
Aspectual Separation of Feature Dependencies for Flexible Feature Composition

Kwanwoo Lee∗, Goetz Botterweck†and Steffen Thiel‡
∗Department of Information Systems Engineering

Hansung University, Seoul, Korea 136–792
Email: kwlee@hansung.ac.kr

†Lero
University of Limerick, Limerick, Ireland

Email: goetz.botterweck@lero.ie
‡ Department of Computer Science

Furtwangen University of Applied Sciences, Furtwangen, Germany
Email: steffen.thiel@hs-furtwangen.de

Abstract—Aspect-oriented programming (AOP) provides ef-
fective mechanisms for improving the modularity of feature
implementations. However, as features in general are not
independent of each other, changes in the implementation
of one feature may cause changes to or side effects in the
implementation of other features. We address this challenge by
separating feature dependencies from feature implementations
using AOP techniques. Specifically, this paper contributes by
providing aspect-oriented implementation patterns for feature
dependencies (e.g., modification dependency and activation de-
pendency). With the resulting clear separation of dependencies,
this approach makes each feature implementation easier to
understand and reuse. A product line of scientific calculator
applications is used to demonstrate and evaluate the proposed
approach.

Keywords-software product line engineering, feature depen-
dency, aspect-oriented implementation patterns;

I. INTRODUCTION

A common way to handle and represent product config-
urations in software product line engineering are feature
models [1], [2], which provide means for managing and
representing the product configurations of a software product
line (SPL) in terms of feature configurations.

To be able to take feature configurations and derive
corresponding product implementations from the core assets,
these assets must be designed in a way that allows to switch
variable parts on and off depending on the selection of vari-
able features in the product configuration. However, a feature
does not always correspond to exactly one implementation
component. Hence, if a feature is related to several parts
of multiple components, it can become difficult to select
and compose corresponding code fragments according to
a desired feature configuration. A first step toward flexible
feature composition are approaches that modularize feature
implementation.

Aspect-oriented programming (AOP) [3] is a good candi-
date for modularizing feature implementation, as it provides
effective mechanisms for encapsulating crosscutting con-
cerns into modular units. There have been several attempts

to modularize features using AOP [4], [5], [6]. These ap-
proaches allow to modularize the implementation of features
into separated components, called aspects.

However, this is not sufficient. Since features in general
are not independent of each other, changes in the imple-
mentation of one feature will cause or side effects in the
implementation of other features. This problem is mainly
caused by the fact that dependencies between features are
embedded into feature implementation modules, resulting in
tangled code. In this paper, we strive to separate dependen-
cies from feature implementations using AOP techniques.

The remainder of the paper is structured as follows:
Section II defines the problem that this paper addresses,
and presents an overview of dependencies between features.
Section III describes how the feature dependencies can
be clearly separated using aspect-oriented implementation
patterns. Section IV demonstrates the proposed approach
with a calculator product line example and evaluates the
approach with some observed metrics. Our approach is
compared with other related work in Section V. Section VI
concludes the paper.

II. BACKGROUND

A. Problem

This section describes the core problem that we are
addressing in this paper. As a running example we use a
product line of calculator applications. We will later use a
related case study to discuss and evaluate our approach (see
Section IV).

AOP provides an effective way of incorporating variable
features into a product, as it can isolate variable features
into aspects and integrate them in an additive way. That
is, based on the initial base structure implementing the
common features, variable features can be implemented
using aspects. Then, an aspect weaver creates a product by
weaving aspects (implementing variable features) into the
base modular structure.

For instance, a product line of calculators may have
features such as History (to maintain a list of previously
evaluated expressions), Mode (to switch between different
modes for display and angles), and Number Systems (to
switch between numeral bases such as decimal and binary).

The feature History can be implemented using AspectJ
as shown in Figure 1. To simplify, we only show an excerpt
and focus on the code that implements the upward navigation
through the history list.

1. public aspect HistoryModule {
2. HistoryModule() {
3. uBtn = new UpButton();
4. }
5. after(CalculatorPanel p):
6. SomeExtensionPoint(p) {
7. p.add(uBtn);
8. }
9. class UpButton extends CalculatorButton {
10. public void actionPerformed(..) {
11. upHistory();
12. ...
13. }
14. }
15. public void upHistory() {
16. // set the previous expression list to parser
17. parser.setList(history.elementAt(
18. historyPosition).exp_list);
19. /** ------- modification by NumberSystems -----
20. * parser.setNumSys(history.elementAt(
21. * historyPosition).numSys);
22. */
23. ...
24. }
25. private java.util.Vector<HistoryItem> history;
26. int historyPosition;
27. UpButton uBtn;
28.}

Figure 1. The Aspectual Implementation of the Feature History.

To add the feature History, the calculators must
be extended with a GUI button for upward navigation.
The aspect HistoryMoudle creates an UpButton in-
stance (line 3) and adds it to the calculator GUI Panel
(line 7), after the join point specified at the pointcut
SomeExtensionPoint(p) (lines 5–8). The UpButton
instance calls the method upHistory() (line 11), which
implements the functionality for navigating through previ-
ous expressions in the history list and passing a selected
expression to the calculator parser (lines 17–18), when the
corresponding GUI button is pressed.

We can implement other features, e.g., Number
Systems, in a similar fashion. However, we have to
consider the interactions between features. For instance,
since Number Systems can change the numeral base
of an expression during its operation, the behavior of
HistoryModule must be extended to maintain the nu-
meral base for each expression in the list (lines 20-21). Thus,
the inclusion or exclusion of Number Systems affects the
aspectual implementation of History.

In addition, Mode, which allows to change the mode of
the calculator, prevents History from being activated, as
both features use the same shared resource (i.e., display
panel). In other words, History can or cannot be active
depending on the activation state of Mode.

Such dependencies are affecting the implementations of
particular features, varying with the presence of the involved
features. For instance, the dependency from History to
Mode is relevant only when both features are configured
for the same product. Consequently, if we embed the depen-
dency into one of the feature implementations, a variation
(i.e., a different choice for the product configuration) can
cause undesired changes in the feature implementations.
This corresponds to the observation in Liu et al. [6], “the
implementation of a feature can vary from one program to
another.”

This invasive change problem mainly comes from lack
of understanding of feature dependencies [7]. Without clear
identification and separation of feature dependencies, code
implementing feature dependencies may be scattered across
multiple aspectual or modular components. Consequently,
there is a need to better understand and handle feature
dependencies. We will start in the next section by defining
different types of dependencies.

B. Feature Dependencies

The feature model [1], [2] describes the capabilities of
a product line including configuration options for products
in terms of features. Configuration dependencies (e.g., Con-
figuration Inclusion and Configuration Exclusion) between
features constrain the configuration choices of the feature
model. In addition to configuration dependencies (at design-
time), there are operational dependencies (at run-time) that
describe interactions between functional features. Within
run-time dependencies, this paper focuses on Modification
and Activation dependencies [7] that have crosscutting ef-
fects. We are interested in these dependencies since their
variation may affect feature implementations.

Note that the Usage dependency [7], [8], which corre-
sponds to Inform and Data Flow dependencies in [9], is
the most common form of feature dependency. However,
we are not interested in this dependency because Usage
dependencies do not vary independent from their associated
features. Instead, features involved in a Usage dependency
must be always configured together [9].

A Modification dependency between two functional fea-
tures means that the behavior of one feature is extended or
modified in presence of the other feature. For instance, as
explained earlier, the feature History has a modification
dependency with Number Systems. This corresponds to
similar the dependency types Influences [9] and Intentional
Interaction [8].

Activation dependencies affect the activation of functional
features. They can be classified into four categories: Ex-

cluded Activation, Required Activation, Concurrent Activa-
tion, and Sequential Activation.

An Excluded Activation dependency (known as Excluded
Dependency in [8]) between two functional features de-
scribes the fact that one feature excludes the execution
of the other. For example, Mode prevents the execution
of History, as illustrated before. Off, which turns off
the power of the calculator, can preempt the execution
of History, as Off has the highest priority among all
features in the calculator product line. Features in the
Excluded Activation dependency usually access shared re-
sources, which have to be used exclusively for their correct
operation. Therefore, Resource-Usage Interaction in [8] and
Resource-Configure Interaction in [9] are closely related to
the Excluded Activation dependency.

A Required Activation (Subordinate Activation in [7]) de-
pendency describes that one feature can be active only while
the other is active. For example, Boolean Operators
requires the activation of Binary Number System for
its correct operation.

Concurrent Activation and Sequential Activation depen-
dencies mean that one feature must be active with the
other feature, concurrently or sequentially, respectively. For
example, STO, which stores the result of a calculation in
memory, has to be active immediately after Evaluation,
which performs the calculation of a given expression.

These dependencies between functional features must
be analyzed before implementing features to prepare the
implementation for variations. To this end, we will now
discuss how each type of the dependencies can be clearly
separated from feature implementations using aspects.

III. DEPENDENCY ASPECTS

As discussed earlier, we suggest that dependencies should
be handled as separate entities. To avoid improvised ad-hoc
solutions, repeatable well-known patterns for the implemen-
tation of dependencies would be helpful. To this end we now
describe aspect-oriented implementation patterns for feature
dependencies.

A. Modification Dependency Aspects

A modification dependency from a feature F1 to a feature
F2 implies the functional behavior related to F1 can be
divided into two parts: the functional core and the interac-
tion. The functional core indicates the main functionality of
F1, while the interaction represents the behavior extended
by F2. The interaction behavior represents the modification
dependency from F1 to F2. Since the interaction behavior
may or may not be present depending on the presence of
F2, separating it from the implementation of the functional
core allows the implementation of the functional core to be
reused ‘as-is’ in various product contexts.

We can implement the interaction part (i.e., modification
dependency) of F1 using an AspectJ aspect (See Figure 2.).

The pointcut modification-point specifies the join
points at which the interaction behavior created by F1 and
F2 is applied. In the advice body, the interaction behav-
ior is defined. The pointcut specification or advice body
may use the functionality or data defined in the modules
(CoreFuntionF1 and CoreFunctionF2) implement-
ing the core functionality of the features. Note that the
stereotype module represents the modularized unit of fea-
ture implementation. Thus, the modules CoreFuntionF1
and CoreFunctionF2 can be realized as either Java
classes or AspectJ aspects.

F1 F2
<<modification-dependency>>

<<implements>> <<implements>><<implements>>

<<feature>><<feature>>

<<module>>

CoreFunctionF2CoreFunctionF1

<<module>>

<<uses>> <<uses>>

p pp

<<aspect>>

method() method()

M difi ti D d F1F2

pointcut modification-point()

advice() : modification-point() {

<<advices>>
ModificationDependencyF1F2

// the interaction behavior
// created by F1 and F2

}

Figure 2. Modification Dependency Aspect.

Since the modification dependency can be defined as a
separate aspect, the aspect can be included whenever both
involved features are selected.

B. Activation Dependency Aspects

The activation dependencies described in Section II-B can
be implemented as separate generic aspects, which declare
generic types with type parameters. Each generic aspect
provides the abstract interfaces that must be concretized in
its concrete sub-aspects and defines the template behaviors,
which the concrete sub-aspects inherit.

The importance of using generic aspects is twofold. First,
they are reusable artifacts among the aspects implementing
the activation dependencies, as they abstract out common
interaction patterns between features in the activation de-
pendencies. Second, this way the overall code size of all
dependency implementations can be reduced, as each depen-
dency can simply be implemented by extending the abstract
interfaces of a generic aspect and inheriting the template
behaviors of the abstract aspect.

Features in an Excluded Activation Dependency must
not be active at the same time. Figure 3 shows how this
requirement can be implemented in a generic way:

1. public abstract aspect ExcludedAct<M1,M2> {
2. M1Interface source;
3. M2Interface target;
4.
5. interface M1Interface {
6. public void terminate();
7. }
8. interface M2Interface {
9. public boolean isActive();
10. }
11. declare parents: M1 implements M1Interface;
12. declare parents: M2 implements M2Interface;
13.
14. abstract pointcut M1allExeJP();
15. void around() : M1allExeJP() {
16. if ((target!=null) && target.isActive())
17. source.terminate();
18. else
19. proceed();
20. }
21.}

Figure 3. Excluded Dependency Aspect.

ExcludedAct<M1,M2> is a generic aspect which can
be parameterized with the module types M1, M2. The
declare mechanism is used to extend the actual type of M1
with M1Interface. Then, the actual type of M1 can have
the method terminate(), which handles the abnormal
termination of its instance. Similarly, the actual type of M2
is extended with the method isActive(), which returns
a boolean value representing whether or not the instance of
that type is active. Note that these methods must be defined
in a sub-aspect extending ExcludedAct<M1,M2>. These
methods are used to manage the excluded activation depen-
dency between the instances of M1 and M2. The abstract
pointcut M1allExeJP represents all execution join points
related to an instance of M1. Therefore, the around advice
(lines 15–20) means that each execution join point matched
by the pointcut can proceed only when the instance target
is not active, and otherwise the instance source must be
terminated.

A Required Activation Dependency is similar to the
excluded activation dependency in the sense that depend-
ing on the activation state of the M2 type instance, the
activation of the M1 type instance is affected. However,
here the consequence is the opposite as for the excluded
activation dependency. As you can see in Figure 4, only
the advice body (lines 16–19) is different from that of
ExcludedAct<M1,M2>. That is, each execution join
point matched by the pointcut can proceed only when
the instance target is active, and otherwise the instance
source must be terminated.

Features in a Sequential Activation Dependency must be
active sequentially. SequentialAct<M1>, shown in Fig-
ure 5, implements the sequential activation dependency. The
aspect extends the actual type of M1 with M1Interface
(line 7) which includes the abstract method activate()

1. public abstract aspect RequiredAct<M1,M2> {
2-14. // the same as the ExcludedAct<M1,M2>
15. void around() : M1allExeJP() {
16. if ((target!=null) && target.isActive())
17. proceed();
18. else
19. source.terminate();
20. }
21. }

Figure 4. Required Dependency Aspect.

(line 5). The method is called immediately after a M2 type
instance completes its execution (lines 10–12). Note that
the abstract pointcut M2lastExeJP represents the last join
point matched while a M2 type instance is executing.

1. public abstract aspect SequentialAct<M1> {
2. M1Interface source;
3.
4. interface M1Interface {
5. public void activate();
6. }
7. declare parents: M1 implements M1Interface;
8.
9. abstract pointcut M2lastExeJP();
10. after() returning: M2lastExeJP(){
11. source.activate();
12. }
13. }

Figure 5. Sequential Dependency Aspect.

Features in a Concurrent Activation Dependency must
be active together concurrently. ConcurrentAct<M1> in
Figure 5 shows how to ensure that the M1 type instance
(source) starts concurrently with a M2 type instance. To
be able to execute instances of M1 and M2 concurrently,
the aspect extends the actual type of M1 with the interface
Runnable and executes the instance (i.e., source) of that
type in a separate thread before starting the execution of the
M2 type instance.

1. public abstract aspect ConcurrentAct<M1> {
2. Runnable source;
3.
4. declare parents: M1 implements Runnable;
5.
6. abstract pointcut M2startExeJP();
7. before(): M2startExeJP(){
8. new Thread(source).start();
9. }
10. }

Figure 6. Concurrent Dependency Aspect.

It should be noted, that the generic aspects described
above are not the only way of implementing such depen-
dencies, especially if we have to take into account different
contexts. The main point in this section was to demon-
strate, how we can clearly separate feature dependencies
from feature implementations with aspect-oriented patterns.

Scientific
Calculator PL

Legend

NotationMode Shift Key Memory History
Number
Systems

Scientific
Operations

Editing

Exponential
Operations

Combinatoric
Operations

Trigonometric
Operations

Boolean
Operations Decimal Binary Octal Hexadec.AngleSize

Basic
Operations

Display
Number
Buttons

Off Clear

Group
(Or)

f1 fn

Group
(Alternative)

f1 fn

Mandatory
Feature

Optional
Feature

Omitted
Subfeatures

Figure 7. Feature Model (excerpt).

CI

Memory

Shift Key

Scientific
Operations

Number
Systems

Boolean
Operations CI NotationCI

CI

CI

CI = Configuration Inclusion

(a) Configuration Dependencies

Angle

Number
Systems

Notation

RM = Runtime Modification
REA = Runtime Excluded Activation

Off History

Mode

d5 : REA

d1 : REA

d2 : RM

d4 : RM

d3 : RM

(b) Operational Dependencies

Figure 8. Examples for Feature Dependencies (excerpts).

These patterns can help implementing feature dependencies
with less efforts and less code redundancy. Moreover, the
modularization of dependencies supports our goal of making
feature implementations independent of each other.

IV. CASE STUDY

To illustrate the application of the concepts introduced
earlier we will now use a product line of calculator applica-
tions, which we created by refactoring the open source Java
Scientific Calculator [10]. We chose calculator applications
since most of the readers will be familiar with the function-
ality and to compare our concepts with other approaches
(e.g., FOP [11]), which use similar examples. The activities
performed during our approach can be roughly structured
into Feature Analysis, Feature Implementation Mapping and
Aspectual Implementation.

A. Feature Analysis

Feature analysis, which is the starting point for our
approach, includes activities for identifying and modeling
the commonalities and variabilities of a product line in terms
of features and for analyzing dependencies between features.

Figure 7 shows the feature model of our calculator product
line. It contains mandatory features representing common-
alities, e.g., Basic Operations, Display, Number
Buttons, and optional features indicating variabilities, e.g.,
Mode, History, Number Systems, etc.

During feature configuration, the software engineer de-
cides which features will be included in the particular prod-
uct. This process is constrained by the configuration depen-
dencies as captured in the feature model (see Section II-B).
For instance, the feature Boolean Operations requires
the (design-time) inclusion of Number Systems, which
allows to change the current numeral base of the calculator
from Decimal to Binary.

Operational dependencies (at run-time) further constrain
the execution of features. For instance, Figure 8(b) shows
operational dependencies that are associated with the fea-
ture History. As described in Section II, the activation
of Mode prevents History from being activated, and
Off preempts the execution of History. In addition,
Number Systems requires a modification in the behav-
ior of History. Similarly, Notation and Angle also
require an behavioral extension of History.

All these dependencies are explicitly modeled in the
feature model, which is the first step towards clear separation
of dependencies from feature implementations.

B. Feature Implementation Mapping

In this section, we describe how features and feature
dependencies can be mapped into implementation compo-
nents, such that they can be effectively configured based on
the feature configurations of a SPL. We used the following
techniques to organize the mappings:

Mapping non-crosscutting common features to a set of

<<class>> <<class>><<class>> <<class>>

core

<<aspect>>

history

HistoryItem <<aspect>>

HistoryAngleDep HistoryNumSysDep HistoryNotationDepHistoryModeDep

History NotationMode

ScientificCalcPL

Off

d5 d1d4 d3 d2

Fe
at

ur
e

M
od

el
Im

pl
em

en
ta

tio
n

M
od

ul
es

Number
Systems

<<class>>

CalculatorButton CalculatorPanel EqualsButton OffButton

History
Module

HistoryOffDep

<<aspect>> <<aspect>> <<aspect>> <<aspect>>

uses

crosscuts

legend

mapping

sub-feature

<<class>><<class>>

UpButton DownButton

Angle

Feature

dependency

module

package

Figure 9. Feature-Implementation Mappings.

classes which constitute a base modular structure. As shown
in Figure 7, the common features of the calculator product
line (PL) include Basic Operations, Display, Num
Buttons, Off, and Clear. Since these can be modular-
ized into components, we can implement them as a set of
Java classes forming the base structure of the PL. The lower
part of Figure 9 shows some of the classes in the core
package, which implement all common features.

Mapping each variable feature and its dependencies with
common features to an aspectual component or a pack-
age. Dependencies related to a variable feature may also
vary themselves, depending on the presence of the variable
feature. One effective way of localizing the effect of a
feature variation is to encapsulate all dependencies related
to a feature into the components for the corresponding
feature. For example, in Figure 7, the feature History is
an optional feature. If it is deselected and removed from the
implementation, d1, the dependency from History to Off
(see Figure 8(b)) must be removed from the product as well.
Therefore we encapsulate the components for History and
HistoryOffDep implementing the dependency d1 into
the same package history (see Figure 9).

Mapping each variable dependency to a separate aspec-
tual component. In case a variable feature has dependency
relationships with other variable features, we need to identify
variations of these dependencies and implement them as
separate aspects. For example, since both History and
Number Systems are optional features, the operational
dependency between them is present if (and only if) both
of them are present. Therefore, we separate the dependency
from the components implementing the features and real-
ize it as the aspectual component HistoryNumSysDep.

This approach decouples the implementation of the feature
History from implementations of other features (see Fig-
ure 9).

C. Aspectual Implementation

In this section, we link the concepts from two earlier
sections by describing how dependencies (described in the
previous section) can be implemented using the aspect-
oriented implementation patterns (presented in Section III).

Figure 10 shows the aspectual implementation of the
modification dependency between History and Number
Systems. As shown in Figure 9, HistoryNumSysDep
crosscuts the aspect HistoryModule and the class
HistoryItem. The dynamic crosscutting mechanisms
(i.e., Pointcut and Advice) of AspectJ are used to
extend the aspect HistoryModule. Lines 5–7 of
HistoryNumSysDep show how to specify the modifica-
tion point (the call to the method setList(..) within the
method upHistory()) of the aspect HistoryModule
using the pointcut mechanism. After the modification point
of the aspect HistoryModule, the behavior in lines 10–
13 of HistoryNumSysDep is executed. On the other
hand, the class HistoryItem is extended through the
static crosscutting mechanism (i.e., Intertype Declaration)
of AspectJ. Line 16 shows how to extend the class
HistoryItem with the field base.

The activation dependencies can be easily implemented
using the generic aspects. As shown in Figure 11, the aspect
HistoryModeDep extends the parameterized abstract as-
pect ExcludedDep<HistoryModule,ModeModule>,
which defines the interface variables, the abstract interfaces
and the template behavior for an excluded activation de-
pendency. The interface variables and the abstract interfaces

1. privileged aspect HistoryNumSysDep {
2. history = HistoryModule.aspectOf();
3. numSys = NumSys.aspectOf();
4.
5. pointcut modification-point() :
6. call(* setList(..)) &&
7. withincode(* upHistory());
8. ...
9. after() :modification-point() {
10. HistoryItem item
11. = history.historylist.elementAt(
12. history.historyPosition);
13. numSys.setBase(item.base);
14. }
15. ...
16. public Base HistoryItem.base;
17.}

Figure 10. Modification Dependency Aspect Example.

must be concretized in the aspect HistoryModeDep.
That is, the variables source, target defined in the
generic aspect ExcludedDep are initialized with the ac-
tual instances of HistoryModule and ModeModule,
respectively (lines 3–10). The two methods terminate,
isActive are implemented (lines 11–13), and the abstract
pointcut M1allExeJP is specified (lines 16–18).

1. privileged aspect HistoryModeDep
2. extends ExcludedDep<HistoryModule,ModeModule> {
3. before(HistoryModule h):
4. execution(UpButton.new() && this(h) {
5. source = h;
6. }
7. before(ModeModule m):
8. execution(ModeButton.new()) && this(m){
9. target = m;
10. }
11. public boolean HistoryModule.terminate() {}
12. public boolean ModeModule.isActive() {
13. return (getMode()!=0);
14. }
15.
16. pointcut M1allExeJP() :
17. execution(void actionPerformed(..)) &&
18. within(HistoryModule);
19. }

Figure 11. Excluded Activation Dependency Aspect Example.

D. Evaluation and Discussion

The Java Scientific Calculator [10] originally has
185 classes and 2 interfaces defined in 8K logical executable
lines of code (KLOC). We refactored a considerable number
of features in the Java Scientific Calculator (to allow for
configuration), but some code (1.7 KLOC) remained un-
refactored.

Although we implemented the product line by refactoring
the existing open source, this paper does not focus on the
refactoring. Our concern is how variabilities and dependen-
cies analyzed during the feature analysis can be utilized for

structuring the product line implementation in a way that
facilitates efficient product derivation.

As shown in the feature model (Figure 7), our calculator
product line contains twelve major variable features and
thirteen common features. The core of the product line,
the common features, is implemented by 52 classes in
2.5 KLOC (38% of the code size), while 155 aspects and
98 classes in 4 KLOC (62% of the code size) implement
variable features and dependencies. After refactoring, we
have 6.5 KLOC in total for the product line, corresponding
to 3% increase in code size compared to 6.3 KLOC for the
original monolithic application without variability.

Of the implementation for variable features, about 77%
(95 classes and 99 aspects) implement features and 23%
(3 classes, 56 aspects) dependencies (17 for modification,
18 for excluded activation, 18 for required activation, and
3 for sequential activation).

Initially, when starting the research on the presented case
study, we concentrated on clearly separating dependencies
from feature implementations. During this work we then no-
ticed that redundant code fragments reappeared in different
dependency implementations. This inspired the development
of the generic aspects presented in Section III. Using these
aspects, we could further reduce the code size. In addition,
experience during the refactoring seems to indicate that
using the described generic aspects can reduce development
effort for implementing feature dependencies. We intend to
investigate this in more detail.

We also handled dependencies among dependency mod-
ules as separate modules. For example, some dependency
modules interacted with each other at the same join point.
In this case we defined a separate aspect which could
prioritize the sequence of interactions. In general depen-
dencies or interactions among dependency modules can
also be modularized as separate aspects. This separation
can increase the number of implementation modules. This
complexity motivated us to develop the tools supporting
product derivation.

V. RELATED WORK

Aspect-oriented programming (AOP) techniques and lan-
guages were originally developed to modularize crosscut-
ting concerns. Recently, there have been several efforts to
use them for modularizing feature implementation. These
include work by Griss [12], Alves et al. [13], Kästner et al.
[5], Godil et al. [4] and Liu et al. [6].

Most of these approaches did not take into account
dependencies or interactions between features during feature
implementation. Liu et al. [6], however, observed that “the
implementation of a feature can vary from one program
to another.” In our view, the problem with varying fea-
ture implementation mainly comes from embedding rel-
evant dependency code into the feature implementation.
Although Liu et al. identified the modules (the derivative

modules in [6]) implementing interactions or dependencies
with other features, they regarded them as part of the
feature implementation instead of separating them. Our main
contribution (compared to [6]) is that we make an explicit
connection between feature dependencies and dependency
modules. Also we provide concrete implementation patterns
(the dependency aspects) for implementing dependencies.

There have been several attempts to separate dependencies
from feature implementation. Lee et al. identified problems
with feature dependencies in SPL component development
and proposed guidelines on how feature dependency infor-
mation can be used for implementing features using object-
oriented patterns [7] and using AOP [14]. In this paper,
we extended this work by providing the aspect-oriented
implementation patterns.

The dependency aspects were inspired by the idea of
Relationship Aspects [15], which implement relationships
between objects as separate aspects. In contrast to Rela-
tionship Aspects, our paper focuses on dynamic interactions
rather than static relationships.

In this paper, we used AspectJ to isolate dependencies
from feature implementations. As pointed out in [5], the
pointcut language of AspectJ has language limitations, such
as the statement extension problem and pointcut fragility,
which constrain the identification and definition of inter-
action points between class modules and aspect modules.
These limitations can be alleviated by making the interaction
points explicit in an abstract way. For example, crosscutting
programming interfaces [16] can be used to clarify the
separation of base and extensions. The dependency aspects
also provide abstract interfaces that decouple aspect code
implementing dependencies from feature implementations,
but does not provide semantic checking which prevents
undesirable composition.

VI. CONCLUSIONS

The primary goal of this work is to make the process
of product derivation more efficient. To this end, we have
presented an approach to separating features dependencies
from feature implementations for flexible feature composi-
tion. The approach was demonstrated and evaluated with a
calculator product line.

Although, we have demonstrated the feasibility and appli-
cability of separating the feature dependencies from feature
implementation, we did not take into account all potential
types of dependencies between features. For instance, a
system with more dynamic characteristics would raise new
concerns, both (1) in the way feature interactions would
affect the design and implementations of individual features
and (2) in the complexity of feature interactions.

The main contribution of this paper is to make an explicit
connection between feature dependencies and their aspect-
oriented implementation patterns, called dependency as-
pects, which in the end supports efficient product derivation.

ACKNOWLEDGMENT

This work was supported, in part, by the Korea Re-
search Foundation Grant funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2008-
013-D00114), also in part, by Science Foundation Ireland
grant 03/CE2/I303 1 to Lero – the Irish Software Engineer-
ing Research Centre (www.lero.ie).

REFERENCES

[1] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming. Reading, MA, USA: Addison Wesley, 2000.

[2] K. C. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son, “Feature Oriented Domain Analysis (FODA) feasibility
study,” Tech. Rep., 1990.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
in ECOOP 1997, 1997, pp. 220–242.

[4] I. Godil and H.-A. Jacobsen, “Horizontal decomposition of
prevayler,” in CASCON 2005, 2005, pp. 83–100.

[5] C. Kästner, S. Apel, and D. Batory, “A case study implement-
ing features using AspectJ,” in SPLC 2007, September 2007,
pp. 223–232.

[6] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactor-
ing of legacy applications,” in ICSE 2006, 2006, pp. 112–121.

[7] K. Lee and K. C. Kang, “Feature dependency analysis for
product line component design,” in ICSR 2004. Madrid,
Spain: Springer, July 2004, pp. 69–85.

[8] S. Ferber, J. Haag, and J. Savolainen, “Feature interaction and
dependencies: Modeling features for reengineering a legacy
product line,” in SPLC’02, 2002, pp. 235–256.

[9] W. Zhang, H. Mei, and H. Zhao, “A feature-oriented approach
to modeling requirements dependencies,” in RE05, 2005.

[10] “Java scientific calculator,” http://jscicalc.sourceforge.net,
May 2008.

[11] D. Batory, “Feature-oriented programming and the AHEAD
tool suite,” in ICSE ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 702–703.

[12] M. L. Griss, “Implementing product-line features by compos-
ing aspects,” in SPLC 2000, August 2000, pp. 271–288.

[13] V. Alves, P. Matos Jr., L. Cole, P. Borba, and G. Ramalho,
“Extracting and evolving mobile games product lines,” in
SPLC 2005, September 2005, pp. 70–81.

[14] K. Lee, C. K. Kang, and M. Kim, “Combining feature-
oriented analysis and aspect-oriented programming for prod-
uct line asset development,” in SPLC 2006, 2006.

[15] D. J. Pearce and J. Noble, “Relationship aspects,” in AOSD
06, Bonn, Germany, March 2006.

[16] G. William, M. Shonie, K. Sullivan, Y. Song, N. Tewari,
Y. Cai, and H. Rajan, “Modular software design with cross-
cutting interfaces,” IEEE Software, January/February 2006.

