire a de-
tailed knowledge of the control-flow structure of the source code, thus basing the test
suite directly on the artifact to be tested [26]. Likewise, empirical studies of develop-
ers’ software-maintenance behavior [29], [31] suggest that it is a very code-centric
activity.

PPIG'07 Work in Progress Report

72

The importance of searching these structured documents, for information in a soft-
ware engineering context, is highlighted by works like [10] [14], [39] [30] and [31].
Over several studies Singer and Lethbridge [31] found that searching ‘implementa-
tion documents’ (source code) was the most common activity carried out by develop-
ers in a tele-communications domain: In their report they showed that over 45% of all
tool usage by experienced developers was in the form of system searches using grep.

In a similar vein, [39] found that developers spent approximately 35% of their time
navigating between source-code dependencies. Indeed, they characterized software
maintenance as a process of “collecting a group of task-relevant code fragments…
navigating those code fragments… and repairing or creating the necessary code”.
Studies like these led Sim et al. [30] to characterize experts as task-oriented informa-
tion seekers, performing searches when repairing code, reusing code, understanding
systems, adding features and assessing the impact of changes.

1.1 Efforts to Facilitate these Information Requirements

The complex nature and size of the documents available to developers, as they de-
velop and evolve software systems, places great demands on their information-
seeking. Indeed, empirical evidence suggests that up to 90% of the entire develop-
ment effort is spent simply reading, navigating and understanding the code [40].

Given the predominance of this activity, researchers in software engineering have
recently begun to study programmers’ information seeking in its own right. These
studies have particularly focused on programmers involved in software maintenance,
characterizing information seeking in terms of blocking factors, information sources,
information requirements and information overload [12], [29], [23], [24]. However,
these studies are still at a largely preliminary stage.

‘Software Visualization’ communities have sought to facilitate information-seeking
by developing software visualization tools [1], [6], [17] [21], [28]. These tools typi-
cally generate various views and abstractions of software systems that the user can
navigate around and between, based on the system’s underlying structure.

This paper, while acknowledging the value of such tools, argues that, in some situa-
tions, more user interaction may be beneficial. It argues that, when dealing with ex-
perienced software developers, it may be beneficial for the visualization tool to re-
quire the user to explicitly state their expectations of the system before being pre-
sented with system representations. This argument is based upon the study of prac-
tices that have become productively embedded in in-vivo software engineering. In
particular, the success of a technique called Reflexion modeling us used to illustrate
the potential of this approach.

1.2 Paper Structure

This paper presents the proposed ESCAPE Meta-modeling process, a process derived
from Software Engineering practice, where it has been shown to be successful. In
section 2, we describe ESCAPE and in section 3 we show how the process is embed-
ded in several key Software Engineering practices. Additionally, in section 3, we
describe our empirical experiences using an ESCAPE-based Architectural Recovery
approach in two commercial software development companies, and report on its suc-
cessful adoption, by those companies. Finally, we suggest several novel applications
for ESCAPE meta-modeling in section 4.

2 Escape Meta-modeling

Escape meta-modeling is based on creating a conflict between the expectations of the
user with respect to some entity of interest and the actuality of that entity of interest.
It is anticipated that such a conflict will have ‘shock-value’, prompting the user’s
curiosity and driving them to resolve the conflict, leading to learning.

As an illustrative example, consider holding out a pen in your hand at shoulder

height and letting go. You would expect that the pen would drop to the ground.
Imagine, instead, that the pen rises into the sky. Your model of how things should
work has been shown to be incorrect, as it conflicts with the actuality of the situation.
Curiosity is a natural response, as is the desire to reconcile your understanding of
your world with the actuality.

The first step in ESCAPE meta-modeling (as shown in Figure 1) is to make the

user Explicitly State their model of their entity of interest (the pen will drop). The
second step is to CAPture information regarding the entity of interest (letting the pen
go from a height). The third step then is for the user to Evaluate their expectation in
the light of the captured information. If the 2 are aligned (the pen drops) then the user
can have increased confidence that their model is correct. If the 2 don’t align (the pen
rises) the user may have to either re-assess his understanding of the situation (perhaps
there is a large helium compartment in the pen) or he/she may have to change the
underlying situation (for example moving outside of the gravity-free chamber). Either
option finesses the user’s understanding of their context.

Engineer's
Model

1
Explicitly

State

3
Evaluate

2
CAPture

Analogous,
increasingly
overlapping,

models

Entity

Alter

Model of
Entity

Model
Refinement

Fig 1. The ESCAPE Meta-Modeling Process

1.2 Psychological Basis

Unsurprisingly, there is a cognitive basis for this work. Piaget [36], for example,
postulated that conflict is a driving force for learning and development. Cognitive
conflict occurs when a particular endeavor requires more than can be achieved by

using existing knowledge or familiar strategies. Thus existing knowledge or abilities
need to be amended or expanded. Likewise, Strike and Posner [37] contend that, in
order for conceptual change to occur, the student must first be discontented with their
current understanding (or mental model) as it no longer fits with what they observe. It
is this dissatisfaction (or cognitive conflict) that motivates the student to consider
alternative conceptual views that may result in a number of amendments or
expansions to their understanding.

Consequently, cognitive conflict is a positive state, as it provides an impetus for us

to either correct our own understanding or adapt the real world situation to comply
with our own understanding in order to re-achieve a state of equilibrium. Given this
reasoning, one surprising conclusion is that visualization tools might be more
effective if, instead of presenting software visualizations to the end-user, they forced
the end-user to state their expectations first and only then presented the visualization.

 Other relevant cognitive theories include Vygotsky’s ‘zone of proximal

development’ [38] and Piaget’s related notion of ‘Dissonance’ [42]. Vygotsky’s
‘zone of proximal development’ refers to the difference between learners’ current
development level and the learners’ potential level of development. Piaget
hypothesized that if this gulf is to large, learning will suffer. So, returning to our
earlier example of the falling pen, if the pen rises, an observer could hypothesize a
number of possible reasons (the helium compartment, a fine string attached to the pen
and to a roof beam) and further exploration may be prompted. However, if the pen
turned into a nuclear warhead, the observer would probably be lost for any possible
hypotheses and may just accept the phenomenum. This suggests that ESCAPE
modeling is best employed by experienced users who could legitimately expect to
have a model close to actuality. Such a situation would have lower dissonance, and
the inconsistencies that did exist would be genuinely surprising.

However, fit-to-theory literature suggests that people tend to pay attention to

evidence that confirms their thories and disregard evidence that contradicts their
theories. As such, fit-to-theory suggests that ESCAPE modeling would be of lesser
use. However, this can be (at least) partially addressed by using representations that
emphasize where the inconsistencies exist.

ESCAPE also can be discussed in terms of Green’s Cognitive Dimensions [7], in

that it is an example of premature commitment – a dimension traditionally seen as
affording lesser utility in representations. In this instance, premature commitment
presents itself in the form of forcing users to explicitly state their model, before this
model is (possibly) contradicted by the actual model. This contradiction may force
the iterative reformulation of the user’s initial model and the user may have to
reformulate that model.

Consequently reformulation of the user’s initial model should not be difficult (or

‘viscous’ [7]). In fact, ideally, it should be very lightweight, within the constraint that
it allows users to fully express their model. Practice and empirical evidence from the

domain of software engineering suggests that, in this case, premature commitment is
a positive attribute and this is further explored in section 3.

The viewpoint that people’s models are initially inadequate is reflected in the

quote attributed to George Box, the statistician: ‘all models are wrong, some are
useful’ [3]. In most cases a model is considered good is if it allows us to structure our
understanding in a useful manner. It is apparent, in many aspects of our everyday life,
that most of us operate in the world using rather flawed or simplistic mental models.
When these simplistic models are inadequate, they can cause difficulties. ESCAPE
modeling is about facilitating the recognition that people’s models are inadequate and
rectifying that situation.

In a software engineering context, the consequences of the cognitive conflict in

ESCAPE meta-modeling are principally dependent upon the types of disparity that
lead to the discord. In some cases it can serve as the instigator of a change
requirement that will lead to an amendment of some software artefacts, typically
source code or perhaps a configuration element.

Conversely it may also result in a change of the Software Engineers’ own model of

how the system functions. In this case the task is not to realign the actual behaviour or
structure of the software to the engineers mental model but to realign the software
engineers own comprehension or mental model to that of the actual system. The scale
and granularity at which this happens is closely related to the scale and granularity of
the cognitive conflict.

3 Current application to Software Engineering

In this section a number of practices in software engineering, implicitly based on
ESCAPE meta-modeling are presented. It should be noted that these exemplars are
often considered core or best practice in software development and evolution,
strengthening the suggestion that any underpinning model has a strong, if implicit
validity.

• Prototyping: Here the requirements analyst Explicitly States the system that

he thinks the users want. The users and the requirement analyst subsequently
meet and the analyst CAPtures the divergences between his stated model and
the user’s. This forces a re-Evaluation of the analyst’s model and may result
in changes to the model or indeed changes to the user’s expectations.

• In testing, best practice is for software engineers to Explicitly State their

test-cases’ input and output. The test cases are then run through the system,
CAPturing divergences between the expected outputs and the actual outputs.
The divergences force the tester to re-Evaluate the system in terms of its
buggy output and possibly alter it. Alternatively, although less frequently,
they may change the test suite to rectify errors in its formation.

• Paired programming. Although relatively novel, paired programming is

quickly becoming a popular practice in software engineering [Lui and Chan
2006]. Here 2 or more programmers work together as a team when pro-
gramming. Contextualizing this as an instance of ESCAPE meta-modeling,
one of the two programmers (programmer 1) Explicitly States his/her model
in discussions. The other programmer (programmer 2) provides the CAP-
tured model (not necessarily a correct model in this instance – just a differ-
ent interpretation.) Programmer 1’s model is altered in the light of program-
mer 2’s model and criticism. Likewise, programmer 2’s model is also refined
in the light of programmer 1’s comments. While it is possible that this just
focuses the programmers on a joint, flawed model, the increasing popularity
of the technique, suggests that the aggregate model represents an improve-
ment on each individual’s model.

The techniques reviewed to date, while illustrative of ESCAPE meta-modeling, could
hardly be considered visualization techniques in their own right. However, Reflexion,
as proposed by Murphy et al. [19] is a technique that adheres to ESCAPE in a visuali-
zation-tool context.

3.1 Reflexion Modeling

Software Reflexion modeling is a diagram-based, structural summarisation technique.
It is supported by an Eclipse [5] plug-in called the jRMTool [9]. The technique is
primarily aimed at allowing software engineers to gain a greater understanding of
their software system’s architecture. Software Reflexion modeling follows a six step
process, illustrated in Figure 2:

1. The software engineer who wishes to gain a greater understanding of the soft-

ware system hypothesises a high-level conceptual model of its structure. This
model need not, in any way, reflect the current explicit structure of the system.

2. The computer extracts, using a program analysis tool, a dependency graph of
the subject system’s source code called the source model.

3. The programmer then creates a map which maps the elements of the source
model onto individual nodes of the high-level model.

4. The computer then assesses the call relationships and data accesses in the
source code to generate its own high-level model (called the Reflexion
model). This model shows the relationships between the source code elements
mapped to different nodes in the programmer’s high-level model. This allows
comparisons between the computer’s model and the programmer’s model and
the tool can report this comparison in three ways:

• A dashed edge in the Reflexion model represents dependencies be-
tween elements of the programmer’s high-level model that exist in the

the source model, but were not placed in the programmer’s high-level
model.

• A dotted edge in the Reflexion model represents a hypothesized de-
pendency edge of the programmer’s high-level model that does not ac-
tually exist in the source model.

• A solid edge in the Reflexion model represents a hypothesized edge of
the programmer’s high-level model that was validated by the source
model.

5. By targeting and studying the inconsistencies highlighted by the Reflexion
model the programmer can either alter their hypothesized map, the high-level
model or indeed the underlying system to produce a recovered model of
higher consistency.

6. The previous two steps are repeated until the software engineer is satisfied
that the recovered model is consistent with their high-level model.

Figure 2 –The Software Reflexion Modeling Process

This software understanding method closely conforms to the ESCAPE meta-
modeling framework. Specifically, it prompts the user to state their architectural
model of the system, and reflects the actuality of the system back to them in terms of
their model. Inconsistencies prompt the user’s curiosity and thus drive them to re-
evaluate and reconcile the 2 models.

Reflexion modeling is accompanied by promising results in facilitating the under-
standing of large software systems [19,20,13,15]. For example, in two experiments,
detailed by Koschke and Simon [13], users are described as gaining an encompassing
understanding of 100KLOC and 500KLOC compilers in 6 and 8 hours respectively.
In Murphy and Notkin[19] study, a software engineer stated that, using Reflexion
modeling, he gained an understanding of Excel in one month that would normally
have taken 2 years.

3.2 Case Studies

This section presents empirical data derived from a number of case studies per-
formed over a 1.5 year period in 2 Irish-based software development companies. One
is a medium sized enterprise situated in the west of Ireland employing 35 people and
specializing in Management-Process support software (henceforth referred to as com-
pany 1). The other company is a large multi-national situated in Dublin, employing
over 300 software engineers on a wide range of software projects (company 2).

In total 3 case studies were performed, each involving an experienced software en-

gineer from the companies, working on one of the company’s large proprietary soft-
ware systems, and using Reflexion modeling to carry out one of their assigned work-
tasks with respect to that system. Details of the 3 sessions, obtained from a question-
naire before the study and from the study itself, are given in the table below.

Case Study A B C
Company 1 2 2
Participant – Com-
mercial Experience

5.0 years 2.0 years 2.0 years

Participant – Experi-
ence with the System

0.25 years 1.5 years 1.5 years

Participant – Domain
Experience

6.0 years 1.5 years 1.5 years

Task Achieving a better
arch. understanding
for maintenance

Achieving a better
arch. understand-
ing

Isolating the
GUI

System – Domain Warehouse Mgt. Learning Learning
System – Size 250 KLOC 500 KLOC 500 KLOC
System – Language Progress Java Java
Session Duration
(approx)

2.45 hours 2.5 hours 3.5 hours

Session Location In-situ In-situ In-situ
Table 1: Case Study Profiles

Participants were given a short (20 minute) introduction to Reflexion modeling,
where they used the technique on a small software system. To enable the technique,
the jRMTool Reflexion modeling plug-in [19] for Eclipse was utilized. Both compa-
nies used Eclipse as their standard development environment and the jRMTool plug-
in served to limit the artificiality of the situation. The plug-in provides automated
abilities for creating and viewing high-level models, for mapping software elements
to high-level model elements and for displaying the resultant Reflexion models. It
also displays summary information regarding the edges of the model and unmapped
software elements.

After this introduction, the participants were asked to undertake their scheduled
work-tasks using the Reflexion modeling approach and were asked to state every-
thing that came into their minds, as it came into their minds. Part of this data is pre-
sented later in this section to demonstrate ESCAPE modeling in practice. The ses-
sions were sometimes broken for activities like coffee, lunch, interruptions by work
colleagues and by higher-priority work that arose.

The 2 selections of quotes below are talk-aloud data, taken from the 3 software en-
gineers as they performed their respective work-tasks. The first selection shows the
users’ positive impressions, and how they valued Reflexion modeling.

“I did try this same job about two months ago and gave up after two weeks.”

“It does such a good job of helping you understand the architecture of the sys-
tem.”

“A really good tool for getting a high-level idea of a big amount of source
code.”

“… great for spotting where dependencies were nonetheless ...”

Indeed, in both companies, the practitioners acted as champions for the technique,
prompting wider adoption among their colleagues. For example, in company B, 16
software engineers subsequently used this approach. It seems that Reflexion modeling
was effective at reducing programmers’ information seeking effort by allowing them
easily model their system in a task-appropriate manner and focusing their attention at
places where their model of the system is insufficient or inconsistent with reality.

The following quotes illustrate several times when cognitive conflict explicitly arose,
when using the approach:

“Looks like there’s a few links all right, from rest of system back to view, ...I was
hoping there would be none, so that’s a shame… lets look”

“Pretty much on the mark about the one way direction. There’s only four going
back into the RF_SCREENS, curious to know what they would be [checks edge in-
formation]”

“We’ve got 19 calls between XXX_util and ‘rest of XXX,’ which is interesting,
right, we need to figure that out because . . . we’d need to find out what those 19
things are going back here, because they theoretically should belong in there
[pointing to ‘XXX_util’] as well.”

While they are illustrative, the quotes presented here are by no means exhaustive.

Many more such quotations are available, on request from the 1st or 4th author.

3.3 Potential Utility in Software Engineering

There seems to be several other potential applications of this meta-model in software
engineering. Specifically:

• Data Mining Social Networks: Large software companies often have organ-

izational charts that detail the professional relationships between their per-
sonnel and between their teams. This could be considered an Explicit State-
ment of the expected (professional) social network. If some means of track-
ing the interactions of employees could b agreed (RFID cards, observation)
then the actuality of their social network could be CAPtured. By comparing
this model to the organizational charts, unexpected relationships between
employees, and their teams, could be uncovered. Follow-up in depth qualita-
tive analysis could lead to a greater understanding of the implicit relation-
ships and dependencies between different business areas and between differ-
ent individual personnel. Likewise, the lack of relationships between indi-
vidual team members could be highlighted as an area of concern.

• Reflexion modeling is currently a static analysis technique. A dynamic

analysis alternative would be for the QA department to instrument the sys-
tem before they run through their test cases and to thus identify the source
code executed for each test case. Hence, they could easily derive the source
code executed for each desired function of the system. Later, when other
programmers debug or evolve a specific function of the system, the CVS
could track where they made changes. This explicit statement of the ‘code
that needs to be changed’ could be compared to the code sets derived from
the QA Department’s test cases and divergences could be used to suggest the
location of hidden ripple effects. While this work is similar in nature to
[Wilde et al ‘95]’s Reconnaissance work and [Koschke 2004] Concept Lat-
tice representations, it is novel in that both these techniques present their in-
formation to the user without forcing the user to state his / her assumptions
up front.

• Open Source Project Management Analysis: Management style may change

when a new team takes over an Open Source development from another.
However, these changes may be implicit to the new management. Here the
models compared are the work practices of the previous management and the
work practices of the new management. While neither of the 2 models can
be viewed as correct, in this example, divergences could be identified lead-
ing to re-evaluation of management styles.

• Gaming for System-Structural Knowledge: Games like Stellar Empires and

Risk involve players trying for world / galaxy domination by attacking their
opponents positions on a world map. However, instead of playing for world
domination on a world map, you could play for system domination on a sys-

tem map. In this adaptation, the world map would be a call graph of your
system, or perhaps a graph representing its calls, its inheritance hierarchies
and its friendship relationships. In this case, the players’ goal is to take over
all methods/classes (the individual map locations) of the system. The essen-
tial idea here is that in moving their forces round the system, competitive
advantage is obtained by knowing where your opponents can attack from.
Thus, those players with the best structural knowledge of the system will
win.

In an ESCAPE context, the programmers make an Explicit Statement of
(their knowledge of) system structure, by moving their forces to (seemingly)
defensible positions. Opponents may then shock the player by attacking
through relationships that the player didn’t anticipate. Such moves show a
partial structural knowledge not in evidence in the player’s original mental
model of the system and force the player to re-Evaluate his/her model of the
system. Games may be played by software team members or against a com-
puter player, over long periods of time, resulting in prestige for the winner
and increased structural knowledge for the team.

4 Conclusions

This paper has proposed ESCAPE meta-modeling as an effective framework for
visualization in a software engineering context. It has showed where the framework is
implicitly embedded in software engineering practice and software visualization,
suggesting its effectiveness. Finally, it has shown several other possible application
areas where the framework may provide valuable insights in software engineering.

References

1. Antoniol G., Fiutem R., Lutteri G., Tonella P., Zanfei S. and Merlo E. (1997). "Pro-
gram Understanding and Maintenance with the CANTO Environment" Proceedings
of the International Conference on Software Maintenance. pp 72-83.

2. Basili V. (1996). "The Role of Experimentation: Past, Present and Future". Interna-
tional Conference of Software Engineering. keynote speech.

3. Box, G.E.P., Robustness in the strategy of scientific model building, in Robustness in
Statistics, R.L. Launer and G.N. Wilkinson, Editors. 1979, Academic Press: New
York.

4. De Lucia A., Fasolino A.R. and Munro M. (1996). "Understanding Function Behav-
iors through Program Slicing". Proceedings of the 4th International Workshop on
Program Comprehension. Eds: Cimitile and Muller. IEEE Computer Society Press.
pp 9-19.

5. Eclipse IDE Homepage. http://www.eclipse.com [September 2006].

6. Gallagher K.B. (2000). "Working Session: Tools for Program Comprehension: Build-
ing a Comprehender’s Workbench". Open Discussion during the 8th International
Workshop on Program Comprehension. June 10-11, Limerick Ireland.

7. Green, T. R. G. (1989). Cognitive dimensions of notations. In People and Computers
V, A Sutcliffe and L Macaulay (Ed.) Cambridge University Press: Cambridge., pp.
443-460.

8. Harrison W. and Basili V. (1996). "Editorial". Empirical Software Engineering. Vol
1, no 1. pp 5-11.

9. jRMTool Reflexion Modelling eclipse plug-in.
http://www.cs.ubc.ca/murphy/jRMTool/doc/ [December 2003].

10. Kay J and Richard T. (1995). "Studying Long Term System Use". Communications
of the ACM. Vol 38, no. 7. pp 61-68.

11. Kemerer C.F. and Slaughter S. (1997). "Methodologies for Performing Empirical
Studies: Report from the Internation Workshop on Empirical Studies of Software
Maintenance". Empirical Software Engineering. Vol 2. No. 2 pp 109-119.

12. Ko A. DeLine R. and Venolia G.. Information Needs in Co-located Software Devel-
opment Teams. To appear ICSE 2007

13. Koschke R, Simon D. (2003) Hierarchical Reflexion Models. Working Conference
on Reverse Engineering.

14. Koschke (2004) A Concept Analysis Primer
15. Le Gear A, Buckley J. (2005) Reengineering Towards Components with “Reconn-

exion.” ESEC/FSE Doctoral Symposium.
16. Linos P., Helleboid Y., Lejeune P. and Tulula P. (1992). "A Software Tool for Un-

derstanding and Reengineering C Programs" 5th ACM SIGSOFT Symposium on
Software Development Environments.

17. Linos P.K. and Courtois V. (1994). "A Tool for Understanding Object Oriented Pro-
gram Dependencies". Proceedings of the 3rd Workshop on Program Comprehension.
pp 20-29.

18. Lui K.M., Chan K.C.C.. (2006) Paired Programming Productivity: Novice-Novice
Versus Expert-Expert. International Journal of Human Computer Studies. Vol. 64.
no. 9. pp 915-925

19. Murphy G.C., Notkin D, Sullivan K. (1995) Software Reflexion Models: bridging the
gap between source and high-level models. Symposium on the Foundations of Soft-
ware Engineering pages 18-28

20. Murphy G.C.,Notkin D. (1997) Reengineering with Reflexion Models: a case study
IEEE Computer 2(17) pages 29-36.

21. Ning, J.Q., Engberts, A. and Kozaczynski,W. (1994). "Automated Support for Leg-
acy Code Understanding." Communications of the ACM. Vol 37, no. 5 pp. 50-57 .

22. Nunamaker J.F. (1971). "A Methodology for the Design and Optimization of Infor-
mation Processing Systems". AFIPS Conference Proceedings. Vol 38 pp 283-293.

23. O’Brien M.P. and Buckley J. (2005) “Modeling the Information-Seeking Behavior of
Programmers – An Empirical Approach” In Proceedings of the 13th International
Workshop on Program Comprehension. pp 125-135

24. O’Shea P. and Exton C. (2005). "The Role of Source Code within Program Summa-
ries describing Maintenance Activities", In P. Romero, J. Good, E. Acosta Chaparro
& S. Bryant (Eds). Proc. PPIG 05, Brighton UK

25. Phfleeger S.L. (1998). "Software Engineering Theory and Practice". Prentice Hall.
26. Pressman R.S. (2000). "Software Engineering, A Pratctioner’s Approach" Fifth Edi-

tion. McGraw-Hill.
27. Rajlich V. (1994). "Program Reading and Comprehension". Proceedings of Summer

School on Engineering of Existing Software". Bari, Italy pp. 161-178.

http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/papers/Green1989.pdf

28. Sajaniemi J. (2000). "Program Comprehension through Multiple Simultaneous
Views: A Session with VinEd" Proceedings of the 8th International Workshop on
Program Comprehension 2000. pp 99-108.

29. Seamen C. B. (1999). "Qualitative Methods in Empirical Studies of Software Engi-
neering". IEEE Transactions of Software Engineering. Vol: 25, no 4. pp 557-572.

30. Sim S.E., Clarke C.L.A. , and Holt R.C. (1998). "Archetypal Source Code Searches:
A Survey of Software Developers and Maintainers." in Proceedings of the 6th Inter-
national Workshop on Program Comprehension. pp 180-187.

31. Singer J., Lethbridge T., Vinson N and Anquetil N. (1997). "An Examination of
Software Engineering Work Practices." In Proceedings of CASCON ’97 pp 209-223

32. Sommerville I. (2006). "Software Engineering (7th Edition)". Addison Wesley.
33. Strike, K., and Posner, G. (1992) A Conceptual Change View of Learning and Un-

derstanding. In L. West & R. Hamilton (Eds.), Cognitive structure and conceptual
change (pp. 211-232). London: Academic Press

34. Teichroew D. (1974). "Problem Statement Analysis: Requirements for the Problem
Statement Analyzer". Chapter from Couger J.D. and Knapp R.W.. "System Analysis
Techniques".

35. N. Wilde and M. C. Scully (1995) Software Reconnaissance: Mapping Program Fea-
tures to Code. Journal of Software Maintenance: Research and Practice, 7(1):49–62.

36. Piaget, J. (1985). The Equilibration of Cognitive Structures: The Central Problem of
Intellectual Development. Chicago: University of Chicago Press.

37. Strike, K., & Posner, G. (1985). A conceptual change view of learning and under-
standing. In L. West & R. Hamilton (Eds.), Cognitive structure and conceptual
change (pp. 211-232). London: Academic Press.

38. Vygotsky L.S. (1978). Mind and Society: The development of higher psychological
processes. Cambridge MA: Havard University Press.

39. Ko A.J., Aung H.H., and Myers B.A. (2005) Eliciting design requirements for main-
tenance-oriented IDEs: A detailed study of corrective and perfective maintenance
tasks. ICSE 2005.

40. Erlikh L. (2000). Leveraging system dollars for E-business. IT Professional.
May/June 2000. pp 17-23.

